1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
use crate::compiler::LLVMCompiler;
use inkwell::targets::{
CodeModel, InitializationConfig, RelocMode, Target as InkwellTarget, TargetMachine,
TargetTriple,
};
pub use inkwell::OptimizationLevel as LLVMOptLevel;
use itertools::Itertools;
use std::fmt::Debug;
use std::sync::Arc;
use target_lexicon::Architecture;
use wasmer_compiler::{Compiler, CompilerConfig, Engine, EngineBuilder, ModuleMiddleware};
use wasmer_types::{FunctionType, LocalFunctionIndex, Target, Triple};
/// The InkWell ModuleInfo type
pub type InkwellModule<'ctx> = inkwell::module::Module<'ctx>;
/// The InkWell MemoryBuffer type
pub type InkwellMemoryBuffer = inkwell::memory_buffer::MemoryBuffer;
/// The compiled function kind, used for debugging in the `LLVMCallbacks`.
#[derive(Debug, Clone)]
pub enum CompiledKind {
// A locally-defined function in the Wasm file.
Local(LocalFunctionIndex),
// A function call trampoline for a given signature.
FunctionCallTrampoline(FunctionType),
// A dynamic function trampoline for a given signature.
DynamicFunctionTrampoline(FunctionType),
// An entire Wasm module.
Module,
}
/// Callbacks to the different LLVM compilation phases.
pub trait LLVMCallbacks: Debug + Send + Sync {
fn preopt_ir(&self, function: &CompiledKind, module: &InkwellModule);
fn postopt_ir(&self, function: &CompiledKind, module: &InkwellModule);
fn obj_memory_buffer(&self, function: &CompiledKind, memory_buffer: &InkwellMemoryBuffer);
}
#[derive(Debug, Clone)]
pub struct LLVM {
pub(crate) enable_nan_canonicalization: bool,
pub(crate) enable_verifier: bool,
pub(crate) opt_level: LLVMOptLevel,
is_pic: bool,
pub(crate) callbacks: Option<Arc<dyn LLVMCallbacks>>,
/// The middleware chain.
pub(crate) middlewares: Vec<Arc<dyn ModuleMiddleware>>,
}
impl LLVM {
/// Creates a new configuration object with the default configuration
/// specified.
pub fn new() -> Self {
Self {
enable_nan_canonicalization: false,
enable_verifier: false,
opt_level: LLVMOptLevel::Aggressive,
is_pic: false,
callbacks: None,
middlewares: vec![],
}
}
/// The optimization levels when optimizing the IR.
pub fn opt_level(&mut self, opt_level: LLVMOptLevel) -> &mut Self {
self.opt_level = opt_level;
self
}
/// Callbacks that will triggered in the different compilation
/// phases in LLVM.
pub fn callbacks(&mut self, callbacks: Option<Arc<dyn LLVMCallbacks>>) -> &mut Self {
self.callbacks = callbacks;
self
}
fn reloc_mode(&self) -> RelocMode {
if self.is_pic {
RelocMode::PIC
} else {
RelocMode::Static
}
}
fn code_model(&self) -> CodeModel {
// We normally use the large code model, but when targeting shared
// objects, we are required to use PIC. If we use PIC anyways, we lose
// any benefit from large code model and there's some cost on all
// platforms, plus some platforms (MachO) don't support PIC + large
// at all.
if self.is_pic {
CodeModel::Small
} else {
CodeModel::Large
}
}
fn target_triple(&self, target: &Target) -> TargetTriple {
let architecture = if target.triple().architecture
== Architecture::Riscv64(target_lexicon::Riscv64Architecture::Riscv64gc)
{
target_lexicon::Architecture::Riscv64(target_lexicon::Riscv64Architecture::Riscv64)
} else {
target.triple().architecture
};
// Hack: we're using is_pic to determine whether this is a native
// build or not.
let operating_system = if target.triple().operating_system
== wasmer_types::OperatingSystem::Darwin
&& !self.is_pic
{
// LLVM detects static relocation + darwin + 64-bit and
// force-enables PIC because MachO doesn't support that
// combination. They don't check whether they're targeting
// MachO, they check whether the OS is set to Darwin.
//
// Since both linux and darwin use SysV ABI, this should work.
