1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
use crate::sizealign::align_to;
use crate::{
Enum, Expected, Flags, FlagsRepr, Function, Int, Interface, Record, ResourceId, Tuple, Type,
TypeDefKind, TypeId, Union, Variant,
};
use std::mem;
/// A raw WebAssembly signature with params and results.
#[derive(Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct WasmSignature {
/// The WebAssembly parameters of this function.
pub params: Vec<WasmType>,
/// The WebAssembly results of this function.
pub results: Vec<WasmType>,
/// Whether or not this signature is passing all of its parameters
/// indirectly through a pointer within `params`.
///
/// Note that `params` still reflects the true wasm paramters of this
/// function, this is auxiliary information for code generators if
/// necessary.
pub indirect_params: bool,
/// Whether or not this signature is using a return pointer to store the
/// result of the function, which is reflected either in `params` or
/// `results` depending on the context this function is used (e.g. an import
/// or an export).
pub retptr: bool,
}
/// Enumerates wasm types used by interface types when lowering/lifting.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum WasmType {
I32,
I64,
F32,
F64,
// NOTE: we don't lower interface types to any other Wasm type,
// e.g. externref, so we don't need to define them here.
}
fn join(a: WasmType, b: WasmType) -> WasmType {
use WasmType::*;
match (a, b) {
(I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => a,
(I32, F32) | (F32, I32) => I32,
(_, I64 | F64) | (I64 | F64, _) => I64,
}
}
impl From<Int> for WasmType {
fn from(i: Int) -> WasmType {
match i {
Int::U8 | Int::U16 | Int::U32 => WasmType::I32,
Int::U64 => WasmType::I64,
}
}
}
// Helper macro for defining instructions without having to have tons of
// exhaustive `match` statements to update
macro_rules! def_instruction {
(
$( #[$enum_attr:meta] )*
pub enum $name:ident<'a> {
$(
$( #[$attr:meta] )*
$variant:ident $( {
$($field:ident : $field_ty:ty $(,)* )*
} )?
:
[$num_popped:expr] => [$num_pushed:expr],
)*
}
) => {
$( #[$enum_attr] )*
pub enum $name<'a> {
$(
$( #[$attr] )*
$variant $( {
$(
$field : $field_ty,
)*
} )? ,
)*
}
impl $name<'_> {
/// How many operands does this instruction pop from the stack?
#[allow(unused_variables)]
pub fn operands_len(&self) -> usize {
match self {
$(
Self::$variant $( {
$(
$field,
)*
} )? => $num_popped,
)*
}
}
/// How many results does this instruction push onto the stack?
#[allow(unused_variables)]
pub fn results_len(&self) -> usize {
match self {
$(
Self::$variant $( {
$(
$field,
)*
} )? => $num_pushed,
)*
}
}
}
};
}
def_instruction! {
#[derive(Debug)]
pub enum Instruction<'a> {
/// Acquires the specified parameter and places it on the stack.
/// Depending on the context this may refer to wasm parameters or
/// interface types parameters.
GetArg { nth: usize } : [0] => [1],
// Integer const/manipulation instructions
/// Pushes the constant `val` onto the stack.
I32Const { val: i32 } : [0] => [1],
/// Casts the top N items on the stack using the `Bitcast` enum
/// provided. Consumes the same number of operands that this produces.
Bitcasts { casts: &'a [Bitcast] } : [casts.len()] => [casts.len()],
/// Pushes a number of constant zeros for each wasm type on the stack.
ConstZero { tys: &'a [WasmType] } : [0] => [tys.len()],
// Memory load/store instructions
/// Pops an `i32` from the stack and loads a little-endian `i32` from
/// it, using the specified constant offset.
I32Load { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `i8` from
/// it, using the specified constant offset. The value loaded is the
/// zero-extended to 32-bits
I32Load8U { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `i8` from
/// it, using the specified constant offset. The value loaded is the
/// sign-extended to 32-bits
I32Load8S { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `i16` from
/// it, using the specified constant offset. The value loaded is the
/// zero-extended to 32-bits
I32Load16U { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `i16` from
/// it, using the specified constant offset. The value loaded is the
/// sign-extended to 32-bits
I32Load16S { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `i64` from
/// it, using the specified constant offset.
I64Load { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `f32` from
/// it, using the specified constant offset.
F32Load { offset: i32 } : [1] => [1],
/// Pops an `i32` from the stack and loads a little-endian `f64` from
/// it, using the specified constant offset.
F64Load { offset: i32 } : [1] => [1],
/// Pops an `i32` address from the stack and then an `i32` value.
/// Stores the value in little-endian at the pointer specified plus the
/// constant `offset`.
I32Store { offset: i32 } : [2] => [0],
/// Pops an `i32` address from the stack and then an `i32` value.
/// Stores the low 8 bits of the value in little-endian at the pointer
/// specified plus the constant `offset`.
I32Store8 { offset: i32 } : [2] => [0],
/// Pops an `i32` address from the stack and then an `i32` value.
/// Stores the low 16 bits of the value in little-endian at the pointer
/// specified plus the constant `offset`.
I32Store16 { offset: i32 } : [2] => [0],
/// Pops an `i32` address from the stack and then an `i64` value.
/// Stores the value in little-endian at the pointer specified plus the
/// constant `offset`.
I64Store { offset: i32 } : [2] => [0],
/// Pops an `i32` address from the stack and then an `f32` value.
/// Stores the value in little-endian at the pointer specified plus the
/// constant `offset`.
F32Store { offset: i32 } : [2] => [0],
/// Pops an `i32` address from the stack and then an `f64` value.
/// Stores the value in little-endian at the pointer specified plus the
/// constant `offset`.
F64Store { offset: i32 } : [2] => [0],
// Scalar lifting/lowering
/// Converts an interface type `char` value to a 32-bit integer
/// representing the unicode scalar value.
I32FromChar : [1] => [1],
/// Converts an interface type `u64` value to a wasm `i64`.
I64FromU64 : [1] => [1],
/// Converts an interface type `s64` value to a wasm `i64`.
I64FromS64 : [1] => [1],
/// Converts an interface type `u32` value to a wasm `i32`.
I32FromU32 : [1] => [1],
/// Converts an interface type `s32` value to a wasm `i32`.
I32FromS32 : [1] => [1],
/// Converts an interface type `u16` value to a wasm `i32`.
I32FromU16 : [1] => [1],
/// Converts an interface type `s16` value to a wasm `i32`.
I32FromS16 : [1] => [1],
/// Converts an interface type `u8` value to a wasm `i32`.
I32FromU8 : [1] => [1],
/// Converts an interface type `s8` value to a wasm `i32`.
I32FromS8 : [1] => [1],
/// Conversion an interface type `f32` value to a wasm `f32`.
///
/// This may be a noop for some implementations, but it's here in case the
/// native language representation of `f32` is different than the wasm
/// representation of `f32`.
F32FromFloat32 : [1] => [1],
/// Conversion an interface type `f64` value to a wasm `f64`.
///
/// This may be a noop for some implementations, but it's here in case the
/// native language representation of `f64` is different than the wasm
/// representation of `f64`.
F64FromFloat64 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `s8`.
///
/// This will truncate the upper bits of the `i32`.
S8FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u8`.
///
/// This will truncate the upper bits of the `i32`.
U8FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `s16`.
///
/// This will truncate the upper bits of the `i32`.
S16FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u16`.
///
/// This will truncate the upper bits of the `i32`.
U16FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `s32`.
S32FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u32`.
U32FromI32 : [1] => [1],
/// Converts a native wasm `i64` to an interface type `s64`.
S64FromI64 : [1] => [1],
/// Converts a native wasm `i64` to an interface type `u64`.
U64FromI64 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `char`.
///
/// It's safe to assume that the `i32` is indeed a valid unicode code point.
CharFromI32 : [1] => [1],
/// Converts a native wasm `f32` to an interface type `f32`.
Float32FromF32 : [1] => [1],
/// Converts a native wasm `f64` to an interface type `f64`.
Float64FromF64 : [1] => [1],
/// Creates a `bool` from an `i32` input, trapping if the `i32` isn't
/// zero or one.
BoolFromI32 : [1] => [1],
/// Creates an `i32` from a `bool` input, must return 0 or 1.
I32FromBool : [1] => [1],
/// Creates a "unit" value from nothing.
UnitLift : [0] => [1],
/// Consumes a "unit" value and returns nothing.
