wasmer_compiler_singlepass/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! Support for compiling with Singlepass.
// Allow unused imports while developing.
#![allow(unused_imports, dead_code)]

use crate::codegen_x64::{
    gen_import_call_trampoline, gen_std_dynamic_import_trampoline, gen_std_trampoline,
    CodegenError, FuncGen,
};
use crate::config::Singlepass;
#[cfg(feature = "rayon")]
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
use std::sync::Arc;
use wasmer_compiler::{
    Architecture, CallingConvention, Compilation, CompileError, CompileModuleInfo,
    CompiledFunction, Compiler, CompilerConfig, CpuFeature, FunctionBody, FunctionBodyData,
    ModuleTranslationState, OperatingSystem, SectionIndex, Target, TrapInformation,
};
use wasmer_types::entity::{EntityRef, PrimaryMap};
use wasmer_types::{
    FunctionIndex, FunctionType, LocalFunctionIndex, MemoryIndex, ModuleInfo, TableIndex,
};
use wasmer_vm::{TrapCode, VMOffsets};

/// A compiler that compiles a WebAssembly module with Singlepass.
/// It does the compilation in one pass
pub struct SinglepassCompiler {
    config: Singlepass,
}

impl SinglepassCompiler {
    /// Creates a new Singlepass compiler
    pub fn new(config: Singlepass) -> Self {
        Self { config }
    }

    /// Gets the config for this Compiler
    fn config(&self) -> &Singlepass {
        &self.config
    }
}

impl Compiler for SinglepassCompiler {
    /// Compile the module using Singlepass, producing a compilation result with
    /// associated relocations.
    fn compile_module(
        &self,
        target: &Target,
        compile_info: &CompileModuleInfo,
        module_translation: &ModuleTranslationState,
        function_body_inputs: PrimaryMap<LocalFunctionIndex, FunctionBodyData<'_>>,
    ) -> Result<Compilation, CompileError> {
        /*if target.triple().operating_system == OperatingSystem::Windows {
            return Err(CompileError::UnsupportedTarget(
                OperatingSystem::Windows.to_string(),
            ));
        }*/
        if target.triple().architecture != Architecture::X86_64 {
            return Err(CompileError::UnsupportedTarget(
                target.triple().architecture.to_string(),
            ));
        }
        if !target.cpu_features().contains(CpuFeature::AVX) {
            return Err(CompileError::UnsupportedTarget(
                "x86_64 without AVX".to_string(),
            ));
        }
        if compile_info.features.multi_value {
            return Err(CompileError::UnsupportedFeature("multivalue".to_string()));
        }
        let calling_convention = match target.triple().default_calling_convention() {
            Ok(CallingConvention::WindowsFastcall) => CallingConvention::WindowsFastcall,
            Ok(CallingConvention::SystemV) => CallingConvention::SystemV,
            //Ok(CallingConvention::AppleAarch64) => AppleAarch64,
            _ => panic!("Unsupported Calling convention for Singlepass compiler"),
        };

        let table_styles = &compile_info.table_styles;
        let module = &compile_info.module;
        let pointer_width = target
            .triple()
            .pointer_width()
            .map_err(|()| {
                CompileError::UnsupportedTarget("target with unknown pointer width".into())
            })?
            .bytes();
        let vmoffsets = VMOffsets::new(pointer_width).with_module_info(&module);
        let import_idxs = 0..module.import_counts.functions as usize;
        let import_trampolines: PrimaryMap<SectionIndex, _> = import_idxs
            .into_par_iter_if_rayon()
            .map(|i| {
                let i = FunctionIndex::new(i);
                gen_import_call_trampoline(
                    &vmoffsets,
                    i,
                    &module.signatures[module.functions[i]],
                    calling_convention,
                )
            })
            .collect::<Vec<_>>()
            .into_iter()
            .collect();
        let functions = function_body_inputs
            .iter()
            .collect::<Vec<(LocalFunctionIndex, &FunctionBodyData<'_>)>>()
            .into_par_iter_if_rayon()
            .map(|(i, input)| {
                let reader = wasmer_compiler::FunctionReader::new(input.module_offset, input.data);

                let mut local_reader = reader.get_locals_reader()?;
                // This local list excludes arguments.
                let mut locals = vec![];
                let num_locals = local_reader.get_count();
                for _ in 0..num_locals {
                    let (count, ty) = local_reader.read()?;
                    for _ in 0..count {
                        locals.push(ty);
                    }
                }

                let mut generator = FuncGen::new(
                    module,
                    module_translation,
                    &self.config,
                    &vmoffsets,
                    &table_styles,
                    i,
                    &locals,
                    calling_convention,
                )
                .map_err(to_compile_error)?;

                let mut operator_reader = reader.get_operators_reader()?.into_iter_with_offsets();
                while generator.has_control_frames() {
                    let (op, pos) = operator_reader.next().unwrap()?;
                    generator.set_srcloc(pos as u32);
                    generator.feed_operator(op).map_err(to_compile_error)?;
                }