// but not in the case of Aarch64, there the ABI is slightly different
#[allow(clippy::match_single_binding)]
match target.triple().architecture {
_ => wasmer_types::OperatingSystem::Linux,
}
} else {
target.triple().operating_system
};
let binary_format = if self.is_pic {
target.triple().binary_format
} else {
target_lexicon::BinaryFormat::Elf
};
let triple = Triple {
architecture,
vendor: target.triple().vendor.clone(),
operating_system,
environment: target.triple().environment,
binary_format,
};
TargetTriple::create(&triple.to_string())
}
/// Generates the target machine for the current target
pub fn target_machine(&self, target: &Target) -> TargetMachine {
let triple = target.triple();
let cpu_features = &target.cpu_features();
match triple.architecture {
Architecture::X86_64 | Architecture::X86_32(_) => {
InkwellTarget::initialize_x86(&InitializationConfig {
asm_parser: true,
asm_printer: true,
base: true,
disassembler: true,
info: true,
machine_code: true,
})
}
Architecture::Aarch64(_) => InkwellTarget::initialize_aarch64(&InitializationConfig {
asm_parser: true,
asm_printer: true,
base: true,
disassembler: true,
info: true,
machine_code: true,
}),
Architecture::Riscv64(_) => InkwellTarget::initialize_riscv(&InitializationConfig {
asm_parser: true,
asm_printer: true,
base: true,
disassembler: true,
info: true,
machine_code: true,
}),
// Architecture::Arm(_) => InkwellTarget::initialize_arm(&InitializationConfig {
// asm_parser: true,
// asm_printer: true,
// base: true,
// disassembler: true,
// info: true,
// machine_code: true,
// }),
_ => unimplemented!("target {} not yet supported in Wasmer", triple),
}
// The CPU features formatted as LLVM strings
// We can safely map to gcc-like features as the CPUFeatures
// are compliant with the same string representations as gcc.
let llvm_cpu_features = cpu_features
.iter()
.map(|feature| format!("+{}", feature.to_string()))
.join(",");
let target_triple = self.target_triple(target);
let llvm_target = InkwellTarget::from_triple(&target_triple).unwrap();
let llvm_target_machine = llvm_target
.create_target_machine(
&target_triple,
match triple.architecture {
Architecture::Riscv64(_) => "generic-rv64",
_ => "generic",
},
match triple.architecture {
Architecture::Riscv64(_) => "+m,+a,+c,+d,+f",
_ => &llvm_cpu_features,
},
self.opt_level,
self.reloc_mode(),
match triple.architecture {
Architecture::Riscv64(_) => CodeModel::Medium,
_ => self.code_model(),
},
)
.unwrap();
if let Architecture::Riscv64(_) = triple.architecture {
// TODO: totally non-portable way to change ABI
unsafe {
// This structure mimic the internal structure from inkwell
// that is defined as
// #[derive(Debug)]
// pub struct TargetMachine {
// pub(crate) target_machine: LLVMTargetMachineRef,
// }
pub struct MyTargetMachine {
pub target_machine: *const u8,
}
// It is use to live patch the create LLVMTargetMachine
// to hard change the ABI and force "-mabi=lp64d" ABI
// instead of the default that don't use float registers
// because there is no current way to do this change
let my_target_machine: MyTargetMachine = std::mem::transmute(llvm_target_machine);
*((my_target_machine.target_machine as *mut u8).offset(0x410) as *mut u64) = 5;
std::ptr::copy_nonoverlapping(
"lp64d\0".as_ptr(),
(my_target_machine.target_machine as *mut u8).offset(0x418),
6,
);
std::mem::transmute(my_target_machine)
}
} else {
llvm_target_machine
}
}
}
impl CompilerConfig for LLVM {
/// Emit code suitable for dlopen.
fn enable_pic(&mut self) {
// TODO: although we can emit PIC, the object file parser does not yet
// support all the relocations.
self.is_pic = true;
}
/// Whether to verify compiler IR.
fn enable_verifier(&mut self) {
self.enable_verifier = true;
}
fn canonicalize_nans(&mut self, enable: bool) {
self.enable_nan_canonicalization = enable;
}
/// Transform it into the compiler.
fn compiler(self: Box<Self>) -> Box<dyn Compiler> {
Box::new(LLVMCompiler::new(*self))
}
/// Pushes a middleware onto the back of the middleware chain.
fn push_middleware(&mut self, middleware: Arc<dyn ModuleMiddleware>) {
self.middlewares.push(middleware);
}
}
impl Default for LLVM {
fn default() -> LLVM {
Self::new()
}
}
impl From<LLVM> for Engine {
fn from(config: LLVM) -> Self {
EngineBuilder::new(config).engine()
}
}