UnitLower : [1] => [0],
// Handles
/// Converts a "borrowed" handle into a wasm `i32` value.
///
/// > **Note**: this documentation is outdated and does not reflect the
/// > current implementation of the canonical ABI. This needs to be
/// > updated.
///
/// A "borrowed" handle in this case means one where ownership is not
/// being relinquished. This is only used for lowering interface types
/// parameters.
///
/// Situations that this is used are:
///
/// * A wasm exported function receives, as a parameter, handles defined
/// by the wasm module itself. This is effectively proof of ownership
/// by an external caller (be it host or wasm module) and the
/// ownership of the handle still lies with the caller. The wasm
/// module is only receiving a reference to the resource.
///
/// * A wasm module is calling an import with a handle defined by the
/// import's module. Sort of the converse of the previous case this
/// means that the wasm module is handing out a reference to a
/// resource that it owns. The type in the wasm module, for example,
/// needs to reflect this.
///
/// This instruction is not used for return values in either
/// export/import positions.
I32FromBorrowedHandle { ty: ResourceId } : [1] => [1],
/// Converts an "owned" handle into a wasm `i32` value.
///
/// > **Note**: this documentation is outdated and does not reflect the
/// > current implementation of the canonical ABI. This needs to be
/// > updated.
///
/// This conversion is used for handle values which are crossing a
/// module boundary for perhaps the first time. Some example cases of
/// when this conversion is used are:
///
/// * When a host defines a function to be imported, returned handles
/// use this instruction. Handles being returned to wasm a granting a
/// capability, which means that this new capability is typically
/// wrapped up in a new integer descriptor.
///
/// * When a wasm module calls an imported function with a type defined
/// by itself, then it's granting a capability to the callee. This
/// means that the wasm module's type is being granted for the first
/// time, possibly, so it needs to be an owned value that's consumed.
/// Note that this doesn't actually happen with `*.waix` today due to
/// the lack of handle type imports.
///
/// * When a wasm module export returns a handle defined within the
/// module, then it's similar to calling an imported function with
/// that handle. The capability is being granted to the caller of the
/// export, so the owned value is wrapped up in an `i32`.
///
/// * When a host is calling a wasm module with a capability defined by
/// the host, its' similar to the host import returning a capability.
/// This would be granting the wasm module with the capability so an
/// owned version with a fresh handle is passed to the wasm module.
/// Note that this doesn't happen today with `*.waix` due to the lack
/// of handle type imports.
///
/// Basically this instruction is used for handle->wasm conversions
/// depending on the calling context and where the handle type in
/// question was defined.
I32FromOwnedHandle { ty: ResourceId } : [1] => [1],
/// Converts a native wasm `i32` into an owned handle value.
///
/// > **Note**: this documentation is outdated and does not reflect the
/// > current implementation of the canonical ABI. This needs to be
/// > updated.
///
/// This is the converse of `I32FromOwnedHandle` and is used in similar
/// situations:
///
/// * A host definition of an import receives a handle defined in the
/// module itself.
/// * A wasm module calling an import receives a handle defined by the
/// import.
/// * A wasm module's export receives a handle defined by an external
/// module.
/// * A host calling a wasm export receives a handle defined in the
/// module.
///
/// Note that like `I32FromOwnedHandle` the first and third bullets
/// above don't happen today because witx can't express type imports
/// just yet.
HandleOwnedFromI32 { ty: ResourceId } : [1] => [1],
/// Converts a native wasm `i32` into a borrowedhandle value.
///
/// > **Note**: this documentation is outdated and does not reflect the
/// > current implementation of the canonical ABI. This needs to be
/// > updated.
///
/// This is the converse of `I32FromBorrowedHandle` and is used in similar
/// situations:
///
/// * An exported wasm function receives, as a parameter, a handle that
/// is defined by the wasm module.
/// * An host-defined imported function is receiving a handle, as a
/// parameter, that is defined by the host itself.
HandleBorrowedFromI32 { ty: ResourceId } : [1] => [1],
// lists
/// Lowers a list where the element's layout in the native language is
/// expected to match the canonical ABI definition of interface types.
///
/// Pops a list value from the stack and pushes the pointer/length onto
/// the stack. If `realloc` is set to `Some` then this is expected to
/// *consume* the list which means that the data needs to be copied. An
/// allocation/copy is expected when:
///
/// * A host is calling a wasm export with a list (it needs to copy the
/// list in to the callee's module, allocating space with `realloc`)
/// * A wasm export is returning a list (it's expected to use `realloc`
/// to give ownership of the list to the caller.
/// * A host is returning a list in a import definition, meaning that
/// space needs to be allocated in the caller with `realloc`).
///
/// A copy does not happen (e.g. `realloc` is `None`) when:
///
/// * A wasm module calls an import with the list. In this situation
/// it's expected the caller will know how to access this module's
/// memory (e.g. the host has raw access or wasm-to-wasm communication
/// would copy the list).
///
/// If `realloc` is `Some` then the adapter is not responsible for
/// cleaning up this list because the other end is receiving the
/// allocation. If `realloc` is `None` then the adapter is responsible
/// for cleaning up any temporary allocation it created, if any.
ListCanonLower {
element: &'a Type,
realloc: Option<&'a str>,
} : [1] => [2],
/// Same as `ListCanonLower`, but used for strings
StringLower {
realloc: Option<&'a str>,
} : [1] => [2],
/// Lowers a list where the element's layout in the native language is
/// not expected to match the canonical ABI definition of interface
/// types.
///
/// Pops a list value from the stack and pushes the pointer/length onto
/// the stack. This operation also pops a block from the block stack
/// which is used as the iteration body of writing each element of the
/// list consumed.
///
/// The `realloc` field here behaves the same way as `ListCanonLower`.
/// It's only set to `None` when a wasm module calls a declared import.
/// Otherwise lowering in other contexts requires allocating memory for
/// the receiver to own.
ListLower {
element: &'a Type,
realloc: Option<&'a str>,
} : [1] => [2],
/// Lifts a list which has a canonical representation into an interface
/// types value.
///
/// The term "canonical" representation here means that the
/// representation of the interface types value in the native language
/// exactly matches the canonical ABI definition of the type.
///
/// This will consume two `i32` values from the stack, a pointer and a
/// length, and then produces an interface value list. If the `free`
/// field is set to `Some` then the pointer/length should be considered
/// an owned allocation and need to be deallocated by the receiver. If
/// it is set to `None` then a view is provided but it does not need to
/// be deallocated.
///
/// The `free` field is set to `Some` in similar situations as described
/// by `ListCanonLower`. If `free` is `Some` then the memory must be
/// deallocated after the lifted list is done being consumed. If it is
/// `None` then the receiver of the lifted list does not own the memory
/// and must leave the memory as-is.
ListCanonLift {
element: &'a Type,
free: Option<&'a str>,
ty: TypeId,
} : [2] => [1],
/// Same as `ListCanonLift`, but used for strings
StringLift {
free: Option<&'a str>,
} : [2] => [1],
/// Lifts a list which into an interface types value.
///
/// This will consume two `i32` values from the stack, a pointer and a
/// length, and then produces an interface value list. Note that the
/// pointer/length popped are **owned** and need to be deallocated with
/// the wasm `free` function when the list is no longer needed.
///
/// This will also pop a block from the block stack which is how to
/// read each individual element from the list.
ListLift {
element: &'a Type,
free: Option<&'a str>,
ty: TypeId,
} : [2] => [1],
/// Pushes an operand onto the stack representing the list item from
/// each iteration of the list.
///
/// This is only used inside of blocks related to lowering lists.
IterElem { element: &'a Type } : [0] => [1],
/// Pushes an operand onto the stack representing the base pointer of
/// the next element in a list.
///
/// This is used for both lifting and lowering lists.
IterBasePointer : [0] => [1],
// records
/// Pops a record value off the stack, decomposes the record to all of
/// its fields, and then pushes the fields onto the stack.
RecordLower {
record: &'a Record,
name: &'a str,
ty: TypeId,
} : [1] => [record.fields.len()],
/// Pops all fields for a record off the stack and then composes them
/// into a record.
RecordLift {
record: &'a Record,
name: &'a str,
ty: TypeId,
} : [record.fields.len()] => [1],
/// Pops a tuple value off the stack, decomposes the tuple to all of
/// its fields, and then pushes the fields onto the stack.