                Ok(generator.finalize(&input))
            })
            .collect::<Result<Vec<CompiledFunction>, CompileError>>()?
            .into_iter()
            .collect::<PrimaryMap<LocalFunctionIndex, CompiledFunction>>();

        let function_call_trampolines = module
            .signatures
            .values()
            .collect::<Vec<_>>()
            .into_par_iter_if_rayon()
            .map(|func_type| gen_std_trampoline(&func_type, calling_convention))
            .collect::<Vec<_>>()
            .into_iter()
            .collect::<PrimaryMap<_, _>>();

        let dynamic_function_trampolines = module
            .imported_function_types()
            .collect::<Vec<_>>()
            .into_par_iter_if_rayon()
            .map(|func_type| {
                gen_std_dynamic_import_trampoline(&vmoffsets, &func_type, calling_convention)
            })
            .collect::<Vec<_>>()
            .into_iter()
            .collect::<PrimaryMap<FunctionIndex, FunctionBody>>();

        Ok(Compilation::new(
            functions,
            import_trampolines,
            function_call_trampolines,
            dynamic_function_trampolines,
            None,
            None,
        ))
    }
}

trait ToCompileError {
    fn to_compile_error(self) -> CompileError;
}

impl ToCompileError for CodegenError {
    fn to_compile_error(self) -> CompileError {
        CompileError::Codegen(self.message)
    }
}

fn to_compile_error<T: ToCompileError>(x: T) -> CompileError {
    x.to_compile_error()
}

trait IntoParIterIfRayon {
    type Output;
    fn into_par_iter_if_rayon(self) -> Self::Output;
}

#[cfg(feature = "rayon")]
impl<T: IntoParallelIterator + IntoIterator> IntoParIterIfRayon for T {
    type Output = <T as IntoParallelIterator>::Iter;
    fn into_par_iter_if_rayon(self) -> Self::Output {
        return self.into_par_iter();
    }
}

#[cfg(not(feature = "rayon"))]
impl<T: IntoIterator> IntoParIterIfRayon for T {
    type Output = <T as IntoIterator>::IntoIter;
    fn into_par_iter_if_rayon(self) -> Self::Output {
        return self.into_iter();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::str::FromStr;
    use target_lexicon::triple;
    use wasmer_compiler::{CpuFeature, Features, Triple};
    use wasmer_vm::{MemoryStyle, TableStyle};

    fn dummy_compilation_ingredients<'a>() -> (
        CompileModuleInfo,
        ModuleTranslationState,
        PrimaryMap<LocalFunctionIndex, FunctionBodyData<'a>>,
    ) {
        let compile_info = CompileModuleInfo {
            features: Features::new(),
            module: Arc::new(ModuleInfo::new()),
            memory_styles: PrimaryMap::<MemoryIndex, MemoryStyle>::new(),
            table_styles: PrimaryMap::<TableIndex, TableStyle>::new(),
        };
        let module_translation = ModuleTranslationState::new();
        let function_body_inputs = PrimaryMap::<LocalFunctionIndex, FunctionBodyData<'_>>::new();
        (compile_info, module_translation, function_body_inputs)
    }

    #[test]
    fn errors_for_unsupported_targets() {
        let compiler = SinglepassCompiler::new(Singlepass::default());

        // Compile for win64
        /*let win64 = Target::new(triple!("x86_64-pc-windows-msvc"), CpuFeature::for_host());
        let (mut info, translation, inputs) = dummy_compilation_ingredients();
        let result = compiler.compile_module(&win64, &mut info, &translation, inputs);
        match result.unwrap_err() {
            CompileError::UnsupportedTarget(name) => assert_eq!(name, "windows"),
            error => panic!("Unexpected error: {:?}", error),
        };*/

        // Compile for 32bit Linux
        let linux32 = Target::new(triple!("i686-unknown-linux-gnu"), CpuFeature::for_host());
        let (mut info, translation, inputs) = dummy_compilation_ingredients();
        let result = compiler.compile_module(&linux32, &mut info, &translation, inputs);
        match result.unwrap_err() {
            CompileError::UnsupportedTarget(name) => assert_eq!(name, "i686"),
            error => panic!("Unexpected error: {:?}", error),
        };

        // Compile for win32
        let win32 = Target::new(triple!("i686-pc-windows-gnu"), CpuFeature::for_host());
        let (mut info, translation, inputs) = dummy_compilation_ingredients();
        let result = compiler.compile_module(&win32, &mut info, &translation, inputs);
        match result.unwrap_err() {
            CompileError::UnsupportedTarget(name) => assert_eq!(name, "i686"), // Windows should be checked before architecture
            error => panic!("Unexpected error: {:?}", error),
        };
    }
}