1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// This file contains code from external sources.
// Attributions: https://github.com/wasmerio/wasmer/blob/master/ATTRIBUTIONS.md

//! Densely numbered entity references as mapping keys.

use crate::entity::iter::{Iter, IterMut};
use crate::entity::keys::Keys;
use crate::entity::EntityRef;
use crate::lib::std::cmp::min;
use crate::lib::std::marker::PhantomData;
use crate::lib::std::ops::{Index, IndexMut};
use crate::lib::std::slice;
use crate::lib::std::vec::Vec;
use rkyv::{Archive, Deserialize as RkyvDeserialize, Serialize as RkyvSerialize};
#[cfg(feature = "enable-serde")]
use serde::{
    de::{Deserializer, SeqAccess, Visitor},
    ser::{SerializeSeq, Serializer},
    Deserialize, Serialize,
};

/// A mapping `K -> V` for densely indexed entity references.
///
/// The `SecondaryMap` data structure uses the dense index space to implement a map with a vector.
/// Unlike `PrimaryMap`, an `SecondaryMap` can't be used to allocate entity references. It is used
/// to associate secondary information with entities.
///
/// The map does not track if an entry for a key has been inserted or not. Instead it behaves as if
/// all keys have a default entry from the beginning.
#[derive(Debug, Clone, RkyvSerialize, RkyvDeserialize, Archive)]
#[archive_attr(derive(rkyv::CheckBytes))]
pub struct SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone,
{
    pub(crate) elems: Vec<V>,
    pub(crate) default: V,
    pub(crate) unused: PhantomData<K>,
}

/// Shared `SecondaryMap` implementation for all value types.
impl<K, V> SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone,
{
    /// Create a new empty map.
    pub fn new() -> Self
    where
        V: Default,
    {
        Self {
            elems: Vec::new(),
            default: Default::default(),
            unused: PhantomData,
        }
    }

    /// Create a new, empty map with the specified capacity.
    ///
    /// The map will be able to hold exactly `capacity` elements without reallocating.
    pub fn with_capacity(capacity: usize) -> Self
    where
        V: Default,
    {
        Self {
            elems: Vec::with_capacity(capacity),
            default: Default::default(),
            unused: PhantomData,
        }
    }

    /// Create a new empty map with a specified default value.
    ///
    /// This constructor does not require V to implement Default.
    pub fn with_default(default: V) -> Self {
        Self {
            elems: Vec::new(),
            default,
            unused: PhantomData,
        }
    }

    /// Returns the number of elements the map can hold without reallocating.
    pub fn capacity(&self) -> usize {
        self.elems.capacity()
    }

    /// Get the element at `k` if it exists.
    #[inline(always)]
    pub fn get(&self, k: K) -> Option<&V> {
        self.elems.get(k.index())
    }

    /// Is this map completely empty?
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.elems.is_empty()
    }

    /// Remove all entries from this map.
    #[inline(always)]
    pub fn clear(&mut self) {
        self.elems.clear()
    }

    /// Iterate over all the keys and values in this map.
    pub fn iter(&self) -> Iter<K, V> {
        Iter::new(self.elems.iter())
    }

    /// Iterate over all the keys and values in this map, mutable edition.
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        IterMut::new(self.elems.iter_mut())
    }

    /// Iterate over all the keys in this map.
    pub fn keys(&self) -> Keys<K> {
        Keys::with_len(self.elems.len())
    }

    /// Iterate over all the values in this map.
    pub fn values(&self) -> slice::Iter<V> {
        self.elems.iter()
    }

    /// Iterate over all the values in this map, mutable edition.
    pub fn values_mut(&mut self) -> slice::IterMut<V> {
        self.elems.iter_mut()
    }

    /// Resize the map to have `n` entries by adding default entries as needed.
    pub fn resize(&mut self, n: usize) {
        self.elems.resize(n, self.default.clone());
    }
}

impl<K, V> Default for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone + Default,
{
    fn default() -> Self {
        Self::new()
    }
}

