wasmer_compiler_singlepass/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
//! Support for compiling with Singlepass.
// Allow unused imports while developing.
#![allow(unused_imports, dead_code)]

use crate::codegen::FuncGen;
use crate::config::Singlepass;
#[cfg(feature = "unwind")]
use crate::dwarf::WriterRelocate;
use crate::machine::Machine;
use crate::machine::{
    gen_import_call_trampoline, gen_std_dynamic_import_trampoline, gen_std_trampoline,
};
use crate::machine_arm64::MachineARM64;
use crate::machine_x64::MachineX86_64;
#[cfg(feature = "unwind")]
use crate::unwind::{create_systemv_cie, UnwindFrame};
use enumset::EnumSet;
#[cfg(feature = "unwind")]
use gimli::write::{EhFrame, FrameTable};
#[cfg(feature = "rayon")]
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
use std::sync::Arc;
use wasmer_compiler::{
    Compiler, CompilerConfig, FunctionBinaryReader, FunctionBodyData, MiddlewareBinaryReader,
    ModuleMiddleware, ModuleMiddlewareChain, ModuleTranslationState,
};
use wasmer_types::entity::{EntityRef, PrimaryMap};
use wasmer_types::{
    Architecture, CallingConvention, Compilation, CompileError, CompileModuleInfo,
    CompiledFunction, CpuFeature, Dwarf, FunctionBody, FunctionIndex, FunctionType,
    LocalFunctionIndex, MemoryIndex, ModuleInfo, OperatingSystem, SectionIndex, TableIndex, Target,
    TrapCode, TrapInformation, VMOffsets,
};

/// A compiler that compiles a WebAssembly module with Singlepass.
/// It does the compilation in one pass
pub struct SinglepassCompiler {
    config: Singlepass,
}

impl SinglepassCompiler {
    /// Creates a new Singlepass compiler
    pub fn new(config: Singlepass) -> Self {
        Self { config }
    }

    /// Gets the config for this Compiler
    fn config(&self) -> &Singlepass {
        &self.config
    }
}

impl Compiler for SinglepassCompiler {
    fn name(&self) -> &str {
        "singlepass"
    }

    /// Get the middlewares for this compiler
    fn get_middlewares(&self) -> &[Arc<dyn ModuleMiddleware>] {
        &self.config.middlewares
    }

    /// Compile the module using Singlepass, producing a compilation result with
    /// associated relocations.
    fn compile_module(
        &self,
        target: &Target,
        compile_info: &CompileModuleInfo,
        _module_translation: &ModuleTranslationState,
        function_body_inputs: PrimaryMap<LocalFunctionIndex, FunctionBodyData<'_>>,
    ) -> Result<Compilation, CompileError> {
        match target.triple().architecture {
            Architecture::X86_64 => {}
            Architecture::Aarch64(_) => {}
            _ => {
                return Err(CompileError::UnsupportedTarget(
                    target.triple().architecture.to_string(),
                ))
            }
        }

        let calling_convention = match target.triple().default_calling_convention() {
            Ok(CallingConvention::WindowsFastcall) => CallingConvention::WindowsFastcall,
            Ok(CallingConvention::SystemV) => CallingConvention::SystemV,
            Ok(CallingConvention::AppleAarch64) => CallingConvention::AppleAarch64,
            _ => {
                return Err(CompileError::UnsupportedTarget(
                    "Unsupported Calling convention for Singlepass compiler".to_string(),
                ))
            }
        };

        // Generate the frametable
        #[cfg(feature = "unwind")]
        let dwarf_frametable = if function_body_inputs.is_empty() {
            // If we have no function body inputs, we don't need to
            // construct the `FrameTable`. Constructing it, with empty
            // FDEs will cause some issues in Linux.
            None
        } else {
            match target.triple().default_calling_convention() {
                Ok(CallingConvention::SystemV) => {
                    match create_systemv_cie(target.triple().architecture) {
                        Some(cie) => {
                            let mut dwarf_frametable = FrameTable::default();
                            let cie_id = dwarf_frametable.add_cie(cie);
                            Some((dwarf_frametable, cie_id))
                        }
                        None => None,
                    }
                }
                _ => None,
            }
        };

