wasmer/externals/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#[cfg(feature = "js")]
use crate::js::externals::memory as memory_impl;
#[cfg(feature = "jsc")]
use crate::jsc::externals::memory as memory_impl;
#[cfg(feature = "sys")]
use crate::sys::externals::memory as memory_impl;

use super::memory_view::MemoryView;
use crate::exports::{ExportError, Exportable};
use crate::store::{AsStoreMut, AsStoreRef};
use crate::vm::{VMExtern, VMExternMemory, VMMemory};
use crate::MemoryAccessError;
use crate::MemoryType;
use crate::{AtomicsError, Extern};
use std::mem::MaybeUninit;
use wasmer_types::{MemoryError, Pages};

/// A WebAssembly `memory` instance.
///
/// A memory instance is the runtime representation of a linear memory.
/// It consists of a vector of bytes and an optional maximum size.
///
/// The length of the vector always is a multiple of the WebAssembly
/// page size, which is defined to be the constant 65536 – abbreviated 64Ki.
/// Like in a memory type, the maximum size in a memory instance is
/// given in units of this page size.
///
/// A memory created by the host or in WebAssembly code will be accessible and
/// mutable from both host and WebAssembly.
///
/// Spec: <https://webassembly.github.io/spec/core/exec/runtime.html#memory-instances>
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "artifact-size", derive(loupe::MemoryUsage))]
pub struct Memory(pub(crate) memory_impl::Memory);

impl Memory {
    /// Creates a new host `Memory` from the provided [`MemoryType`].
    ///
    /// This function will construct the `Memory` using the store
    /// `BaseTunables`.
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
    /// # let mut store = Store::default();
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, None, false)).unwrap();
    /// ```
    pub fn new(store: &mut impl AsStoreMut, ty: MemoryType) -> Result<Self, MemoryError> {
        Ok(Self(memory_impl::Memory::new(store, ty)?))
    }

    /// Create a memory object from an existing memory and attaches it to the store
    pub fn new_from_existing(new_store: &mut impl AsStoreMut, memory: VMMemory) -> Self {
        Self(memory_impl::Memory::new_from_existing(new_store, memory))
    }

    /// Returns the [`MemoryType`] of the `Memory`.
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
    /// # let mut store = Store::default();
    /// #
    /// let mt = MemoryType::new(1, None, false);
    /// let m = Memory::new(&mut store, mt).unwrap();
    ///
    /// assert_eq!(m.ty(&mut store), mt);
    /// ```
    pub fn ty(&self, store: &impl AsStoreRef) -> MemoryType {
        self.0.ty(store)
    }

    /// Creates a view into the memory that then allows for
    /// read and write
    pub fn view<'a>(&self, store: &'a (impl AsStoreRef + ?Sized)) -> MemoryView<'a> {
        MemoryView::new(self, store)
    }

    /// Grow memory by the specified amount of WebAssembly [`Pages`] and return
    /// the previous memory size.
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
    /// # let mut store = Store::default();
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, Some(3), false)).unwrap();
    /// let p = m.grow(&mut store, 2).unwrap();
    ///
    /// assert_eq!(p, Pages(1));
    /// assert_eq!(m.view(&mut store).size(), Pages(3));
    /// ```
    ///
    /// # Errors
    ///
    /// Returns an error if memory can't be grown by the specified amount
    /// of pages.
    ///
    /// ```should_panic
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
    /// # use wasmer::FunctionEnv;
    /// # let mut store = Store::default();
    /// # let env = FunctionEnv::new(&mut store, ());
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, Some(1), false)).unwrap();
    ///
    /// // This results in an error: `MemoryError::CouldNotGrow`.
    /// let s = m.grow(&mut store, 1).unwrap();
    /// ```
    pub fn grow<IntoPages>(
        &self,
        store: &mut impl AsStoreMut,
        delta: IntoPages,
    ) -> Result<Pages, MemoryError>
    where
        IntoPages: Into<Pages>,
    {
        self.0.grow(store, delta)
    }

