wasmer_vm/instance/allocator.rs
1use super::{Instance, VMInstance};
2use crate::vmcontext::VMTableDefinition;
3use crate::VMMemoryDefinition;
4use std::alloc::{self, Layout};
5use std::convert::TryFrom;
6use std::mem;
7use std::ptr::{self, NonNull};
8use wasmer_types::entity::EntityRef;
9use wasmer_types::VMOffsets;
10use wasmer_types::{LocalMemoryIndex, LocalTableIndex, ModuleInfo};
11
12/// This is an intermediate type that manages the raw allocation and
13/// metadata when creating an [`Instance`].
14///
15/// This type will free the allocated memory if it's dropped before
16/// being used.
17///
18/// It is important to remind that [`Instance`] is dynamically-sized
19/// based on `VMOffsets`: The `Instance.vmctx` field represents a
20/// dynamically-sized array that extends beyond the nominal end of the
21/// type. So in order to create an instance of it, we must:
22///
23/// 1. Define the correct layout for `Instance` (size and alignment),
24/// 2. Allocate it properly.
25///
26/// The [`InstanceAllocator::instance_layout`] computes the correct
27/// layout to represent the wanted [`Instance`].
28///
29/// Then we use this layout to allocate an empty `Instance` properly.
30pub struct InstanceAllocator {
31 /// The buffer that will contain the [`Instance`] and dynamic fields.
32 instance_ptr: NonNull<Instance>,
33
34 /// The layout of the `instance_ptr` buffer.
35 instance_layout: Layout,
36
37 /// Information about the offsets into the `instance_ptr` buffer for
38 /// the dynamic fields.
39 offsets: VMOffsets,
40
41 /// Whether or not this type has transferred ownership of the
42 /// `instance_ptr` buffer. If it has not when being dropped,
43 /// the buffer should be freed.
44 consumed: bool,
45}
46
47impl Drop for InstanceAllocator {
48 fn drop(&mut self) {
49 if !self.consumed {
50 // If `consumed` has not been set, then we still have ownership
51 // over the buffer and must free it.
52 let instance_ptr = self.instance_ptr.as_ptr();
53
54 unsafe {
55 std::alloc::dealloc(instance_ptr as *mut u8, self.instance_layout);
56 }
57 }
58 }
59}
60
61impl InstanceAllocator {
62 /// Allocates instance data for use with [`VMInstance::new`].
63 ///
64 /// Returns a wrapper type around the allocation and 2 vectors of
65 /// pointers into the allocated buffer. These lists of pointers
66 /// correspond to the location in memory for the local memories and
67 /// tables respectively. These pointers should be written to before
68 /// calling [`VMInstance::new`].
69 ///
70 /// [`VMInstance::new`]: super::VMInstance::new
71 pub fn new(
72 module: &ModuleInfo,
73 ) -> (
74 Self,
75 Vec<NonNull<VMMemoryDefinition>>,
76 Vec<NonNull<VMTableDefinition>>,
77 ) {
78 let offsets = VMOffsets::new(mem::size_of::<usize>() as u8, module);
79 let instance_layout = Self::instance_layout(&offsets);
80
81 #[allow(clippy::cast_ptr_alignment)]
82 let instance_ptr = unsafe { alloc::alloc(instance_layout) as *mut Instance };
83
84 let instance_ptr = if let Some(ptr) = NonNull::new(instance_ptr) {
85 ptr
86 } else {
87 alloc::handle_alloc_error(instance_layout);
88 };
89
90 let allocator = Self {
91 instance_ptr,
92 instance_layout,
93 offsets,
94 consumed: false,
95 };
96
97 // # Safety
98 // Both of these calls are safe because we allocate the pointer
99 // above with the same `offsets` that these functions use.
100 // Thus there will be enough valid memory for both of them.
101 let memories = unsafe { allocator.memory_definition_locations() };
102 let tables = unsafe { allocator.table_definition_locations() };
103
104 (allocator, memories, tables)
105 }
106
107 /// Calculate the appropriate layout for the [`Instance`].