        let memory_styles = &compile_info.memory_styles;
        let table_styles = &compile_info.table_styles;
        let vmoffsets = VMOffsets::new(8, &compile_info.module);
        let module = &compile_info.module;
        let mut custom_sections: PrimaryMap<SectionIndex, _> = (0..module.num_imported_functions)
            .map(FunctionIndex::new)
            .collect::<Vec<_>>()
            .into_par_iter_if_rayon()
            .map(|i| {
                gen_import_call_trampoline(
                    &vmoffsets,
                    i,
                    &module.signatures[module.functions[i]],
                    target,
                    calling_convention,
                )
            })
            .collect::<Result<Vec<_>, _>>()?
            .into_iter()
            .collect();
        let (functions, fdes): (Vec<CompiledFunction>, Vec<_>) = function_body_inputs
            .iter()
            .collect::<Vec<(LocalFunctionIndex, &FunctionBodyData<'_>)>>()
            .into_par_iter_if_rayon()
            .map(|(i, input)| {
                let middleware_chain = self
                    .config
                    .middlewares
                    .generate_function_middleware_chain(i);
                let mut reader =
                    MiddlewareBinaryReader::new_with_offset(input.data, input.module_offset);
                reader.set_middleware_chain(middleware_chain);

                // This local list excludes arguments.
                let mut locals = vec![];
                let num_locals = reader.read_local_count()?;
                for _ in 0..num_locals {
                    let (count, ty) = reader.read_local_decl()?;
                    for _ in 0..count {
                        locals.push(ty);
                    }
                }

                match target.triple().architecture {
                    Architecture::X86_64 => {
                        let machine = MachineX86_64::new(Some(target.clone()))?;
                        let mut generator = FuncGen::new(
                            module,
                            &self.config,
                            &vmoffsets,
                            memory_styles,
                            table_styles,
                            i,
                            &locals,
                            machine,
                            calling_convention,
                        )?;
                        while generator.has_control_frames() {
                            generator.set_srcloc(reader.original_position() as u32);
                            let op = reader.read_operator()?;
                            generator.feed_operator(op)?;
                        }

                        generator.finalize(input)
                    }
                    Architecture::Aarch64(_) => {
                        let machine = MachineARM64::new(Some(target.clone()));
                        let mut generator = FuncGen::new(
                            module,
                            &self.config,
                            &vmoffsets,
                            memory_styles,
                            table_styles,
                            i,
                            &locals,
                            machine,
                            calling_convention,
                        )?;
                        while generator.has_control_frames() {
                            generator.set_srcloc(reader.original_position() as u32);
                            let op = reader.read_operator()?;
                            generator.feed_operator(op)?;
                        }

                        generator.finalize(input)
                    }
                    _ => unimplemented!(),
                }
            })
            .collect::<Result<Vec<_>, CompileError>>()?
            .into_iter()
            .unzip();

        let function_call_trampolines = module
            .signatures
            .values()
            .collect::<Vec<_>>()
            .into_par_iter_if_rayon()
            .map(|func_type| gen_std_trampoline(func_type, target, calling_convention))
            .collect::<Result<Vec<_>, _>>()?
            .into_iter()
            .collect::<PrimaryMap<_, _>>();

        let dynamic_function_trampolines = module
            .imported_function_types()
            .collect::<Vec<_>>()
            .into_par_iter_if_rayon()
            .map(|func_type| {
                gen_std_dynamic_import_trampoline(
                    &vmoffsets,
                    &func_type,
                    target,
                    calling_convention,
                )
            })
            .collect::<Result<Vec<_>, _>>()?
            .into_iter()
            .collect::<PrimaryMap<FunctionIndex, FunctionBody>>();

        #[cfg(feature = "unwind")]
        let dwarf = if let Some((mut dwarf_frametable, cie_id)) = dwarf_frametable {
            for fde in fdes.into_iter().flatten() {
                match fde {
                    UnwindFrame::SystemV(fde) => dwarf_frametable.add_fde(cie_id, fde),
                }
            }
            let mut eh_frame = EhFrame(WriterRelocate::new(target.triple().endianness().ok()));
            dwarf_frametable.write_eh_frame(&mut eh_frame).unwrap();

            let eh_frame_section = eh_frame.0.into_section();
            custom_sections.push(eh_frame_section);
            Some(Dwarf::new(SectionIndex::new(custom_sections.len() - 1)))
        } else {
            None
        };
        #[cfg(not(feature = "unwind"))]
        let dwarf = None;