    /// Grows the memory to at least a minimum size. If the memory is already big enough
    /// for the min size then this function does nothing
    pub fn grow_at_least(
        &self,
        store: &mut impl AsStoreMut,
        min_size: u64,
    ) -> Result<(), MemoryError> {
        self.0.grow_at_least(store, min_size)
    }

    /// Resets the memory back to zero length
    pub fn reset(&self, store: &mut impl AsStoreMut) -> Result<(), MemoryError> {
        self.0.reset(store)?;
        Ok(())
    }

    /// Attempts to duplicate this memory (if its clonable) in a new store
    /// (copied memory)
    pub fn copy_to_store(
        &self,
        store: &impl AsStoreRef,
        new_store: &mut impl AsStoreMut,
    ) -> Result<Self, MemoryError> {
        if !self.ty(store).shared {
            // We should only be able to duplicate in a new store if the memory is shared
            return Err(MemoryError::InvalidMemory {
                reason: "memory is not a shared memory type".to_string(),
            });
        }
        self.0
            .try_copy(&store)
            .map(|new_memory| Self::new_from_existing(new_store, new_memory.into()))
    }

    pub(crate) fn from_vm_extern(store: &mut impl AsStoreMut, vm_extern: VMExternMemory) -> Self {
        Self(memory_impl::Memory::from_vm_extern(store, vm_extern))
    }

    /// Checks whether this `Memory` can be used with the given context.
    pub fn is_from_store(&self, store: &impl AsStoreRef) -> bool {
        self.0.is_from_store(store)
    }

    /// Attempts to clone this memory (if its clonable)
    pub fn try_clone(&self, store: &impl AsStoreRef) -> Result<VMMemory, MemoryError> {
        self.0.try_clone(store)
    }

    /// Attempts to clone this memory (if its clonable) in a new store
    /// (cloned memory will be shared between those that clone it)
    pub fn share_in_store(
        &self,
        store: &impl AsStoreRef,
        new_store: &mut impl AsStoreMut,
    ) -> Result<Self, MemoryError> {
        if !self.ty(store).shared {
            // We should only be able to duplicate in a new store if the memory is shared
            return Err(MemoryError::InvalidMemory {
                reason: "memory is not a shared memory type".to_string(),
            });
        }
        self.0
            .try_clone(&store)
            .map(|new_memory| Self::new_from_existing(new_store, new_memory))
    }

    /// Get a [`SharedMemory`].
    ///
    /// Only returns `Some(_)` if the memory is shared, and if the target
    /// backend supports shared memory operations.
    ///
    /// See [`SharedMemory`] and its methods for more information.
    pub fn as_shared(&self, store: &impl AsStoreRef) -> Option<SharedMemory> {
        if !self.ty(store).shared {
            return None;
        }
        self.0.as_shared(store)
    }

    /// To `VMExtern`.
    pub(crate) fn to_vm_extern(&self) -> VMExtern {
        self.0.to_vm_extern()
    }
}

impl std::cmp::Eq for Memory {}

impl<'a> Exportable<'a> for Memory {
    fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
        match _extern {
            Extern::Memory(memory) => Ok(memory),
            _ => Err(ExportError::IncompatibleType),
        }
    }
}

/// Location in a WebAssembly memory.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct MemoryLocation {
    // NOTE: must be expanded to an enum that also supports 64bit memory in
    // the future
    // That's why this is private.
    pub(crate) address: u32,
}

impl MemoryLocation {
    /// Create a new memory location for a 32bit memory.
    pub fn new_32(address: u32) -> Self {
        Self { address }
    }
}

impl From<u32> for MemoryLocation {
    fn from(value: u32) -> Self {
        Self::new_32(value)
    }
}

/// See [`SharedMemory`].
pub(crate) trait SharedMemoryOps {
    /// See [`SharedMemory::disable_atomics`].
    fn disable_atomics(&self) -> Result<(), MemoryError> {
        Err(MemoryError::AtomicsNotSupported)
    }