TupleLower {
tuple: &'a Tuple,
ty: TypeId,
} : [1] => [tuple.types.len()],
/// Pops all fields for a tuple off the stack and then composes them
/// into a tuple.
TupleLift {
tuple: &'a Tuple,
ty: TypeId,
} : [tuple.types.len()] => [1],
/// Converts a language-specific record-of-bools to a list of `i32`.
FlagsLower {
flags: &'a Flags,
name: &'a str,
ty: TypeId,
} : [1] => [flags.repr().count()],
/// Converts a list of native wasm `i32` to a language-specific
/// record-of-bools.
FlagsLift {
flags: &'a Flags,
name: &'a str,
ty: TypeId,
} : [flags.repr().count()] => [1],
// variants
/// This is a special instruction used for `VariantLower`
/// instruction to determine the name of the payload, if present, to use
/// within each block.
///
/// Each sub-block will have this be the first instruction, and if it
/// lowers a payload it will expect something bound to this name.
VariantPayloadName : [0] => [1],
/// Pops a variant off the stack as well as `ty.cases.len()` blocks
/// from the code generator. Uses each of those blocks and the value
/// from the stack to produce `nresults` of items.
VariantLower {
variant: &'a Variant,
name: &'a str,
ty: TypeId,
results: &'a [WasmType],
} : [1] => [results.len()],
/// Pops an `i32` off the stack as well as `ty.cases.len()` blocks
/// from the code generator. Uses each of those blocks and the value
/// from the stack to produce a final variant.
VariantLift {
variant: &'a Variant,
name: &'a str,
ty: TypeId,
} : [1] => [1],
/// Same as `VariantLower`, except used for unions.
UnionLower {
union: &'a Union,
name: &'a str,
ty: TypeId,
results: &'a [WasmType],
} : [1] => [results.len()],
/// Same as `VariantLift`, except used for unions.
UnionLift {
union: &'a Union,
name: &'a str,
ty: TypeId,
} : [1] => [1],
/// Pops an enum off the stack and pushes the `i32` representation.
EnumLower {
enum_: &'a Enum,
name: &'a str,
ty: TypeId,
} : [1] => [1],
/// Pops an `i32` off the stack and lifts it into the `enum` specified.
EnumLift {
enum_: &'a Enum,
name: &'a str,
ty: TypeId,
} : [1] => [1],
/// Specialization of `VariantLower` for specifically `option<T>` types,
/// otherwise behaves the same as `VariantLower` (e.g. two blocks for
/// the two cases.
OptionLower {
payload: &'a Type,
ty: TypeId,
results: &'a [WasmType],
} : [1] => [results.len()],
/// Specialization of `VariantLift` for specifically the `option<T>`
/// type. Otherwise behaves the same as the `VariantLift` instruction
/// with two blocks for the lift.
OptionLift {
payload: &'a Type,
ty: TypeId,
} : [1] => [1],
/// Specialization of `VariantLower` for specifically `expected<T, E>`
/// types, otherwise behaves the same as `VariantLower` (e.g. two blocks
/// for the two cases.
ExpectedLower {
expected: &'a Expected,
ty: TypeId,
results: &'a [WasmType],
} : [1] => [results.len()],
/// Specialization of `VariantLift` for specifically the `expected<T,
/// E>` type. Otherwise behaves the same as the `VariantLift`
/// instruction with two blocks for the lift.
ExpectedLift {
expected: &'a Expected,
ty: TypeId,
} : [1] => [1],
// calling/control flow
/// Represents a call to a raw WebAssembly API. The module/name are
/// provided inline as well as the types if necessary.
///
/// Note that this instruction is not currently used for async
/// functions, instead `CallWasmAsyncImport` and `CallWasmAsyncExport`
/// are used.
CallWasm {
iface: &'a Interface,
name: &'a str,
sig: &'a WasmSignature,
} : [sig.params.len()] => [sig.results.len()],
/// Represents a call to an asynchronous wasm import.
///
/// This currently only happens when a compiled-to-wasm module calls as
/// async import. This instruction is used to indicate that the
/// specified import function should be called. The specified import
/// function has `params` as its types, but the final two parameters
/// must be synthesized by this instruction which are the
/// callback/callback state. The actual imported function does not
/// return anything but the callback will be called with the `i32` state
/// as the first parameter and `results` as the rest of the parameters.
/// The callback function should return nothing.
///
/// It's up to the bindings generator to figure out how to make this
/// look synchronous despite it being callback-based in the middle.
CallWasmAsyncImport {
iface: &'a Interface,
name: &'a str,
params: &'a [WasmType],
results: &'a [WasmType],
} : [params.len() - 2] => [results.len()],
/// Represents a call to an asynchronous wasm export.
///
/// This currently only happens when a host module calls an async
/// function on a wasm module. The specified function will take `params`
/// as its argument plus one more argument of an `i32` state that the
/// host needs to synthesize. The function being called doesn't actually
/// return anything. Instead wasm will call an `async_export_done`
/// intrinsic in the `canonical_abi` module. This intrinsic receives a
/// context value and a pointer into linear memory. The context value
/// lines up with the final `i32` parameter of this function call (which
/// the bindings generator must synthesize) and the pointer into linear
/// memory contains the `results`, stored at 8-byte offsets in the same
/// manner that multiple results are transferred.
///
/// It's up to the bindings generator to figure out how to make this
/// look synchronous despite it being callback-based in the middle.
CallWasmAsyncExport {
module: &'a str,
name: &'a str,
params: &'a [WasmType],
results: &'a [WasmType],
} : [params.len() - 1] => [results.len()],
/// Same as `CallWasm`, except the dual where an interface is being
/// called rather than a raw wasm function.
///
/// Note that this will be used for async functions.
CallInterface {
module: &'a str,
func: &'a Function,
} : [func.params.len()] => [1],
/// Returns `amt` values on the stack. This is always the last
/// instruction.
///
/// Note that this instruction is used for asynchronous functions where
/// the results are *lifted*, not when they're *lowered*, though. For
/// those modes the `ReturnAsyncExport` and `ReturnAsyncImport`
/// functions are used.
Return { amt: usize, func: &'a Function } : [*amt] => [0],
/// "Returns" from an asynchronous export.
///
/// This is only used for compiled-to-wasm modules at this time, and
/// only for the exports of async functions in those modules. This
/// instruction receives two parameters, the first of which is the
/// original context from the start of the function which was provided
/// when the export was first called (its last parameter). The second
/// argument is a pointer into linear memory with the results of the
/// asynchronous call already encoded. This instruction should then call
/// the `async_export_done` intrinsic in the `canonical_abi` module.
ReturnAsyncExport { func: &'a Function } : [2] => [0],
/// "Returns" from an asynchronous import.
///
/// This is only used for host modules at this time, and
/// only for the import of async functions in those modules. This
/// instruction receives the operands used to call the completion
/// function in the wasm module. The first parameter to this instruction
/// is the index into the function table of the function to call, and
/// the remaining parameters are the parameters to invoke the function
/// with.
ReturnAsyncImport {
func: &'a Function,
params: usize,
} : [*params + 2] => [0],
/// Calls the `realloc` function specified in a malloc-like fashion
/// allocating `size` bytes with alignment `align`.
///
/// Pushes the returned pointer onto the stack.
Malloc {
realloc: &'static str,
size: usize,
align: usize,
} : [0] => [1],
/// Calls the `free` function specified to deallocate the pointer on the
/// stack which has `size` bytes with alignment `align`.
Free {
free: &'static str,
size: usize,
align: usize,
} : [1] => [0],
}
}
#[derive(Debug, PartialEq)]
pub enum Bitcast {
// Upcasts
F32ToI32,
F64ToI64,
I32ToI64,
F32ToI64,
// Downcasts
I32ToF32,
I64ToF64,
I64ToI32,
I64ToF32,
None,
}
/// Whether the glue code surrounding a call is lifting arguments and lowering
/// results or vice versa.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum LiftLower {
/// When the glue code lifts arguments and lowers results.
///
/// ```text
/// Wasm --lift-args--> SourceLanguage; call; SourceLanguage --lower-results--> Wasm
/// ```
LiftArgsLowerResults,
/// When the glue code lowers arguments and lifts results.
