1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
//! Types relating to type information provided by validation.
use super::{component::ComponentState, core::Module};
use crate::{
ComponentExport, ComponentImport, Export, ExternalKind, FuncType, GlobalType, Import,
MemoryType, PrimitiveValType, TableType, TypeRef, ValType,
};
use ::alloc::borrow::ToOwned;
use ::alloc::boxed::Box;
use ::alloc::collections::BTreeMap;
use ::alloc::string::String as Url;
use ::alloc::string::String;
use ::alloc::string::ToString;
use ::alloc::sync::Arc;
use ::alloc::vec::Vec;
use ::core::{
borrow::Borrow,
fmt,
hash::{Hash, Hasher},
mem,
ops::{Deref, DerefMut},
};
use indexmap::{IndexMap, IndexSet};
/// The maximum number of parameters in the canonical ABI that can be passed by value.
///
/// Functions that exceed this limit will instead pass parameters indirectly from
/// linear memory via a single pointer parameter.
const MAX_FLAT_FUNC_PARAMS: usize = 16;
/// The maximum number of results in the canonical ABI that can be returned by a function.
///
/// Functions that exceed this limit have their results written to linear memory via an
/// additional pointer parameter (imports) or return a single pointer value (exports).
const MAX_FLAT_FUNC_RESULTS: usize = 1;
/// The maximum lowered types, including a possible type for a return pointer parameter.
const MAX_LOWERED_TYPES: usize = MAX_FLAT_FUNC_PARAMS + 1;
/// Represents a kebab string slice used in validation.
///
/// This is a wrapper around `str` that ensures the slice is
/// a valid kebab case string according to the component model
/// specification.
///
/// It also provides an equality and hashing implementation
/// that ignores ASCII case.
#[derive(Debug, Eq, Ord)]
#[repr(transparent)]
pub struct KebabStr(str);
impl KebabStr {
/// Creates a new kebab string slice.
///
/// Returns `None` if the given string is not a valid kebab string.
pub fn new<'a>(s: impl AsRef<str> + 'a) -> Option<&'a Self> {
let s = Self::new_unchecked(s);
if s.is_kebab_case() {
Some(s)
} else {
None
}
}
pub(crate) fn new_unchecked<'a>(s: impl AsRef<str> + 'a) -> &'a Self {
// Safety: `KebabStr` is a transparent wrapper around `str`
// Therefore transmuting `&str` to `&KebabStr` is safe.
unsafe { ::core::mem::transmute::<_, &Self>(s.as_ref()) }
}
/// Gets the underlying string slice.
pub fn as_str(&self) -> &str {
&self.0
}
/// Converts the slice to an owned string.
pub fn to_kebab_string(&self) -> KebabString {
KebabString(self.to_string())
}
fn is_kebab_case(&self) -> bool {
let mut lower = false;
let mut upper = false;
for c in self.chars() {
match c {
'a'..='z' if !lower && !upper => lower = true,
'A'..='Z' if !lower && !upper => upper = true,
'a'..='z' if lower => {}
'A'..='Z' if upper => {}
'0'..='9' if lower || upper => {}
'-' if lower || upper => {
lower = false;
upper = false;
}
_ => return false,
}
}
!self.is_empty() && !self.ends_with('-')
}
}
impl Deref for KebabStr {
type Target = str;
fn deref(&self) -> &str {
self.as_str()
}
}
impl PartialOrd for KebabStr {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
if self.eq(other) {
return Some(core::cmp::Ordering::Equal);
}
self.0.partial_cmp(&other.0)
}
}
impl PartialOrd<KebabString> for KebabStr {
fn partial_cmp(&self, other: &KebabString) -> Option<core::cmp::Ordering> {
self.partial_cmp(other.as_kebab_str())
}
}
impl PartialEq for KebabStr {
fn eq(&self, other: &Self) -> bool {
if self.len() != other.len() {
return false;
}
self.chars()
.zip(other.chars())
.all(|(a, b)| a.to_ascii_lowercase() == b.to_ascii_lowercase())
}
}
impl PartialEq<KebabString> for KebabStr {
fn eq(&self, other: &KebabString) -> bool {
self.eq(other.as_kebab_str())
}
}
impl Hash for KebabStr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for b in self.chars() {
b.to_ascii_lowercase().hash(state);
}
}
}
impl fmt::Display for KebabStr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(self as &str).fmt(f)
}
}
impl ToOwned for KebabStr {
type Owned = KebabString;
fn to_owned(&self) -> Self::Owned {
self.to_kebab_string()
}
}
/// Represents an owned kebab string for validation.
///
/// This is a wrapper around `String` that ensures the string is
/// a valid kebab case string according to the component model
/// specification.
///
/// It also provides an equality and hashing implementation
/// that ignores ASCII case.
#[derive(Debug, Clone, Eq, Ord)]
pub struct KebabString(String);
impl KebabString {
/// Creates a new kebab string.
