1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
//! A WebAssembly encoder.
//!
//! The main builder is the [`Module`]. You can build a section with a
//! section-specific builder, like [`TypeSection`] or [`ImportSection`], and
//! then add it to the module with [`Module::section`]. When you are finished
//! building the module, call either [`Module::as_slice`] or [`Module::finish`]
//! to get the encoded bytes. The former gives a shared reference to the
//! underlying bytes as a slice, while the latter gives you ownership of them as
//! a vector.
//!
//! # Example
//!
//! If we wanted to build this module:
//!
//! ```wasm
//! (module
//! (type (func (param i32 i32) (result i32)))
//! (func (type 0)
//! local.get 0
//! local.get 1
//! i32.add)
//! (export "f" (func 0)))
//! ```
//!
//! then we would do this:
//!
//! ```
//! use wasm_encoder::{
//! CodeSection, ExportKind, ExportSection, Function, FunctionSection, Instruction,
//! Module, TypeSection, ValType,
//! };
//!
//! let mut module = Module::new();
//!
//! // Encode the type section.
//! let mut types = TypeSection::new();
//! let params = vec![ValType::I32, ValType::I32];
//! let results = vec![ValType::I32];
//! types.function(params, results);
//! module.section(&types);
//!
//! // Encode the function section.
//! let mut functions = FunctionSection::new();
//! let type_index = 0;
//! functions.function(type_index);
//! module.section(&functions);
//!
//! // Encode the export section.
//! let mut exports = ExportSection::new();
//! exports.export("f", ExportKind::Func, 0);
//! module.section(&exports);
//!
//! // Encode the code section.
//! let mut codes = CodeSection::new();
//! let locals = vec![];
//! let mut f = Function::new(locals);
//! f.instruction(&Instruction::LocalGet(0));
//! f.instruction(&Instruction::LocalGet(1));
//! f.instruction(&Instruction::I32Add);
//! f.instruction(&Instruction::End);
//! codes.function(&f);
//! module.section(&codes);
//!
//! // Extract the encoded Wasm bytes for this module.
//! let wasm_bytes = module.finish();
//!
//! // We generated a valid Wasm module!
//! assert!(wasmparser::validate(&wasm_bytes).is_ok());
//! ```
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![deny(missing_docs, missing_debug_implementations)]
mod component;
mod core;
mod raw;
#[cfg(feature = "wasmparser")]
pub mod reencode;
pub use self::component::*;
pub use self::core::*;
pub use self::raw::*;
/// Implemented by types that can be encoded into a byte sink.
pub trait Encode {
/// Encode the type into the given byte sink.
fn encode(&self, sink: &mut Vec<u8>);
}
impl<T: Encode + ?Sized> Encode for &'_ T {
fn encode(&self, sink: &mut Vec<u8>) {
T::encode(self, sink)
}
}
impl<T: Encode> Encode for [T] {
fn encode(&self, sink: &mut Vec<u8>) {
self.len().encode(sink);
for item in self {
item.encode(sink);
}
}
}
impl Encode for [u8] {
fn encode(&self, sink: &mut Vec<u8>) {
self.len().encode(sink);
sink.extend(self);
}
}
impl Encode for str {
fn encode(&self, sink: &mut Vec<u8>) {
self.len().encode(sink);
sink.extend_from_slice(self.as_bytes());
}
}
impl Encode for usize {
fn encode(&self, sink: &mut Vec<u8>) {
assert!(*self <= u32::max_value() as usize);
(*self as u32).encode(sink)
}
}
impl Encode for u32 {
fn encode(&self, sink: &mut Vec<u8>) {
leb128::write::unsigned(sink, (*self).into()).unwrap();
}
}
impl Encode for i32 {
fn encode(&self, sink: &mut Vec<u8>) {
leb128::write::signed(sink, (*self).into()).unwrap();
}
}
impl Encode for u64 {
fn encode(&self, sink: &mut Vec<u8>) {
leb128::write::unsigned(sink, *self).unwrap();
}
}
impl Encode for i64 {
fn encode(&self, sink: &mut Vec<u8>) {
leb128::write::signed(sink, *self).unwrap();
}
}
impl Encode for f32 {
fn encode(&self, sink: &mut Vec<u8>) {
let bits = self.to_bits();
sink.extend(bits.to_le_bytes())
}
}
impl Encode for f64 {
fn encode(&self, sink: &mut Vec<u8>) {
let bits = self.to_bits();
sink.extend(bits.to_le_bytes())
}
}
fn encode_vec<T, V>(elements: V, sink: &mut Vec<u8>)
where
T: Encode,
V: IntoIterator<Item = T>,
V::IntoIter: ExactSizeIterator,
{
let elements = elements.into_iter();
u32::try_from(elements.len()).unwrap().encode(sink);
for x in elements {
x.encode(sink);
}
}
impl<T> Encode for Option<T>
where
T: Encode,
{
fn encode(&self, sink: &mut Vec<u8>) {
match self {
Some(v) => {
sink.push(0x01);
v.encode(sink);
}
None => sink.push(0x00),
}
}
}
fn encoding_size(n: u32) -> usize {
let mut buf = [0u8; 5];
leb128::write::unsigned(&mut &mut buf[..], n.into()).unwrap()
}
fn encode_section(sink: &mut Vec<u8>, count: u32, bytes: &[u8]) {
(encoding_size(count) + bytes.len()).encode(sink);
count.encode(sink);
sink.extend(bytes);
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn it_encodes_an_empty_module() {
let bytes = Module::new().finish();
assert_eq!(bytes, [0x00, b'a', b's', b'm', 0x01, 0x00, 0x00, 0x00]);
}
#[test]
fn it_encodes_an_empty_component() {
let bytes = Component::new().finish();
assert_eq!(bytes, [0x00, b'a', b's', b'm', 0x0d, 0x00, 0x01, 0x00]);
}
}