/// Immutable indexing into an `SecondaryMap`.
///
/// All keys are permitted. Untouched entries have the default value.
impl<K, V> Index<K> for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone,
{
    type Output = V;

    #[inline(always)]
    fn index(&self, k: K) -> &V {
        self.elems.get(k.index()).unwrap_or(&self.default)
    }
}

/// Mutable indexing into an `SecondaryMap`.
///
/// The map grows as needed to accommodate new keys.
impl<K, V> IndexMut<K> for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone,
{
    #[inline(always)]
    fn index_mut(&mut self, k: K) -> &mut V {
        let i = k.index();
        if i >= self.elems.len() {
            self.elems.resize(i + 1, self.default.clone());
        }
        &mut self.elems[i]
    }
}

impl<K, V> PartialEq for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone + PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        let min_size = min(self.elems.len(), other.elems.len());
        self.default == other.default
            && self.elems[..min_size] == other.elems[..min_size]
            && self.elems[min_size..].iter().all(|e| *e == self.default)
            && other.elems[min_size..].iter().all(|e| *e == other.default)
    }
}

impl<K, V> Eq for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone + PartialEq + Eq,
{
}

#[cfg(feature = "enable-serde")]
impl<K, V> Serialize for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone + PartialEq + Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        // TODO: bincode encodes option as "byte for Some/None" and then optionally the content
        // TODO: we can actually optimize it by encoding manually bitmask, then elements
        let mut elems_cnt = self.elems.len();
        while elems_cnt > 0 && self.elems[elems_cnt - 1] == self.default {
            elems_cnt -= 1;
        }
        let mut seq = serializer.serialize_seq(Some(1 + elems_cnt))?;
        seq.serialize_element(&Some(self.default.clone()))?;
        for e in self.elems.iter().take(elems_cnt) {
            let some_e = Some(e);
            seq.serialize_element(if *e == self.default { &None } else { &some_e })?;
        }
        seq.end()
    }
}

#[cfg(feature = "enable-serde")]
impl<'de, K, V> Deserialize<'de> for SecondaryMap<K, V>
where
    K: EntityRef,
    V: Clone + Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        use crate::lib::std::fmt;

        struct SecondaryMapVisitor<K, V> {
            unused: PhantomData<fn(K) -> V>,
        }

        impl<'de, K, V> Visitor<'de> for SecondaryMapVisitor<K, V>
        where
            K: EntityRef,
            V: Clone + Deserialize<'de>,
        {
            type Value = SecondaryMap<K, V>;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("struct SecondaryMap")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: SeqAccess<'de>,
            {
                match seq.next_element()? {
                    Some(Some(default_val)) => {
                        let default_val: V = default_val; // compiler can't infer the type
                        let mut m = SecondaryMap::with_default(default_val.clone());
                        let mut idx = 0;
                        while let Some(val) = seq.next_element()? {
                            let val: Option<_> = val; // compiler can't infer the type
                            m[K::new(idx)] = val.unwrap_or_else(|| default_val.clone());
                            idx += 1;
                        }
                        Ok(m)
                    }
                    _ => Err(serde::de::Error::custom("Default value required")),
                }
            }
        }

        deserializer.deserialize_seq(SecondaryMapVisitor {
            unused: PhantomData {},
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // `EntityRef` impl for testing.
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    struct E(u32);

    impl EntityRef for E {
        fn new(i: usize) -> Self {
            Self(i as u32)
        }
        fn index(self) -> usize {
            self.0 as usize
        }
    }

    #[test]
    fn basic() {
        let r0 = E(0);
        let r1 = E(1);
        let r2 = E(2);
        let mut m = SecondaryMap::new();

        let v: Vec<E> = m.keys().collect();
        assert_eq!(v, []);

        m[r2] = 3;
        m[r1] = 5;

        assert_eq!(m[r1], 5);
        assert_eq!(m[r2], 3);

        let v: Vec<E> = m.keys().collect();
        assert_eq!(v, [r0, r1, r2]);

        let shared = &m;
        assert_eq!(shared[r0], 0);
        assert_eq!(shared[r1], 5);
        assert_eq!(shared[r2], 3);
    }
}