        Ok(Compilation {
            functions: functions.into_iter().collect(),
            custom_sections,
            function_call_trampolines,
            dynamic_function_trampolines,
            debug: dwarf,
        })
    }

    fn get_cpu_features_used(&self, cpu_features: &EnumSet<CpuFeature>) -> EnumSet<CpuFeature> {
        let used = CpuFeature::AVX | CpuFeature::SSE42 | CpuFeature::LZCNT | CpuFeature::BMI1;
        cpu_features.intersection(used)
    }
}

trait IntoParIterIfRayon {
    type Output;
    fn into_par_iter_if_rayon(self) -> Self::Output;
}

impl<T: Send> IntoParIterIfRayon for Vec<T> {
    #[cfg(not(feature = "rayon"))]
    type Output = std::vec::IntoIter<T>;
    #[cfg(feature = "rayon")]
    type Output = rayon::vec::IntoIter<T>;

    fn into_par_iter_if_rayon(self) -> Self::Output {
        #[cfg(not(feature = "rayon"))]
        return self.into_iter();
        #[cfg(feature = "rayon")]
        return self.into_par_iter();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::str::FromStr;
    use target_lexicon::triple;
    use wasmer_compiler::Features;
    use wasmer_types::{CpuFeature, MemoryStyle, TableStyle, Triple};

    fn dummy_compilation_ingredients<'a>() -> (
        CompileModuleInfo,
        ModuleTranslationState,
        PrimaryMap<LocalFunctionIndex, FunctionBodyData<'a>>,
    ) {
        let compile_info = CompileModuleInfo {
            features: Features::new(),
            module: Arc::new(ModuleInfo::new()),
            memory_styles: PrimaryMap::<MemoryIndex, MemoryStyle>::new(),
            table_styles: PrimaryMap::<TableIndex, TableStyle>::new(),
        };
        let module_translation = ModuleTranslationState::new();
        let function_body_inputs = PrimaryMap::<LocalFunctionIndex, FunctionBodyData<'_>>::new();
        (compile_info, module_translation, function_body_inputs)
    }

    #[test]
    fn errors_for_unsupported_targets() {
        let compiler = SinglepassCompiler::new(Singlepass::default());

        // Compile for 32bit Linux
        let linux32 = Target::new(triple!("i686-unknown-linux-gnu"), CpuFeature::for_host());
        let (info, translation, inputs) = dummy_compilation_ingredients();
        let result = compiler.compile_module(&linux32, &info, &translation, inputs);
        match result.unwrap_err() {
            CompileError::UnsupportedTarget(name) => assert_eq!(name, "i686"),
            error => panic!("Unexpected error: {:?}", error),
        };

        // Compile for win32
        let win32 = Target::new(triple!("i686-pc-windows-gnu"), CpuFeature::for_host());
        let (info, translation, inputs) = dummy_compilation_ingredients();
        let result = compiler.compile_module(&win32, &info, &translation, inputs);
        match result.unwrap_err() {
            CompileError::UnsupportedTarget(name) => assert_eq!(name, "i686"), // Windows should be checked before architecture
            error => panic!("Unexpected error: {:?}", error),
        };
    }

    #[test]
    fn errors_for_unsuported_cpufeatures() {
        let compiler = SinglepassCompiler::new(Singlepass::default());
        let mut features =
            CpuFeature::AVX | CpuFeature::SSE42 | CpuFeature::LZCNT | CpuFeature::BMI1;
        // simple test
        assert!(compiler
            .get_cpu_features_used(&features)
            .is_subset(CpuFeature::AVX | CpuFeature::SSE42 | CpuFeature::LZCNT | CpuFeature::BMI1));
        // check that an AVX build don't work on SSE4.2 only host
        assert!(!compiler
            .get_cpu_features_used(&features)
            .is_subset(CpuFeature::SSE42 | CpuFeature::LZCNT | CpuFeature::BMI1));
        // check that having a host with AVX512 doesn't change anything
        features.insert_all(CpuFeature::AVX512DQ | CpuFeature::AVX512F);
        assert!(compiler
            .get_cpu_features_used(&features)
            .is_subset(CpuFeature::AVX | CpuFeature::SSE42 | CpuFeature::LZCNT | CpuFeature::BMI1));
    }
}