wasmer/externals/memory.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#[cfg(feature = "js")]
use crate::js::externals::memory as memory_impl;
#[cfg(feature = "jsc")]
use crate::jsc::externals::memory as memory_impl;
#[cfg(feature = "sys")]
use crate::sys::externals::memory as memory_impl;
use super::memory_view::MemoryView;
use crate::exports::{ExportError, Exportable};
use crate::store::{AsStoreMut, AsStoreRef};
use crate::vm::{VMExtern, VMExternMemory, VMMemory};
use crate::MemoryAccessError;
use crate::MemoryType;
use crate::{AtomicsError, Extern};
use std::mem::MaybeUninit;
use wasmer_types::{MemoryError, Pages};
/// A WebAssembly `memory` instance.
///
/// A memory instance is the runtime representation of a linear memory.
/// It consists of a vector of bytes and an optional maximum size.
///
/// The length of the vector always is a multiple of the WebAssembly
/// page size, which is defined to be the constant 65536 – abbreviated 64Ki.
/// Like in a memory type, the maximum size in a memory instance is
/// given in units of this page size.
///
/// A memory created by the host or in WebAssembly code will be accessible and
/// mutable from both host and WebAssembly.
///
/// Spec: <https://webassembly.github.io/spec/core/exec/runtime.html#memory-instances>
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "artifact-size", derive(loupe::MemoryUsage))]
pub struct Memory(pub(crate) memory_impl::Memory);
impl Memory {
/// Creates a new host `Memory` from the provided [`MemoryType`].
///
/// This function will construct the `Memory` using the store
/// `BaseTunables`.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let mut store = Store::default();
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, None, false)).unwrap();
/// ```
pub fn new(store: &mut impl AsStoreMut, ty: MemoryType) -> Result<Self, MemoryError> {
Ok(Self(memory_impl::Memory::new(store, ty)?))
}
/// Create a memory object from an existing memory and attaches it to the store
pub fn new_from_existing(new_store: &mut impl AsStoreMut, memory: VMMemory) -> Self {
Self(memory_impl::Memory::new_from_existing(new_store, memory))
}
/// Returns the [`MemoryType`] of the `Memory`.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let mut store = Store::default();
/// #
/// let mt = MemoryType::new(1, None, false);
/// let m = Memory::new(&mut store, mt).unwrap();
///
/// assert_eq!(m.ty(&mut store), mt);
/// ```
pub fn ty(&self, store: &impl AsStoreRef) -> MemoryType {
self.0.ty(store)
}
/// Creates a view into the memory that then allows for
/// read and write
pub fn view<'a>(&self, store: &'a (impl AsStoreRef + ?Sized)) -> MemoryView<'a> {
MemoryView::new(self, store)
}
/// Grow memory by the specified amount of WebAssembly [`Pages`] and return
/// the previous memory size.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # let mut store = Store::default();
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, Some(3), false)).unwrap();
/// let p = m.grow(&mut store, 2).unwrap();
///
/// assert_eq!(p, Pages(1));
/// assert_eq!(m.view(&mut store).size(), Pages(3));
/// ```
///
/// # Errors
///
/// Returns an error if memory can't be grown by the specified amount
/// of pages.
///
/// ```should_panic
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # use wasmer::FunctionEnv;
/// # let mut store = Store::default();
/// # let env = FunctionEnv::new(&mut store, ());
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, Some(1), false)).unwrap();
///
/// // This results in an error: `MemoryError::CouldNotGrow`.
/// let s = m.grow(&mut store, 1).unwrap();
/// ```
pub fn grow<IntoPages>(
&self,
store: &mut impl AsStoreMut,
delta: IntoPages,
) -> Result<Pages, MemoryError>
where
IntoPages: Into<Pages>,
{
self.0.grow(store, delta)
}
/// Grows the memory to at least a minimum size. If the memory is already big enough
/// for the min size then this function does nothing
pub fn grow_at_least(
&self,
store: &mut impl AsStoreMut,
min_size: u64,
) -> Result<(), MemoryError> {
self.0.grow_at_least(store, min_size)
}
/// Resets the memory back to zero length
pub fn reset(&self, store: &mut impl AsStoreMut) -> Result<(), MemoryError> {
self.0.reset(store)?;
Ok(())
}
/// Attempts to duplicate this memory (if its clonable) in a new store
/// (copied memory)
pub fn copy_to_store(
&self,
store: &impl AsStoreRef,
new_store: &mut impl AsStoreMut,
) -> Result<Self, MemoryError> {
if !self.ty(store).shared {
// We should only be able to duplicate in a new store if the memory is shared
return Err(MemoryError::InvalidMemory {
reason: "memory is not a shared memory type".to_string(),
});
}
self.0
.try_copy(&store)
.map(|new_memory| Self::new_from_existing(new_store, new_memory.into()))
}
pub(crate) fn from_vm_extern(store: &mut impl AsStoreMut, vm_extern: VMExternMemory) -> Self {
Self(memory_impl::Memory::from_vm_extern(store, vm_extern))
}
/// Checks whether this `Memory` can be used with the given context.
pub fn is_from_store(&self, store: &impl AsStoreRef) -> bool {
self.0.is_from_store(store)
}
/// Attempts to clone this memory (if its clonable)
pub fn try_clone(&self, store: &impl AsStoreRef) -> Result<VMMemory, MemoryError> {
self.0.try_clone(store)
}
/// Attempts to clone this memory (if its clonable) in a new store
/// (cloned memory will be shared between those that clone it)
pub fn share_in_store(
&self,
store: &impl AsStoreRef,
new_store: &mut impl AsStoreMut,
) -> Result<Self, MemoryError> {
if !self.ty(store).shared {
// We should only be able to duplicate in a new store if the memory is shared
return Err(MemoryError::InvalidMemory {
reason: "memory is not a shared memory type".to_string(),
});
}
self.0
.try_clone(&store)
.map(|new_memory| Self::new_from_existing(new_store, new_memory))
}
/// Get a [`SharedMemory`].