///
/// ```text
/// SourceLanguage --lower-args--> Wasm; call; Wasm --lift-results--> SourceLanguage
/// ```
LowerArgsLiftResults,
}
/// We use a different ABI for wasm importing functions exported by the host
/// than for wasm exporting functions imported by the host.
///
/// Note that this reflects the flavor of ABI we generate, and not necessarily
/// the way the resulting bindings will be used by end users. See the comments
/// on the `Direction` enum in gen-core for details.
///
/// The bindings ABI has a concept of a "guest" and a "host". There are two
/// variants of the ABI, one specialized for the "guest" importing and calling
/// a function defined and exported in the "host", and the other specialized for
/// the "host" importing and calling a function defined and exported in the "guest".
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AbiVariant {
/// The guest is importing and calling the function.
GuestImport,
/// The guest is defining and exporting the function.
GuestExport,
}
/// Trait for language implementors to use to generate glue code between native
/// WebAssembly signatures and interface types signatures.
///
/// This is used as an implementation detail in interpreting the ABI between
/// interface types and wasm types. Eventually this will be driven by interface
/// types adapters themselves, but for now the ABI of a function dictates what
/// instructions are fed in.
///
/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
/// generate code for. Instructions operate like a stack machine where each
/// instruction has a list of inputs and a list of outputs (provided by the
/// `emit` function).
pub trait Bindgen {
/// The intermediate type for fragments of code for this type.
///
/// For most languages `String` is a suitable intermediate type.
type Operand: Clone;
/// Emit code to implement the given instruction.
///
/// Each operand is given in `operands` and can be popped off if ownership
/// is required. It's guaranteed that `operands` has the appropriate length
/// for the `inst` given, as specified with [`Instruction`].
///
/// Each result variable should be pushed onto `results`. This function must
/// push the appropriate number of results or binding generation will panic.
fn emit(
&mut self,
iface: &Interface,
inst: &Instruction<'_>,
operands: &mut Vec<Self::Operand>,
results: &mut Vec<Self::Operand>,
);
/// Gets a operand reference to the return pointer area.
///
/// The provided size and alignment is for the function's return type.
fn return_pointer(&mut self, iface: &Interface, size: usize, align: usize) -> Self::Operand;
/// Enters a new block of code to generate code for.
///
/// This is currently exclusively used for constructing variants. When a
/// variant is constructed a block here will be pushed for each case of a
/// variant, generating the code necessary to translate a variant case.
///
/// Blocks are completed with `finish_block` below. It's expected that `emit`
/// will always push code (if necessary) into the "current block", which is
/// updated by calling this method and `finish_block` below.
fn push_block(&mut self);
/// Indicates to the code generator that a block is completed, and the
/// `operand` specified was the resulting value of the block.
///
/// This method will be used to compute the value of each arm of lifting a
/// variant. The `operand` will be `None` if the variant case didn't
/// actually have any type associated with it. Otherwise it will be `Some`
/// as the last value remaining on the stack representing the value
/// associated with a variant's `case`.
///
/// It's expected that this will resume code generation in the previous
/// block before `push_block` was called. This must also save the results
/// of the current block internally for instructions like `ResultLift` to
/// use later.
fn finish_block(&mut self, operand: &mut Vec<Self::Operand>);
/// Returns size information that was previously calculated for all types.
fn sizes(&self) -> &crate::sizealign::SizeAlign;
/// Returns whether or not the specified element type is represented in a
/// "canonical" form for lists. This dictates whether the `ListCanonLower`
/// and `ListCanonLift` instructions are used or not.
fn is_list_canonical(&self, iface: &Interface, element: &Type) -> bool;
}
impl Interface {
/// Get the WebAssembly type signature for this interface function
///
/// The first entry returned is the list of parameters and the second entry
/// is the list of results for the wasm function signature.
pub fn wasm_signature(&self, variant: AbiVariant, func: &Function) -> WasmSignature {
const MAX_FLAT_PARAMS: usize = 16;
const MAX_FLAT_RESULTS: usize = 1;
let mut params = Vec::new();
let mut indirect_params = false;
for (_, param) in func.params.iter() {
self.push_wasm(variant, param, &mut params);
}
if params.len() > MAX_FLAT_PARAMS {
params.truncate(0);
params.push(WasmType::I32);
indirect_params = true;
}
let mut results = Vec::new();
self.push_wasm(variant, &func.result, &mut results);
let mut retptr = false;
if func.is_async {
// Asynchronous functions never actually return anything since
// they're all callback-based, meaning that we always put all the
// results into a return pointer.
//
// Asynchronous exports take one extra parameter which is the
// context used to pass to the `async_export_done` intrinsic, and
// asynchronous imports take two extra parameters where the first is
// a pointer into the function table and the second is a context
// argument to pass to this function.
match variant {
AbiVariant::GuestExport => {
retptr = true;
results.truncate(0);
params.push(WasmType::I32);
}
AbiVariant::GuestImport => {
retptr = true;
results.truncate(0);
params.push(WasmType::I32);
params.push(WasmType::I32);
}
}
} else {
// Rust/C don't support multi-value well right now, so if a function
// would have multiple results then instead truncate it. Imports take a
// return pointer to write into and exports return a pointer they wrote
// into.
if results.len() > MAX_FLAT_RESULTS {
retptr = true;
results.truncate(0);
match variant {
AbiVariant::GuestImport => {
params.push(WasmType::I32);
}
AbiVariant::GuestExport => {
results.push(WasmType::I32);
}
}
}
}
WasmSignature {
params,
indirect_params,
results,
retptr,
}
}
fn push_wasm(&self, variant: AbiVariant, ty: &Type, result: &mut Vec<WasmType>) {
match ty {
Type::Unit => {}
Type::Bool
| Type::S8
| Type::U8
| Type::S16
| Type::U16
| Type::S32
| Type::U32
| Type::Char
| Type::Handle(_) => result.push(WasmType::I32),
Type::U64 | Type::S64 => result.push(WasmType::I64),
Type::Float32 => result.push(WasmType::F32),
Type::Float64 => result.push(WasmType::F64),
Type::String => {
result.push(WasmType::I32);
result.push(WasmType::I32);
}
Type::Id(id) => match &self.types[*id].kind {
TypeDefKind::Type(t) => self.push_wasm(variant, t, result),
TypeDefKind::Record(r) => {
for field in r.fields.iter() {
self.push_wasm(variant, &field.ty, result);
}
}
TypeDefKind::Tuple(t) => {
for ty in t.types.iter() {
self.push_wasm(variant, ty, result);
}
}
TypeDefKind::Flags(r) => {
for _ in 0..r.repr().count() {
result.push(WasmType::I32);
}
}
TypeDefKind::List(_) => {
result.push(WasmType::I32);
result.push(WasmType::I32);
}
TypeDefKind::Variant(v) => {
result.push(v.tag().into());
self.push_wasm_variants(variant, v.cases.iter().map(|c| &c.ty), result);
}
TypeDefKind::Enum(e) => result.push(e.tag().into()),
TypeDefKind::Option(t) => {
result.push(WasmType::I32);
self.push_wasm_variants(variant, [&Type::Unit, t], result);
}
TypeDefKind::Expected(e) => {
result.push(WasmType::I32);
self.push_wasm_variants(variant, [&e.ok, &e.err], result);
}
TypeDefKind::Union(u) => {
result.push(WasmType::I32);
self.push_wasm_variants(variant, u.cases.iter().map(|c| &c.ty), result);
}
TypeDefKind::Future(_) => {
result.push(WasmType::I32);
}
TypeDefKind::Stream(_) => {
result.push(WasmType::I32);
}
},
}
}
fn push_wasm_variants<'a>(
&self,
variant: AbiVariant,
tys: impl IntoIterator<Item = &'a Type>,
result: &mut Vec<WasmType>,
) {
let mut temp = Vec::new();
let start = result.len();
// Push each case's type onto a temporary vector, and then
// merge that vector into our final list starting at
// `start`. Note that this requires some degree of
// "unification" so we can handle things like `Result<i32,
// f32>` where that turns into `[i32 i32]` where the second
// `i32` might be the `f32` bitcasted.
for ty in tys {
self.push_wasm(variant, ty, &mut temp);
for (i, ty) in temp.drain(..).enumerate() {
match result.get_mut(start + i) {
Some(prev) => *prev = join(*prev, ty),
None => result.push(ty),
}
}
}
}
/// Generates an abstract sequence of instructions which represents this
/// function being adapted as an imported function.