    /// See [`SharedMemory::wake_all_atomic_waiters`].
    fn wake_all_atomic_waiters(&self) -> Result<(), MemoryError> {
        Err(MemoryError::AtomicsNotSupported)
    }

    /// See [`SharedMemory::notify`].
    fn notify(&self, _dst: MemoryLocation, _count: u32) -> Result<u32, AtomicsError> {
        Err(AtomicsError::Unimplemented)
    }

    /// See [`SharedMemory::wait`].
    fn wait(
        &self,
        _dst: MemoryLocation,
        _timeout: Option<std::time::Duration>,
    ) -> Result<u32, AtomicsError> {
        Err(AtomicsError::Unimplemented)
    }
}

/// A handle that exposes operations only relevant for shared memories.
///
/// Enables interaction independent from the [`crate::Store`], and thus allows calling
/// some methods an instane is running.
///
/// **NOTE**: Not all methods are supported by all backends.
#[derive(Clone)]
pub struct SharedMemory {
    memory: Memory,
    ops: std::sync::Arc<dyn SharedMemoryOps + Send + Sync>,
}

impl std::fmt::Debug for SharedMemory {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("SharedMemory").finish()
    }
}

impl SharedMemory {
    /// Get the underlying memory.
    pub fn memory(&self) -> &Memory {
        &self.memory
    }

    /// Create a new handle from ops.
    #[allow(unused)]
    pub(crate) fn new(memory: Memory, ops: impl SharedMemoryOps + Send + Sync + 'static) -> Self {
        Self {
            memory,
            ops: std::sync::Arc::new(ops),
        }
    }

    /// Notify up to `count` waiters waiting for the memory location.
    pub fn notify(&self, location: MemoryLocation, count: u32) -> Result<u32, AtomicsError> {
        self.ops.notify(location, count)
    }

    /// Wait for the memory location to be notified.
    pub fn wait(
        &self,
        location: MemoryLocation,
        timeout: Option<std::time::Duration>,
    ) -> Result<u32, AtomicsError> {
        self.ops.wait(location, timeout)
    }

    /// Disable atomics for this memory.
    ///
    /// All subsequent atomic wait calls will produce a trap.
    ///
    /// This can be used or forced shutdown of instances that continuously try
    /// to wait on atomics.
    ///
    /// NOTE: this operation might not be supported by all memory implementations.
    /// In that case, this function will return an error.
    pub fn disable_atomics(&self) -> Result<(), MemoryError> {
        self.ops.disable_atomics()
    }

    /// Wake up all atomic waiters.
    ///
    /// This can be used to force-resume waiting execution.
    ///
    /// NOTE: this operation might not be supported by all memory implementations.
    /// In that case, this function will return an error.
    pub fn wake_all_atomic_waiters(&self) -> Result<(), MemoryError> {
        self.ops.wake_all_atomic_waiters()
    }
}

/// Underlying buffer for a memory.
#[derive(Debug, Copy, Clone)]
pub(crate) struct MemoryBuffer<'a>(pub(crate) memory_impl::MemoryBuffer<'a>);

impl<'a> MemoryBuffer<'a> {
    #[allow(unused)]
    pub(crate) fn read(&self, offset: u64, buf: &mut [u8]) -> Result<(), MemoryAccessError> {
        self.0.read(offset, buf)
    }

    #[allow(unused)]
    pub(crate) fn read_uninit<'b>(
        &self,
        offset: u64,
        buf: &'b mut [MaybeUninit<u8>],
    ) -> Result<&'b mut [u8], MemoryAccessError> {
        self.0.read_uninit(offset, buf)
    }

    #[allow(unused)]
    pub(crate) fn write(&self, offset: u64, data: &[u8]) -> Result<(), MemoryAccessError> {
        self.0.write(offset, data)
    }
}