///
/// Only returns `Some(_)` if the memory is shared, and if the target
/// backend supports shared memory operations.
///
/// See [`SharedMemory`] and its methods for more information.
pub fn as_shared(&self, store: &impl AsStoreRef) -> Option<SharedMemory> {
if !self.ty(store).shared {
return None;
}
self.0.as_shared(store)
}
/// To `VMExtern`.
pub(crate) fn to_vm_extern(&self) -> VMExtern {
self.0.to_vm_extern()
}
}
impl std::cmp::Eq for Memory {}
impl<'a> Exportable<'a> for Memory {
fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
match _extern {
Extern::Memory(memory) => Ok(memory),
_ => Err(ExportError::IncompatibleType),
}
}
}
/// Location in a WebAssembly memory.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct MemoryLocation {
// NOTE: must be expanded to an enum that also supports 64bit memory in
// the future
// That's why this is private.
pub(crate) address: u32,
}
impl MemoryLocation {
/// Create a new memory location for a 32bit memory.
pub fn new_32(address: u32) -> Self {
Self { address }
}
}
impl From<u32> for MemoryLocation {
fn from(value: u32) -> Self {
Self::new_32(value)
}
}
/// See [`SharedMemory`].
pub(crate) trait SharedMemoryOps {
/// See [`SharedMemory::disable_atomics`].
fn disable_atomics(&self) -> Result<(), MemoryError> {
Err(MemoryError::AtomicsNotSupported)
}
/// See [`SharedMemory::wake_all_atomic_waiters`].
fn wake_all_atomic_waiters(&self) -> Result<(), MemoryError> {
Err(MemoryError::AtomicsNotSupported)
}
/// See [`SharedMemory::notify`].
fn notify(&self, _dst: MemoryLocation, _count: u32) -> Result<u32, AtomicsError> {
Err(AtomicsError::Unimplemented)
}
/// See [`SharedMemory::wait`].
fn wait(
&self,
_dst: MemoryLocation,
_timeout: Option<std::time::Duration>,
) -> Result<u32, AtomicsError> {
Err(AtomicsError::Unimplemented)
}
}
/// A handle that exposes operations only relevant for shared memories.
///
/// Enables interaction independent from the [`crate::Store`], and thus allows calling
/// some methods an instane is running.
///
/// **NOTE**: Not all methods are supported by all backends.
#[derive(Clone)]
pub struct SharedMemory {
memory: Memory,
ops: std::sync::Arc<dyn SharedMemoryOps + Send + Sync>,
}
impl std::fmt::Debug for SharedMemory {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SharedMemory").finish()
}
}
impl SharedMemory {
/// Get the underlying memory.
pub fn memory(&self) -> &Memory {
&self.memory
}
/// Create a new handle from ops.
#[allow(unused)]
pub(crate) fn new(memory: Memory, ops: impl SharedMemoryOps + Send + Sync + 'static) -> Self {
Self {
memory,
ops: std::sync::Arc::new(ops),
}
}
/// Notify up to `count` waiters waiting for the memory location.
pub fn notify(&self, location: MemoryLocation, count: u32) -> Result<u32, AtomicsError> {
self.ops.notify(location, count)
}
/// Wait for the memory location to be notified.
pub fn wait(
&self,
location: MemoryLocation,
timeout: Option<std::time::Duration>,
) -> Result<u32, AtomicsError> {
self.ops.wait(location, timeout)
}
/// Disable atomics for this memory.
///
/// All subsequent atomic wait calls will produce a trap.
///
/// This can be used or forced shutdown of instances that continuously try
/// to wait on atomics.
///
/// NOTE: this operation might not be supported by all memory implementations.
/// In that case, this function will return an error.
pub fn disable_atomics(&self) -> Result<(), MemoryError> {
self.ops.disable_atomics()
}
/// Wake up all atomic waiters.
///
/// This can be used to force-resume waiting execution.
///
/// NOTE: this operation might not be supported by all memory implementations.
/// In that case, this function will return an error.
pub fn wake_all_atomic_waiters(&self) -> Result<(), MemoryError> {
self.ops.wake_all_atomic_waiters()
}
}
/// Underlying buffer for a memory.
#[derive(Debug, Copy, Clone)]
pub(crate) struct MemoryBuffer<'a>(pub(crate) memory_impl::MemoryBuffer<'a>);
impl<'a> MemoryBuffer<'a> {
#[allow(unused)]
pub(crate) fn read(&self, offset: u64, buf: &mut [u8]) -> Result<(), MemoryAccessError> {
self.0.read(offset, buf)
}
#[allow(unused)]
pub(crate) fn read_uninit<'b>(
&self,
offset: u64,
buf: &'b mut [MaybeUninit<u8>],
) -> Result<&'b mut [u8], MemoryAccessError> {
self.0.read_uninit(offset, buf)
}
#[allow(unused)]
pub(crate) fn write(&self, offset: u64, data: &[u8]) -> Result<(), MemoryAccessError> {
self.0.write(offset, data)
}
}