///
/// The instructions here, when executed, will emulate a language with
/// interface types calling the concrete wasm implementation. The parameters
/// for the returned instruction sequence are the language's own
/// interface-types parameters. One instruction in the instruction stream
/// will be a `Call` which represents calling the actual raw wasm function
/// signature.
///
/// This function is useful, for example, if you're building a language
/// generator for WASI bindings. This will document how to translate
/// language-specific values into the wasm types to call a WASI function,
/// and it will also automatically convert the results of the WASI function
/// back to a language-specific value.
pub fn call(
&self,
variant: AbiVariant,
lift_lower: LiftLower,
func: &Function,
bindgen: &mut impl Bindgen,
) {
Generator::new(self, variant, lift_lower, bindgen).call(func);
}
}
struct Generator<'a, B: Bindgen> {
variant: AbiVariant,
lift_lower: LiftLower,
bindgen: &'a mut B,
iface: &'a Interface,
operands: Vec<B::Operand>,
results: Vec<B::Operand>,
stack: Vec<B::Operand>,
return_pointer: Option<B::Operand>,
}
impl<'a, B: Bindgen> Generator<'a, B> {
fn new(
iface: &'a Interface,
variant: AbiVariant,
lift_lower: LiftLower,
bindgen: &'a mut B,
) -> Generator<'a, B> {
Generator {
iface,
variant,
lift_lower,
bindgen,
operands: Vec::new(),
results: Vec::new(),
stack: Vec::new(),
return_pointer: None,
}
}
fn call(&mut self, func: &Function) {
let sig = self.iface.wasm_signature(self.variant, func);
match self.lift_lower {
LiftLower::LowerArgsLiftResults => {
if !sig.indirect_params {
// If the parameters for this function aren't indirect
// (there aren't too many) then we simply do a normal lower
// operation for them all.
for (nth, (_, ty)) in func.params.iter().enumerate() {
self.emit(&Instruction::GetArg { nth });
self.lower(ty);
}
} else {
// ... otherwise if parameters are indirect space is
// allocated from them and each argument is lowered
// individually into memory.
let (size, align) = self
.bindgen
.sizes()
.record(func.params.iter().map(|t| &t.1));
let ptr = match self.variant {
// When a wasm module calls an import it will provide
// static space that isn't dynamically allocated.
AbiVariant::GuestImport => {
self.bindgen.return_pointer(self.iface, size, align)
}
// When calling a wasm module from the outside, though,
// malloc needs to be called.
AbiVariant::GuestExport => {
self.emit(&Instruction::Malloc {
realloc: "canonical_abi_realloc",
size,
align,
});
self.stack.pop().unwrap()
}
};
let mut offset = 0usize;
for (nth, (_, ty)) in func.params.iter().enumerate() {
self.emit(&Instruction::GetArg { nth });
offset = align_to(offset, self.bindgen.sizes().align(ty));
self.write_to_memory(ty, ptr.clone(), offset as i32);
offset += self.bindgen.sizes().size(ty);
}
self.stack.push(ptr);
}
if func.is_async {
// We emit custom instructions for async calls since they
// have different parameters synthesized by the bindings
// generator depending on what kind of call is being made.
//
// Note that no return pointer goop happens here because
// that's all done through parameters of callbacks instead.
let mut results = Vec::new();
self.iface
.push_wasm(self.variant, &func.result, &mut results);
match self.variant {
AbiVariant::GuestImport => {
assert_eq!(self.stack.len(), sig.params.len() - 2);
self.emit(&Instruction::CallWasmAsyncImport {
iface: self.iface,
name: &func.name,
params: &sig.params,
results: &results,
});
}
AbiVariant::GuestExport => {
assert_eq!(self.stack.len(), sig.params.len() - 1);
self.emit(&Instruction::CallWasmAsyncExport {
module: &self.iface.name,
name: &func.name,
params: &sig.params,
results: &results,
});
}
}
self.lift(&func.result);
} else {
// If necessary we may need to prepare a return pointer for
// this ABI.
if self.variant == AbiVariant::GuestImport && sig.retptr {
let size = self.bindgen.sizes().size(&func.result);
let align = self.bindgen.sizes().align(&func.result);
let ptr = self.bindgen.return_pointer(self.iface, size, align);
self.return_pointer = Some(ptr.clone());
self.stack.push(ptr);
}
// Now that all the wasm args are prepared we can call the
// actual wasm function.
assert_eq!(self.stack.len(), sig.params.len());
self.emit(&Instruction::CallWasm {
iface: self.iface,
name: &func.name,
sig: &sig,
});
if !sig.retptr {
// With no return pointer in use we can simply lift the
// result of the function from the result of the core
// wasm function.
self.lift(&func.result);
} else {
let ptr = match self.variant {
// imports into guests means it's a wasm module
// calling an imported function. We supplied the
// return poitner as the last argument (saved in
// `self.return_pointer`) so we use that to read
// the result of the function from memory.
AbiVariant::GuestImport => {
assert!(sig.results.is_empty());
self.return_pointer.take().unwrap()
}
// guest exports means that this is a host
// calling wasm so wasm returned a pointer to where
// the result is stored
AbiVariant::GuestExport => self.stack.pop().unwrap(),
};
self.read_from_memory(&func.result, ptr, 0);
}
}
self.emit(&Instruction::Return { func, amt: 1 });
}
LiftLower::LiftArgsLowerResults => {
if !sig.indirect_params {
// If parameters are not passed indirectly then we lift each
// argument in succession from the component wasm types that
// make-up the type.
let mut offset = 0;
let mut temp = Vec::new();
for (_, ty) in func.params.iter() {
temp.truncate(0);
self.iface.push_wasm(self.variant, ty, &mut temp);
for _ in 0..temp.len() {
self.emit(&Instruction::GetArg { nth: offset });
offset += 1;
}
self.lift(ty);
}
} else {
// ... otherwise argument is read in succession from memory
// where the pointer to the arguments is the first argument
// to the function.
let mut offset = 0usize;
self.emit(&Instruction::GetArg { nth: 0 });
let ptr = self.stack.pop().unwrap();
for (_, ty) in func.params.iter() {
offset = align_to(offset, self.bindgen.sizes().align(ty));
self.read_from_memory(ty, ptr.clone(), offset as i32);
offset += self.bindgen.sizes().size(ty);
}
}
// ... and that allows us to call the interface types function
self.emit(&Instruction::CallInterface {
module: &self.iface.name,
func,
});
// This was dynamically allocated by the caller so after
// it's been read by the guest we need to deallocate it.
if let AbiVariant::GuestExport = self.variant {
if sig.indirect_params {
let (size, align) = self
.bindgen
.sizes()
.record(func.params.iter().map(|t| &t.1));
self.emit(&Instruction::GetArg { nth: 0 });
self.emit(&Instruction::Free {
free: "canonical_abi_free",
size,
align,
});
}
}
if func.is_async {
match self.variant {
// Returning from a guest import means that the
// completion callback needs to be called which is
// currently given the lowered representation of the
// result.
AbiVariant::GuestImport => {
self.lower(&func.result);
let mut tys = Vec::new();
self.iface.push_wasm(self.variant, &func.result, &mut tys);
assert_eq!(self.stack.len(), tys.len());
let operands = mem::take(&mut self.stack);
// function index to call
self.emit(&Instruction::GetArg {
nth: sig.params.len() - 2,
});
// environment for the function
self.emit(&Instruction::GetArg {
nth: sig.params.len() - 1,
});
self.stack.extend(operands);
self.emit(&Instruction::ReturnAsyncImport {
func,
params: tys.len(),
});
}
// Returning from a guest export means that we need to
// invoke the completion intrinsics with where the
// result is stored in linear memory.
AbiVariant::GuestExport => {
let size = self.bindgen.sizes().size(&func.result);
let align = self.bindgen.sizes().align(&func.result);
let ptr = self.bindgen.return_pointer(self.iface, size, align);
self.write_to_memory(&func.result, ptr.clone(), 0);
// Get the caller's context index.
self.emit(&Instruction::GetArg {
nth: sig.params.len() - 1,
});
self.stack.push(ptr);
// This will call the "done" function with the
// context/pointer argument
self.emit(&Instruction::ReturnAsyncExport { func });
}
}
} else {
if !sig.retptr {
// With no return pointer in use we simply lower the
// result and return that directly from the function.
self.lower(&func.result);
} else {
match self.variant {
// When a function is imported to a guest this means
// it's a host providing the implementation of the
// import. The result is stored in the pointer
// specified in the last argument, so we get the
// pointer here and then write the return value into
// it.
