wasmer_types/native.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
//! This module permits to create native functions
//! easily in Rust, thanks to its advanced typing system.
use crate::extern_ref::VMExternRef;
use crate::lib::std::fmt;
use crate::types::Type;
use crate::values::{Value, WasmValueType};
/// `NativeWasmType` represents a Wasm type that has a direct
/// representation on the host (hence the “native” term).
///
/// It uses the Rust Type system to automatically detect the
/// Wasm type associated with a native Rust type.
///
/// ```
/// use wasmer_types::{NativeWasmType, Type};
///
/// let wasm_type = i32::WASM_TYPE;
/// assert_eq!(wasm_type, Type::I32);
/// ```
///
/// > Note: This strategy will be needed later to
/// > automatically detect the signature of a Rust function.
pub trait NativeWasmType: Sized {
/// The ABI for this type (i32, i64, f32, f64)
type Abi: Copy + fmt::Debug;
/// Type for this `NativeWasmType`.
const WASM_TYPE: Type;
#[doc(hidden)]
fn from_abi(abi: Self::Abi) -> Self;
#[doc(hidden)]
fn into_abi(self) -> Self::Abi;
/// Convert self to i128 binary representation.
fn to_binary(self) -> i128;
/// Convert self to a `Value`.
fn to_value<T: WasmValueType>(self) -> Value<T> {
let binary = self.to_binary();
// we need a store, we're just hoping we don't actually use it via funcref
// TODO(reftypes): we need an actual solution here
let hack = 3;
unsafe { Value::read_value_from(&hack, &binary, Self::WASM_TYPE) }
}
/// Convert to self from i128 binary representation.
fn from_binary(binary: i128) -> Self;
}
impl NativeWasmType for i32 {
const WASM_TYPE: Type = Type::I32;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self as _
}
#[inline]
fn from_binary(bits: i128) -> Self {
bits as _
}
}
impl NativeWasmType for i64 {
const WASM_TYPE: Type = Type::I64;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self as _
}
#[inline]
fn from_binary(bits: i128) -> Self {
bits as _
}
}
impl NativeWasmType for f32 {
const WASM_TYPE: Type = Type::F32;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self.to_bits() as _
}
#[inline]
fn from_binary(bits: i128) -> Self {
Self::from_bits(bits as _)
}
}
impl NativeWasmType for f64 {
const WASM_TYPE: Type = Type::F64;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self.to_bits() as _
}
#[inline]
fn from_binary(bits: i128) -> Self {
Self::from_bits(bits as _)
}
}
impl NativeWasmType for u128 {
const WASM_TYPE: Type = Type::V128;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self as _
}
#[inline]
fn from_binary(bits: i128) -> Self {
bits as _
}
}
impl NativeWasmType for VMExternRef {
const WASM_TYPE: Type = Type::ExternRef;
type Abi = Self;
#[inline]
fn from_abi(abi: Self::Abi) -> Self {
abi
}
#[inline]
fn into_abi(self) -> Self::Abi {
self
}
#[inline]
fn to_binary(self) -> i128 {
self.to_binary()
}
#[inline]
fn from_binary(bits: i128) -> Self {
// TODO(reftypes): ensure that the safety invariants are actually upheld here
unsafe { Self::from_binary(bits) }
}
}
#[cfg(test)]
mod test_native_type {
use super::*;
use crate::types::Type;
#[test]
fn test_wasm_types() {
assert_eq!(i32::WASM_TYPE, Type::I32);
assert_eq!(i64::WASM_TYPE, Type::I64);
assert_eq!(f32::WASM_TYPE, Type::F32);
assert_eq!(f64::WASM_TYPE, Type::F64);
assert_eq!(u128::WASM_TYPE, Type::V128);
}
#[test]
fn test_roundtrip() {
assert_eq!(i32::from_binary(42i32.to_binary()), 42i32);
assert_eq!(i64::from_binary(42i64.to_binary()), 42i64);
assert_eq!(f32::from_binary(42f32.to_binary()), 42f32);
assert_eq!(f64::from_binary(42f64.to_binary()), 42f64);
assert_eq!(u128::from_binary(42u128.to_binary()), 42u128);
}
}
// pub trait IntegerAtomic
// where
// Self: Sized
// {
// type Primitive;
// fn add(&self, other: Self::Primitive) -> Self::Primitive;
// fn sub(&self, other: Self::Primitive) -> Self::Primitive;
// fn and(&self, other: Self::Primitive) -> Self::Primitive;
// fn or(&self, other: Self::Primitive) -> Self::Primitive;
// fn xor(&self, other: Self::Primitive) -> Self::Primitive;
// fn load(&self) -> Self::Primitive;
// fn store(&self, other: Self::Primitive) -> Self::Primitive;
// fn compare_exchange(&self, expected: Self::Primitive, new: Self::Primitive) -> Self::Primitive;
// fn swap(&self, other: Self::Primitive) -> Self::Primitive;
// }
/// Trait for a Value type. A Value type is a type that is always valid and may
/// be safely copied.
///
/// That is, for all possible bit patterns a valid Value type can be constructed
/// from those bits.
///
/// Concretely a `u32` is a Value type because every combination of 32 bits is
/// a valid `u32`. However a `bool` is _not_ a Value type because any bit patterns
/// other than `0` and `1` are invalid in Rust and may cause undefined behavior if
/// a `bool` is constructed from those bytes.
pub unsafe trait ValueType: Copy
where
Self: Sized,
{
}
macro_rules! impl_value_type_for {
( $($type:ty),* ) => {
$(
unsafe impl ValueType for $type {}
)*
};
}
impl_value_type_for!(u8, i8, u16, i16, u32, i32, u64, i64, f32, f64);