108 fn instance_layout(offsets: &VMOffsets) -> Layout {
109 let vmctx_size = usize::try_from(offsets.size_of_vmctx())
110 .expect("Failed to convert the size of `vmctx` to a `usize`");
111
112 let instance_vmctx_layout =
113 Layout::array::<u8>(vmctx_size).expect("Failed to create a layout for `VMContext`");
114
115 let (instance_layout, _offset) = Layout::new::<Instance>()
116 .extend(instance_vmctx_layout)
117 .expect("Failed to extend to `Instance` layout to include `VMContext`");
118
119 instance_layout.pad_to_align()
120 }
121
122 /// Get the locations of where the local [`VMMemoryDefinition`]s should be stored.
123 ///
124 /// This function lets us create `Memory` objects on the host with backing
125 /// memory in the VM.
126 ///
127 /// # Safety
128 ///
129 /// - `Self.instance_ptr` must point to enough memory that all of
130 /// the offsets in `Self.offsets` point to valid locations in
131 /// memory, i.e. `Self.instance_ptr` must have been allocated by
132 /// `Self::new`.
133 unsafe fn memory_definition_locations(&self) -> Vec<NonNull<VMMemoryDefinition>> {
134 let num_memories = self.offsets.num_local_memories();
135 let num_memories = usize::try_from(num_memories).unwrap();
136 let mut out = Vec::with_capacity(num_memories);
137
138 // We need to do some pointer arithmetic now. The unit is `u8`.
139 let ptr = self.instance_ptr.cast::<u8>().as_ptr();
140 let base_ptr = ptr.add(mem::size_of::<Instance>());
141
142 for i in 0..num_memories {
143 let mem_offset = self
144 .offsets
145 .vmctx_vmmemory_definition(LocalMemoryIndex::new(i));
146 let mem_offset = usize::try_from(mem_offset).unwrap();
147
148 let new_ptr = NonNull::new_unchecked(base_ptr.add(mem_offset));
149
150 out.push(new_ptr.cast());
151 }
152
153 out
154 }
155
156 /// Get the locations of where the [`VMTableDefinition`]s should be stored.
157 ///
158 /// This function lets us create [`Table`] objects on the host with backing
159 /// memory in the VM.
160 ///
161 /// # Safety
162 ///
163 /// - `Self.instance_ptr` must point to enough memory that all of
164 /// the offsets in `Self.offsets` point to valid locations in
165 /// memory, i.e. `Self.instance_ptr` must have been allocated by
166 /// `Self::new`.
167 unsafe fn table_definition_locations(&self) -> Vec<NonNull<VMTableDefinition>> {
168 let num_tables = self.offsets.num_local_tables();
169 let num_tables = usize::try_from(num_tables).unwrap();
170 let mut out = Vec::with_capacity(num_tables);
171
172 // We need to do some pointer arithmetic now. The unit is `u8`.
173 let ptr = self.instance_ptr.cast::<u8>().as_ptr();
174 let base_ptr = ptr.add(std::mem::size_of::<Instance>());
175
176 for i in 0..num_tables {
177 let table_offset = self
178 .offsets
179 .vmctx_vmtable_definition(LocalTableIndex::new(i));
180 let table_offset = usize::try_from(table_offset).unwrap();
181
182 let new_ptr = NonNull::new_unchecked(base_ptr.add(table_offset));
183
184 out.push(new_ptr.cast());
185 }
186 out
187 }
188
189 /// Finish preparing by writing the [`Instance`] into memory, and
190 /// consume this `InstanceAllocator`.
191 pub(crate) fn into_vminstance(mut self, instance: Instance) -> VMInstance {
192 // Prevent the old state's drop logic from being called as we
193 // transition into the new state.
194 self.consumed = true;
195
196 unsafe {
197 // `instance` is moved at `Self.instance_ptr`. This
198 // pointer has been allocated by `Self::allocate_instance`
199 // (so by `VMInstance::allocate_instance`).
200 ptr::write(self.instance_ptr.as_ptr(), instance);
201 // Now `instance_ptr` is correctly initialized!
202 }
203 let instance = self.instance_ptr;
204 let instance_layout = self.instance_layout;
205
206 // This is correct because of the invariants of `Self` and
207 // because we write `Instance` to the pointer in this function.
208 VMInstance {
209 instance,
210 instance_layout,
211 }
212 }
213
214 /// Get the [`VMOffsets`] for the allocated buffer.
215 pub(crate) fn offsets(&self) -> &VMOffsets {
216 &self.offsets
217 }
218}