AbiVariant::GuestImport => {
self.emit(&Instruction::GetArg {
nth: sig.params.len() - 1,
});
let ptr = self.stack.pop().unwrap();
self.write_to_memory(&func.result, ptr, 0);
}
// For a guest import this is a function defined in
// wasm, so we're returning a pointer where the
// value was stored at. Allocate some space here
// (statically) and then write the result into that
// memory, returning the pointer at the end.
AbiVariant::GuestExport => {
let size = self.bindgen.sizes().size(&func.result);
let align = self.bindgen.sizes().align(&func.result);
let ptr = self.bindgen.return_pointer(self.iface, size, align);
self.write_to_memory(&func.result, ptr.clone(), 0);
self.stack.push(ptr);
}
}
}
self.emit(&Instruction::Return {
func,
amt: sig.results.len(),
});
}
}
}
assert!(
self.stack.is_empty(),
"stack has {} items remaining",
self.stack.len()
);
}
fn emit(&mut self, inst: &Instruction<'_>) {
self.operands.clear();
self.results.clear();
let operands_len = inst.operands_len();
assert!(
self.stack.len() >= operands_len,
"not enough operands on stack for {:?}",
inst
);
self.operands
.extend(self.stack.drain((self.stack.len() - operands_len)..));
self.results.reserve(inst.results_len());
self.bindgen
.emit(self.iface, inst, &mut self.operands, &mut self.results);
assert_eq!(
self.results.len(),
inst.results_len(),
"{:?} expected {} results, got {}",
inst,
inst.results_len(),
self.results.len()
);
self.stack.append(&mut self.results);
}
fn push_block(&mut self) {
self.bindgen.push_block();
}
fn finish_block(&mut self, size: usize) {
self.operands.clear();
assert!(
size <= self.stack.len(),
"not enough operands on stack for finishing block",
);
self.operands
.extend(self.stack.drain((self.stack.len() - size)..));
self.bindgen.finish_block(&mut self.operands);
}
fn lower(&mut self, ty: &Type) {
use Instruction::*;
match *ty {
Type::Unit => self.emit(&UnitLower),
Type::Bool => self.emit(&I32FromBool),
Type::S8 => self.emit(&I32FromS8),
Type::U8 => self.emit(&I32FromU8),
Type::S16 => self.emit(&I32FromS16),
Type::U16 => self.emit(&I32FromU16),
Type::S32 => self.emit(&I32FromS32),
Type::U32 => self.emit(&I32FromU32),
Type::S64 => self.emit(&I64FromS64),
Type::U64 => self.emit(&I64FromU64),
Type::Char => self.emit(&I32FromChar),
Type::Float32 => self.emit(&F32FromFloat32),
Type::Float64 => self.emit(&F64FromFloat64),
Type::Handle(ty) => {
let borrowed = match self.lift_lower {
// This means that a return value is being lowered, which is
// never borrowed.
LiftLower::LiftArgsLowerResults => false,
// There's one of three possible situations we're in:
//
// * The handle is defined by the wasm module itself. This
// is the only actual possible scenario today due to how
// witx is defined. In this situation the handle is owned
// by the host and "proof of ownership" is being offered
// and there's no need to relinquish ownership.
//
// * The handle is defined by the host, and it's passing it
// to a wasm module. This should use an owned conversion.
// This isn't expressible in today's `*.waix` format.
//
// * The handle is defined by neither the host or the wasm
// mdoule. This means that the host is passing a
// capability from another wasm module into this one,
// meaning it's doing so by reference since the host is
// retaining access to its own
//
// Note, again, only the first bullet here is possible
// today, hence the hardcoded `true` value. We'll need to
// refactor `witx` to expose the other possibilities.
LiftLower::LowerArgsLiftResults => true,
};
if borrowed {
self.emit(&I32FromBorrowedHandle { ty });
} else {
self.emit(&I32FromOwnedHandle { ty });
}
}
Type::String => {
let realloc = self.list_realloc();
self.emit(&StringLower { realloc });
}
Type::Id(id) => match &self.iface.types[id].kind {
TypeDefKind::Type(t) => self.lower(t),
TypeDefKind::List(element) => {
let realloc = self.list_realloc();
if self.bindgen.is_list_canonical(self.iface, element) {
self.emit(&ListCanonLower { element, realloc });
} else {
self.push_block();
self.emit(&IterElem { element });
self.emit(&IterBasePointer);
let addr = self.stack.pop().unwrap();
self.write_to_memory(element, addr, 0);
self.finish_block(0);
self.emit(&ListLower { element, realloc });
}
}
TypeDefKind::Record(record) => {
self.emit(&RecordLower {
record,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
let values = self
.stack
.drain(self.stack.len() - record.fields.len()..)
.collect::<Vec<_>>();
for (field, value) in record.fields.iter().zip(values) {
self.stack.push(value);
self.lower(&field.ty);
}
}
TypeDefKind::Tuple(tuple) => {
self.emit(&TupleLower { tuple, ty: id });
let values = self
.stack
.drain(self.stack.len() - tuple.types.len()..)
.collect::<Vec<_>>();
for (ty, value) in tuple.types.iter().zip(values) {
self.stack.push(value);
self.lower(ty);
}
}
TypeDefKind::Flags(flags) => {
self.emit(&FlagsLower {
flags,
ty: id,
name: self.iface.types[id].name.as_ref().unwrap(),
});
}
TypeDefKind::Variant(v) => {
let results = self.lower_variant_arms(ty, v.cases.iter().map(|c| &c.ty));
self.emit(&VariantLower {
variant: v,
ty: id,
results: &results,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Enum(enum_) => {
self.emit(&EnumLower {
enum_,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Option(t) => {
let results = self.lower_variant_arms(ty, [&Type::Unit, t]);
self.emit(&OptionLower {
payload: t,
ty: id,
results: &results,
});
}
TypeDefKind::Expected(e) => {
let results = self.lower_variant_arms(ty, [&e.ok, &e.err]);
self.emit(&ExpectedLower {
expected: e,
ty: id,
results: &results,
});
}
TypeDefKind::Union(union) => {
let results = self.lower_variant_arms(ty, union.cases.iter().map(|c| &c.ty));
self.emit(&UnionLower {
union,
ty: id,
results: &results,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Future(_) => todo!("lower future"),
TypeDefKind::Stream(_) => todo!("lower stream"),
},
}
}
fn lower_variant_arms<'b>(
&mut self,
ty: &Type,
cases: impl IntoIterator<Item = &'b Type>,
) -> Vec<WasmType> {
use Instruction::*;
let mut results = Vec::new();
let mut temp = Vec::new();
let mut casts = Vec::new();
self.iface.push_wasm(self.variant, ty, &mut results);
for (i, ty) in cases.into_iter().enumerate() {
self.push_block();
self.emit(&VariantPayloadName);
let payload_name = self.stack.pop().unwrap();
self.emit(&I32Const { val: i as i32 });
let mut pushed = 1;
// Using the payload of this block we lower the type to
// raw wasm values.
self.stack.push(payload_name.clone());
self.lower(ty);
// Determine the types of all the wasm values we just
// pushed, and record how many. If we pushed too few
// then we'll need to push some zeros after this.
temp.truncate(0);
self.iface.push_wasm(self.variant, ty, &mut temp);
pushed += temp.len();
// For all the types pushed we may need to insert some
// bitcasts. This will go through and cast everything
// to the right type to ensure all blocks produce the
// same set of results.
casts.truncate(0);
for (actual, expected) in temp.iter().zip(&results[1..]) {
casts.push(cast(*actual, *expected));
}
if casts.iter().any(|c| *c != Bitcast::None) {
self.emit(&Bitcasts { casts: &casts });
}
// If we haven't pushed enough items in this block to match
// what other variants are pushing then we need to push
// some zeros.
if pushed < results.len() {
self.emit(&ConstZero {
tys: &results[pushed..],
});
}
self.finish_block(results.len());
}
results
}
fn list_realloc(&self) -> Option<&'static str> {
// Lowering parameters calling a wasm import means
// we don't need to pass ownership, but we pass
// ownership in all other cases.
