1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! This module is used for having backtraces in the Wasm runtime.
//! Once the Compiler has compiled the ModuleInfo, and we have a set of
//! compiled functions (addresses and function index) and a module,
//! then we can use this to set a backtrace for that module.
//!
//! # Example
//! ```ignore
//! use wasmer_vm::{FRAME_INFO};
//! use wasmer_types::ModuleInfo;
//!
//! let module: ModuleInfo = ...;
//! FRAME_INFO.register(module, compiled_functions);
//! ```
use std::cmp;
use std::collections::BTreeMap;
use std::sync::{Arc, RwLock};
use wasmer_types::entity::{BoxedSlice, EntityRef, PrimaryMap};
use wasmer_types::{
CompiledFunctionFrameInfo, FrameInfo, LocalFunctionIndex, ModuleInfo, TrapInformation,
};
use wasmer_vm::FunctionBodyPtr;
lazy_static::lazy_static! {
/// This is a global cache of backtrace frame information for all active
///
/// This global cache is used during `Trap` creation to symbolicate frames.
/// This is populated on module compilation, and it is cleared out whenever
/// all references to a module are dropped.
pub static ref FRAME_INFO: RwLock<GlobalFrameInfo> = Default::default();
}
#[derive(Default)]
pub struct GlobalFrameInfo {
/// An internal map that keeps track of backtrace frame information for
/// each module.
///
/// This map is morally a map of ranges to a map of information for that
/// module. Each module is expected to reside in a disjoint section of
/// contiguous memory. No modules can overlap.
///
/// The key of this map is the highest address in the module and the value
/// is the module's information, which also contains the start address.
ranges: BTreeMap<usize, ModuleInfoFrameInfo>,
}
/// An RAII structure used to unregister a module's frame information when the
/// module is destroyed.
pub struct GlobalFrameInfoRegistration {
/// The key that will be removed from the global `ranges` map when this is
/// dropped.
key: usize,
}
#[derive(Debug)]
struct ModuleInfoFrameInfo {
start: usize,
functions: BTreeMap<usize, FunctionInfo>,
module: Arc<ModuleInfo>,
frame_infos: PrimaryMap<LocalFunctionIndex, CompiledFunctionFrameInfo>,
}
impl ModuleInfoFrameInfo {
fn function_debug_info(&self, local_index: LocalFunctionIndex) -> &CompiledFunctionFrameInfo {
self.frame_infos.get(local_index).unwrap()
}
/// Gets a function given a pc
fn function_info(&self, pc: usize) -> Option<&FunctionInfo> {
let (end, func) = self.functions.range(pc..).next()?;
if func.start <= pc && pc <= *end {
Some(func)
} else {
None
}
}
}
#[derive(Debug)]
struct FunctionInfo {
start: usize,
local_index: LocalFunctionIndex,
}
impl GlobalFrameInfo {
/// Fetches frame information about a program counter in a backtrace.
///
/// Returns an object if this `pc` is known to some previously registered
/// module, or returns `None` if no information can be found.
pub fn lookup_frame_info(&self, pc: usize) -> Option<FrameInfo> {
let module = self.module_info(pc)?;
let func = module.function_info(pc)?;
// Use our relative position from the start of the function to find the
// machine instruction that corresponds to `pc`, which then allows us to
// map that to a wasm original source location.
let rel_pos = pc - func.start;
let instr_map = &module.function_debug_info(func.local_index).address_map;
let pos = match instr_map
.instructions
.binary_search_by_key(&rel_pos, |map| map.code_offset)
{
// Exact hit!
Ok(pos) => Some(pos),
// This *would* be at the first slot in the array, so no
// instructions cover `pc`.
Err(0) => None,
// This would be at the `nth` slot, so check `n-1` to see if we're
// part of that instruction. This happens due to the minus one when
// this function is called form trap symbolication, where we don't
// always get called with a `pc` that's an exact instruction
// boundary.
Err(n) => {
let instr = &instr_map.instructions[n - 1];
if instr.code_offset <= rel_pos && rel_pos < instr.code_offset + instr.code_len {
Some(n - 1)
} else {
None
}
}
};
let instr = match pos {
Some(pos) => instr_map.instructions[pos].srcloc,
// Some compilers don't emit yet the full trap information for each of
// the instructions (such as LLVM).
// In case no specific instruction is found, we return by default the
// start offset of the function.
None => instr_map.start_srcloc,
};
let func_index = module.module.func_index(func.local_index);
Some(FrameInfo::new(
module.module.name(),
func_index.index() as u32,
module.module.function_names.get(&func_index).cloned(),
instr_map.start_srcloc,
instr,
))
}
/// Fetches trap information about a program counter in a backtrace.
pub fn lookup_trap_info(&self, pc: usize) -> Option<&TrapInformation> {
let module = self.module_info(pc)?;
let func = module.function_info(pc)?;
let traps = &module.function_debug_info(func.local_index).traps;
let idx = traps
.binary_search_by_key(&((pc - func.start) as u32), |info| info.code_offset)
.ok()?;
Some(&traps[idx])
}
/// Gets a module given a pc
fn module_info(&self, pc: usize) -> Option<&ModuleInfoFrameInfo> {
let (end, module_info) = self.ranges.range(pc..).next()?;
if module_info.start <= pc && pc <= *end {
Some(module_info)
} else {
None
}
}
}
impl Drop for GlobalFrameInfoRegistration {
fn drop(&mut self) {
if let Ok(mut info) = FRAME_INFO.write() {
info.ranges.remove(&self.key);
}
}
}
/// Represents a continuous region of executable memory starting with a function
/// entry point.
#[derive(Debug)]
#[repr(C)]
pub struct FunctionExtent {
/// Entry point for normal entry of the function. All addresses in the
/// function lie after this address.
pub ptr: FunctionBodyPtr,
/// Length in bytes.
pub length: usize,
}
/// Registers a new compiled module's frame information.
///
/// This function will register the `names` information for all of the
/// compiled functions within `module`. If the `module` has no functions
/// then `None` will be returned. Otherwise the returned object, when
/// dropped, will be used to unregister all name information from this map.
pub fn register(
module: Arc<ModuleInfo>,
finished_functions: &BoxedSlice<LocalFunctionIndex, FunctionExtent>,
frame_infos: PrimaryMap<LocalFunctionIndex, CompiledFunctionFrameInfo>,
) -> Option<GlobalFrameInfoRegistration> {
let mut min = usize::max_value();
let mut max = 0;
let mut functions = BTreeMap::new();
for (
i,
FunctionExtent {
ptr: start,
length: len,
},
) in finished_functions.iter()
{
let start = **start as usize;
// end is "last byte" of the function code
let end = start + len - 1;
min = cmp::min(min, start);
max = cmp::max(max, end);
let func = FunctionInfo {
start,
local_index: i,
};
assert!(functions.insert(end, func).is_none());
}
if functions.is_empty() {
return None;
}
let mut info = FRAME_INFO.write().unwrap();
// First up assert that our chunk of jit functions doesn't collide with
// any other known chunks of jit functions...
if let Some((_, prev)) = info.ranges.range(max..).next() {
assert!(prev.start > max);
}
if let Some((prev_end, _)) = info.ranges.range(..=min).next_back() {
assert!(*prev_end < min);
}
// ... then insert our range and assert nothing was there previously
let prev = info.ranges.insert(
max,
ModuleInfoFrameInfo {
start: min,
functions,
module,
frame_infos,
},
);
assert!(prev.is_none());
Some(GlobalFrameInfoRegistration { key: max })
}