wai_bindgen_wasmer/
le.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
use crate::AllBytesValid;
use std::cmp::Ordering;
use std::fmt;
use std::mem;
use std::slice;

/// Helper type representing a 1-byte-aligned little-endian value in memory.
///
/// This type is used in slice types for Wasmer host bindings. Guest types are
/// not guaranteed to be either aligned or in the native endianness. This type
/// wraps these types and provides explicit getters/setters to interact with the
/// underlying value in a safe host-agnostic manner.
#[repr(packed)]
pub struct Le<T>(T);

impl<T> Le<T>
where
    T: Endian,
{
    /// Creates a new `Le<T>` value where the internals are stored in a way
    /// that's safe to copy into wasm linear memory.
    pub fn new(t: T) -> Le<T> {
        Le(t.into_le())
    }

    /// Reads the value stored in this `Le<T>`.
    ///
    /// This will perform a correct read even if the underlying memory is
    /// unaligned, and it will also convert to the host's endianness for the
    /// right representation of `T`.
    pub fn get(&self) -> T {
        self.0.from_le()
    }

    /// Writes the `val` to this slot.
    ///
    /// This will work correctly even if the underlying memory is unaligned and
    /// it will also automatically convert the `val` provided to an endianness
    /// appropriate for WebAssembly (little-endian).
    pub fn set(&mut self, val: T) {
        self.0 = val.into_le();
    }

    pub(crate) fn from_slice(bytes: &[u8]) -> &[Le<T>] {
        // SAFETY: The invariants we uphold here are:
        //
        // * the lifetime of the input is the same as the output, so we're only
        //   dealing with valid memory.
        // * the alignment of the input is the same as the output (1)
        // * the input isn't being truncated and we're consuming all of it (it
        //   must be a multiple of the size of `Le<T>`)
        // * all byte-patterns for `Le<T>` are valid. This is guaranteed by the
        //   `AllBytesValid` supertrait of `Endian`.
        unsafe {
            assert_eq!(mem::align_of::<Le<T>>(), 1);
            assert!(bytes.len() % mem::size_of::<Le<T>>() == 0);
            fn all_bytes_valid<T: AllBytesValid>() {}
            all_bytes_valid::<Le<T>>();

            slice::from_raw_parts(
                bytes.as_ptr().cast::<Le<T>>(),
                bytes.len() / mem::size_of::<Le<T>>(),
            )
        }
    }

    pub(crate) fn from_slice_mut(bytes: &mut [u8]) -> &mut [Le<T>] {
        // SAFETY: see `from_slice` above
        //
        // Note that both the input and the output are `mut`, helping to
        // maintain the guarantee of uniqueness.
        unsafe {
            assert_eq!(mem::align_of::<Le<T>>(), 1);
            assert!(bytes.len() % mem::size_of::<Le<T>>() == 0);
            slice::from_raw_parts_mut(
                bytes.as_mut_ptr().cast::<Le<T>>(),
                bytes.len() / mem::size_of::<Le<T>>(),
            )
        }
    }
}

impl<T: Copy> Clone for Le<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: Copy> Copy for Le<T> {}

impl<T: Endian + PartialEq> PartialEq for Le<T> {
    fn eq(&self, other: &Le<T>) -> bool {
        self.get() == other.get()
    }
}

impl<T: Endian + PartialEq> PartialEq<T> for Le<T> {
    fn eq(&self, other: &T) -> bool {
        self.get() == *other
    }
}

impl<T: Endian + Eq> Eq for Le<T> {}

impl<T: Endian + PartialOrd> PartialOrd for Le<T> {
    fn partial_cmp(&self, other: &Le<T>) -> Option<Ordering> {
        self.get().partial_cmp(&other.get())
    }
}

impl<T: Endian + Ord> Ord for Le<T> {
    fn cmp(&self, other: &Le<T>) -> Ordering {
        self.get().cmp(&other.get())
    }
}

impl<T: Endian + fmt::Debug> fmt::Debug for Le<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T: Endian> From<T> for Le<T> {
    fn from(t: T) -> Le<T> {
        Le::new(t)
    }
}

unsafe impl<T: AllBytesValid> AllBytesValid for Le<T> {}

/// Trait used for the implementation of the `Le` type.
pub trait Endian: AllBytesValid + Copy + Sized {
    /// Converts this value and any aggregate fields (if any) into little-endian
    /// byte order
    fn into_le(self) -> Self;
    /// Converts this value and any aggregate fields (if any) from
    /// little-endian byte order
    #[allow(clippy::wrong_self_convention)]
    fn from_le(self) -> Self;
}

macro_rules! primitives {
    ($($t:ident)*) => ($(
        impl Endian for $t {
            #[inline]
            fn into_le(self) -> Self {
                Self::from_ne_bytes(self.to_le_bytes())
            }

            #[inline]
            fn from_le(self) -> Self {
                Self::from_le_bytes(self.to_ne_bytes())
            }
        }
    )*)
}

primitives! {
    u8 i8
    u16 i16
    u32 i32
    u64 i64
    f32 f64
}

#[allow(clippy::unused_unit)]
macro_rules! tuples {
    ($(($($t:ident)*))*) => ($(
        #[allow(non_snake_case)]
        impl <$($t:Endian,)*> Endian for ($($t,)*) {
            #[allow(clippy::unused_unit)]
            fn into_le(self) -> Self {
                let ($($t,)*) = self;
                // Needed for single element "tuples".
                ($($t.into_le(),)*)
            }

            #[allow(clippy::unused_unit)]
            fn from_le(self) -> Self {
                let ($($t,)*) = self;
                // Needed for single element "tuples".
                ($($t.from_le(),)*)
            }
        }
    )*)
}

tuples! {
    ()
    (T1)
    (T1 T2)
    (T1 T2 T3)
    (T1 T2 T3 T4)
    (T1 T2 T3 T4 T5)
    (T1 T2 T3 T4 T5 T6)
    (T1 T2 T3 T4 T5 T6 T7)
    (T1 T2 T3 T4 T5 T6 T7 T8)
    (T1 T2 T3 T4 T5 T6 T7 T8 T9)
    (T1 T2 T3 T4 T5 T6 T7 T8 T9 T10)
}