match (self.variant, self.lift_lower) {
(AbiVariant::GuestImport, LiftLower::LowerArgsLiftResults) => None,
_ => Some("canonical_abi_realloc"),
}
}
/// Note that in general everything in this function is the opposite of the
/// `lower` function above. This is intentional and should be kept this way!
fn lift(&mut self, ty: &Type) {
use Instruction::*;
match *ty {
Type::Unit => self.emit(&UnitLift),
Type::Bool => self.emit(&BoolFromI32),
Type::S8 => self.emit(&S8FromI32),
Type::U8 => self.emit(&U8FromI32),
Type::S16 => self.emit(&S16FromI32),
Type::U16 => self.emit(&U16FromI32),
Type::S32 => self.emit(&S32FromI32),
Type::U32 => self.emit(&U32FromI32),
Type::S64 => self.emit(&S64FromI64),
Type::U64 => self.emit(&U64FromI64),
Type::Char => self.emit(&CharFromI32),
Type::Float32 => self.emit(&Float32FromF32),
Type::Float64 => self.emit(&Float64FromF64),
Type::Handle(ty) => {
// For more information on these values see the comments in
// `lower` above.
let borrowed = match self.lift_lower {
LiftLower::LiftArgsLowerResults => true,
LiftLower::LowerArgsLiftResults => false,
};
if borrowed {
self.emit(&HandleBorrowedFromI32 { ty });
} else {
self.emit(&HandleOwnedFromI32 { ty });
}
}
Type::String => {
let free = self.list_free();
self.emit(&StringLift { free });
}
Type::Id(id) => match &self.iface.types[id].kind {
TypeDefKind::Type(t) => self.lift(t),
TypeDefKind::List(element) => {
let free = self.list_free();
if self.is_char(element) || self.bindgen.is_list_canonical(self.iface, element)
{
self.emit(&ListCanonLift {
element,
free,
ty: id,
});
} else {
self.push_block();
self.emit(&IterBasePointer);
let addr = self.stack.pop().unwrap();
self.read_from_memory(element, addr, 0);
self.finish_block(1);
self.emit(&ListLift {
element,
free,
ty: id,
});
}
}
TypeDefKind::Record(record) => {
let mut temp = Vec::new();
self.iface.push_wasm(self.variant, ty, &mut temp);
let mut args = self
.stack
.drain(self.stack.len() - temp.len()..)
.collect::<Vec<_>>();
for field in record.fields.iter() {
temp.truncate(0);
self.iface.push_wasm(self.variant, &field.ty, &mut temp);
self.stack.extend(args.drain(..temp.len()));
self.lift(&field.ty);
}
self.emit(&RecordLift {
record,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Tuple(tuple) => {
let mut temp = Vec::new();
self.iface.push_wasm(self.variant, ty, &mut temp);
let mut args = self
.stack
.drain(self.stack.len() - temp.len()..)
.collect::<Vec<_>>();
for ty in tuple.types.iter() {
temp.truncate(0);
self.iface.push_wasm(self.variant, ty, &mut temp);
self.stack.extend(args.drain(..temp.len()));
self.lift(ty);
}
self.emit(&TupleLift { tuple, ty: id });
}
TypeDefKind::Flags(flags) => {
self.emit(&FlagsLift {
flags,
ty: id,
name: self.iface.types[id].name.as_ref().unwrap(),
});
}
TypeDefKind::Variant(v) => {
self.lift_variant_arms(ty, v.cases.iter().map(|c| &c.ty));
self.emit(&VariantLift {
variant: v,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Enum(enum_) => {
self.emit(&EnumLift {
enum_,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Option(t) => {
self.lift_variant_arms(ty, [&Type::Unit, t]);
self.emit(&OptionLift { payload: t, ty: id });
}
TypeDefKind::Expected(e) => {
self.lift_variant_arms(ty, [&e.ok, &e.err]);
self.emit(&ExpectedLift {
expected: e,
ty: id,
});
}
TypeDefKind::Union(union) => {
self.lift_variant_arms(ty, union.cases.iter().map(|c| &c.ty));
self.emit(&UnionLift {
union,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Future(_) => todo!("lift future"),
TypeDefKind::Stream(_) => todo!("lift stream"),
},
}
}
fn lift_variant_arms<'b>(&mut self, ty: &Type, cases: impl IntoIterator<Item = &'b Type>) {
let mut params = Vec::new();
let mut temp = Vec::new();
let mut casts = Vec::new();
self.iface.push_wasm(self.variant, ty, &mut params);
let block_inputs = self
.stack
.drain(self.stack.len() + 1 - params.len()..)
.collect::<Vec<_>>();
for ty in cases {
self.push_block();
// Push only the values we need for this variant onto
// the stack.
temp.truncate(0);
self.iface.push_wasm(self.variant, ty, &mut temp);
self.stack
.extend(block_inputs[..temp.len()].iter().cloned());
// Cast all the types we have on the stack to the actual
// types needed for this variant, if necessary.
casts.truncate(0);
for (actual, expected) in temp.iter().zip(¶ms[1..]) {
casts.push(cast(*expected, *actual));
}
if casts.iter().any(|c| *c != Bitcast::None) {
self.emit(&Instruction::Bitcasts { casts: &casts });
}
// Then recursively lift this variant's payload.
self.lift(ty);
self.finish_block(1);
}
}
fn list_free(&self) -> Option<&'static str> {
// Lifting the arguments of a defined import means that, if
// possible, the caller still retains ownership and we don't
// free anything.
match (self.variant, self.lift_lower) {
(AbiVariant::GuestImport, LiftLower::LiftArgsLowerResults) => None,
_ => Some("canonical_abi_free"),
}
}
fn write_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
use Instruction::*;
match *ty {
Type::Unit => self.lower(ty),
// Builtin types need different flavors of storage instructions
// depending on the size of the value written.
Type::Bool | Type::U8 | Type::S8 => {
self.lower_and_emit(ty, addr, &I32Store8 { offset })
}
Type::U16 | Type::S16 => self.lower_and_emit(ty, addr, &I32Store16 { offset }),
Type::U32 | Type::S32 | Type::Handle(_) | Type::Char => {
self.lower_and_emit(ty, addr, &I32Store { offset })
}
Type::U64 | Type::S64 => self.lower_and_emit(ty, addr, &I64Store { offset }),
Type::Float32 => self.lower_and_emit(ty, addr, &F32Store { offset }),
Type::Float64 => self.lower_and_emit(ty, addr, &F64Store { offset }),
Type::String => self.write_list_to_memory(ty, addr, offset),
Type::Id(id) => match &self.iface.types[id].kind {
TypeDefKind::Type(t) => self.write_to_memory(t, addr, offset),
TypeDefKind::List(_) => self.write_list_to_memory(ty, addr, offset),
// Decompose the record into its components and then write all
// the components into memory one-by-one.
TypeDefKind::Record(record) => {
self.emit(&RecordLower {
record,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
self.write_fields_to_memory(
&record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
addr,
offset,
);
}
TypeDefKind::Tuple(tuple) => {
self.emit(&TupleLower { tuple, ty: id });
self.write_fields_to_memory(&tuple.types, addr, offset);
}
TypeDefKind::Flags(f) => {
self.lower(ty);
match f.repr() {
FlagsRepr::U8 => {
self.stack.push(addr);
self.store_intrepr(offset, Int::U8);
}
FlagsRepr::U16 => {
self.stack.push(addr);
self.store_intrepr(offset, Int::U16);
}
FlagsRepr::U32(n) => {
for i in (0..n).rev() {
self.stack.push(addr.clone());
self.emit(&I32Store {
offset: offset + (i as i32) * 4,
});
}
}
}
}
// Each case will get its own block, and the first item in each
// case is writing the discriminant. After that if we have a
// payload we write the payload after the discriminant, aligned up
// to the type's alignment.
TypeDefKind::Variant(v) => {
self.write_variant_arms_to_memory(
offset,
addr,
v.tag(),
v.cases.iter().map(|c| &c.ty),
);
self.emit(&VariantLower {
variant: v,
ty: id,
results: &[],
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Option(t) => {
self.write_variant_arms_to_memory(offset, addr, Int::U8, [&Type::Unit, t]);
self.emit(&OptionLower {
payload: t,
ty: id,
results: &[],
});
}
TypeDefKind::Expected(e) => {
self.write_variant_arms_to_memory(offset, addr, Int::U8, [&e.ok, &e.err]);
self.emit(&ExpectedLower {
expected: e,
ty: id,
results: &[],
});
}
TypeDefKind::Enum(e) => {
self.lower(ty);
self.stack.push(addr);
self.store_intrepr(offset, e.tag());
}
TypeDefKind::Union(union) => {
self.write_variant_arms_to_memory(
offset,
addr,
union.tag(),
union.cases.iter().map(|c| &c.ty),
);
self.emit(&UnionLower {
union,
ty: id,
results: &[],
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Future(_) => todo!("write future to memory"),
TypeDefKind::Stream(_) => todo!("write stream to memory"),
},
}
}
fn write_variant_arms_to_memory<'b>(
&mut self,
offset: i32,
addr: B::Operand,
tag: Int,
cases: impl IntoIterator<Item = &'b Type> + Clone,
) {
let payload_offset =
offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()) as i32);
for (i, ty) in cases.into_iter().enumerate() {
self.push_block();
self.emit(&Instruction::VariantPayloadName);
let payload_name = self.stack.pop().unwrap();
self.emit(&Instruction::I32Const { val: i as i32 });
self.stack.push(addr.clone());
self.store_intrepr(offset, tag);
self.stack.push(payload_name.clone());
self.write_to_memory(ty, addr.clone(), payload_offset);
self.finish_block(0);
}
}
fn write_list_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
// After lowering the list there's two i32 values on the stack
// which we write into memory, writing the pointer into the low address
// and the length into the high address.
self.lower(ty);
self.stack.push(addr.clone());
self.emit(&Instruction::I32Store { offset: offset + 4 });
self.stack.push(addr);
self.emit(&Instruction::I32Store { offset });
}
fn write_fields_to_memory(&mut self, tys: &[Type], addr: B::Operand, offset: i32) {
let fields = self
.stack
.drain(self.stack.len() - tys.len()..)
.collect::<Vec<_>>();
for ((field_offset, op), ty) in self
.bindgen
.sizes()
.field_offsets(tys.iter())
.into_iter()
.zip(fields)
.zip(tys)
{
self.stack.push(op);
self.write_to_memory(ty, addr.clone(), offset + (field_offset as i32));
}
}
fn lower_and_emit(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
self.lower(ty);
self.stack.push(addr);
self.emit(instr);
}
fn read_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
use Instruction::*;
match *ty {
Type::Unit => self.emit(&UnitLift),
Type::Bool => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
Type::U8 => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
Type::S8 => self.emit_and_lift(ty, addr, &I32Load8S { offset }),
Type::U16 => self.emit_and_lift(ty, addr, &I32Load16U { offset }),
Type::S16 => self.emit_and_lift(ty, addr, &I32Load16S { offset }),
Type::U32 | Type::S32 | Type::Char | Type::Handle(_) => {
self.emit_and_lift(ty, addr, &I32Load { offset })
}
Type::U64 | Type::S64 => self.emit_and_lift(ty, addr, &I64Load { offset }),
Type::Float32 => self.emit_and_lift(ty, addr, &F32Load { offset }),
Type::Float64 => self.emit_and_lift(ty, addr, &F64Load { offset }),
Type::String => self.read_list_from_memory(ty, addr, offset),
Type::Id(id) => match &self.iface.types[id].kind {
TypeDefKind::Type(t) => self.read_from_memory(t, addr, offset),
TypeDefKind::List(_) => self.read_list_from_memory(ty, addr, offset),
// Read and lift each field individually, adjusting the offset
// as we go along, then aggregate all the fields into the
// record.
TypeDefKind::Record(record) => {
self.read_fields_from_memory(
&record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
addr,
offset,
);
self.emit(&RecordLift {
record,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Tuple(tuple) => {
self.read_fields_from_memory(&tuple.types, addr, offset);
self.emit(&TupleLift { tuple, ty: id });
}
TypeDefKind::Flags(f) => {
match f.repr() {
FlagsRepr::U8 => {
self.stack.push(addr);
self.load_intrepr(offset, Int::U8);
}
FlagsRepr::U16 => {
self.stack.push(addr);
self.load_intrepr(offset, Int::U16);
}
FlagsRepr::U32(n) => {
for i in 0..n {
self.stack.push(addr.clone());
self.emit(&I32Load {
offset: offset + (i as i32) * 4,
});
}
}
}
self.lift(ty);
}
// Each case will get its own block, and we'll dispatch to the
// right block based on the `i32.load` we initially perform. Each
// individual block is pretty simple and just reads the payload type
// from the corresponding offset if one is available.
TypeDefKind::Variant(variant) => {
self.read_variant_arms_from_memory(
offset,
addr,
variant.tag(),
variant.cases.iter().map(|c| &c.ty),
);
self.emit(&VariantLift {
variant,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Option(t) => {
self.read_variant_arms_from_memory(offset, addr, Int::U8, [&Type::Unit, t]);
self.emit(&OptionLift { payload: t, ty: id });
}
TypeDefKind::Expected(e) => {
self.read_variant_arms_from_memory(offset, addr, Int::U8, [&e.ok, &e.err]);
self.emit(&ExpectedLift {
expected: e,
ty: id,
});
}
TypeDefKind::Enum(e) => {
self.stack.push(addr);
self.load_intrepr(offset, e.tag());
self.lift(ty);
}
TypeDefKind::Union(union) => {
self.read_variant_arms_from_memory(
offset,
addr,
union.tag(),
union.cases.iter().map(|c| &c.ty),
);
self.emit(&UnionLift {
union,
ty: id,
name: self.iface.types[id].name.as_deref().unwrap(),
});
}
TypeDefKind::Future(_) => todo!("read future from memory"),
TypeDefKind::Stream(_) => todo!("read stream from memory"),
},
}
}
fn read_variant_arms_from_memory<'b>(
&mut self,
offset: i32,
addr: B::Operand,
tag: Int,
cases: impl IntoIterator<Item = &'b Type> + Clone,
) {
self.stack.push(addr.clone());
self.load_intrepr(offset, tag);
let payload_offset =
offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()) as i32);
for ty in cases {
self.push_block();
self.read_from_memory(ty, addr.clone(), payload_offset);
self.finish_block(1);
}
}
fn read_list_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
// Read the pointer/len and then perform the standard lifting
// proceses.
self.stack.push(addr.clone());
self.emit(&Instruction::I32Load { offset });
self.stack.push(addr);
self.emit(&Instruction::I32Load { offset: offset + 4 });
self.lift(ty);
}
fn read_fields_from_memory(&mut self, tys: &[Type], addr: B::Operand, offset: i32) {
for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys).into_iter().zip(tys) {
self.read_from_memory(ty, addr.clone(), offset + (field_offset as i32));
}
}
fn emit_and_lift(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
self.stack.push(addr);
self.emit(instr);
self.lift(ty);
}
fn load_intrepr(&mut self, offset: i32, repr: Int) {
self.emit(&match repr {
Int::U64 => Instruction::I64Load { offset },
Int::U32 => Instruction::I32Load { offset },
Int::U16 => Instruction::I32Load16U { offset },
Int::U8 => Instruction::I32Load8U { offset },
});
}
fn store_intrepr(&mut self, offset: i32, repr: Int) {
self.emit(&match repr {
Int::U64 => Instruction::I64Store { offset },
Int::U32 => Instruction::I32Store { offset },
Int::U16 => Instruction::I32Store16 { offset },
Int::U8 => Instruction::I32Store8 { offset },
});
}
fn is_char(&self, ty: &Type) -> bool {
match ty {
Type::Char => true,
Type::Id(id) => match &self.iface.types[*id].kind {
TypeDefKind::Type(t) => self.is_char(t),
_ => false,
},
_ => false,
}
}
}
fn cast(from: WasmType, to: WasmType) -> Bitcast {
use WasmType::*;
match (from, to) {
(I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => Bitcast::None,
(I32, I64) => Bitcast::I32ToI64,
(F32, I32) => Bitcast::F32ToI32,
(F64, I64) => Bitcast::F64ToI64,
(I64, I32) => Bitcast::I64ToI32,
(I32, F32) => Bitcast::I32ToF32,
(I64, F64) => Bitcast::I64ToF64,
(F32, I64) => Bitcast::F32ToI64,
(I64, F32) => Bitcast::I64ToF32,
(F32, F64) | (F64, F32) | (F64, I32) | (I32, F64) => unreachable!(),
}
}