///
/// Returns `None` if the given string is not a valid kebab string.
pub fn new(s: impl Into<String>) -> Option<Self> {
let s = s.into();
if KebabStr::new(&s).is_some() {
Some(Self(s))
} else {
None
}
}
/// Gets the underlying string.
pub fn as_str(&self) -> &str {
self.0.as_str()
}
/// Converts the kebab string to a kebab string slice.
pub fn as_kebab_str(&self) -> &KebabStr {
// Safety: internal string is always valid kebab-case
KebabStr::new_unchecked(self.as_str())
}
}
impl Deref for KebabString {
type Target = KebabStr;
fn deref(&self) -> &Self::Target {
self.as_kebab_str()
}
}
impl Borrow<KebabStr> for KebabString {
fn borrow(&self) -> &KebabStr {
self.as_kebab_str()
}
}
impl PartialOrd for KebabString {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.as_kebab_str().partial_cmp(other.as_kebab_str())
}
}
impl PartialOrd<KebabStr> for KebabString {
fn partial_cmp(&self, other: &KebabStr) -> Option<core::cmp::Ordering> {
self.as_kebab_str().partial_cmp(other)
}
}
impl PartialEq for KebabString {
fn eq(&self, other: &Self) -> bool {
self.as_kebab_str().eq(other.as_kebab_str())
}
}
impl PartialEq<KebabStr> for KebabString {
fn eq(&self, other: &KebabStr) -> bool {
self.as_kebab_str().eq(other)
}
}
impl Hash for KebabString {
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_kebab_str().hash(state)
}
}
impl fmt::Display for KebabString {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_kebab_str().fmt(f)
}
}
impl From<KebabString> for String {
fn from(s: KebabString) -> String {
s.0
}
}
/// A simple alloc-free list of types used for calculating lowered function signatures.
pub(crate) struct LoweredTypes {
types: [ValType; MAX_LOWERED_TYPES],
len: usize,
max: usize,
}
impl LoweredTypes {
fn new(max: usize) -> Self {
assert!(max <= MAX_LOWERED_TYPES);
Self {
types: [ValType::I32; MAX_LOWERED_TYPES],
len: 0,
max,
}
}
fn len(&self) -> usize {
self.len
}
fn maxed(&self) -> bool {
self.len == self.max
}
fn get_mut(&mut self, index: usize) -> Option<&mut ValType> {
if index < self.len {
Some(&mut self.types[index])
} else {
None
}
}
fn push(&mut self, ty: ValType) -> bool {
if self.maxed() {
return false;
}
self.types[self.len] = ty;
self.len += 1;
true
}
fn clear(&mut self) {
self.len = 0;
}
pub fn as_slice(&self) -> &[ValType] {
&self.types[..self.len]
}
pub fn iter(&self) -> impl Iterator<Item = ValType> + '_ {
self.as_slice().iter().copied()
}
}
/// Represents information about a component function type lowering.
pub(crate) struct LoweringInfo {
pub(crate) params: LoweredTypes,
pub(crate) results: LoweredTypes,
pub(crate) requires_memory: bool,
pub(crate) requires_realloc: bool,
}
impl LoweringInfo {
pub(crate) fn into_func_type(self) -> FuncType {
FuncType::new(
self.params.as_slice().iter().copied(),
self.results.as_slice().iter().copied(),
)
}
}
impl Default for LoweringInfo {
fn default() -> Self {
Self {
params: LoweredTypes::new(MAX_FLAT_FUNC_PARAMS),
results: LoweredTypes::new(MAX_FLAT_FUNC_RESULTS),
requires_memory: false,
requires_realloc: false,
}
}
}
fn push_primitive_wasm_types(ty: &PrimitiveValType, lowered_types: &mut LoweredTypes) -> bool {
match ty {
PrimitiveValType::Bool
| PrimitiveValType::S8
| PrimitiveValType::U8
| PrimitiveValType::S16
| PrimitiveValType::U16
| PrimitiveValType::S32
| PrimitiveValType::U32
| PrimitiveValType::Char => lowered_types.push(ValType::I32),
PrimitiveValType::S64 | PrimitiveValType::U64 => lowered_types.push(ValType::I64),
PrimitiveValType::Float32 => lowered_types.push(ValType::F32),
PrimitiveValType::Float64 => lowered_types.push(ValType::F64),
PrimitiveValType::String => {
lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32)
}
}
}
/// Represents a unique identifier for a type known to a [`crate::Validator`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TypeId {
/// The index into the global list of types.
pub(crate) index: usize,
/// The effective type size for the type.
///
/// This is stored as part of the ID to avoid having to recurse through
/// the global type list when calculating type sizes.
pub(crate) type_size: u32,
/// A unique integer assigned to this type.
///
/// The purpose of this field is to ensure that two different `TypeId`
/// representations can be handed out for two different aliased types within
/// a component that actually point to the same underlying type (as pointed
/// to by the `index` field).
unique_id: u32,
}
// The size of `TypeId` was seen to have a large-ish impact in #844, so this
// assert ensures that it stays relatively small.
const _: () = {
assert!(::core::mem::size_of::<TypeId>() <= 16);
};
/// A unified type definition for validating WebAssembly modules and components.
#[derive(Debug)]
pub enum Type {
/// The definition is for a core function type.
Func(FuncType),
/// The definition is for a core module type.
///
/// This variant is only supported when parsing a component.
Module(ModuleType),
/// The definition is for a core module instance type.
///
/// This variant is only supported when parsing a component.
Instance(InstanceType),
/// The definition is for a component type.
///
/// This variant is only supported when parsing a component.
Component(ComponentType),
/// The definition is for a component instance type.
///
/// This variant is only supported when parsing a component.
ComponentInstance(ComponentInstanceType),
/// The definition is for a component function type.
///
/// This variant is only supported when parsing a component.
ComponentFunc(ComponentFuncType),
/// The definition is for a component defined type.
///
/// This variant is only supported when parsing a component.
Defined(ComponentDefinedType),
}
impl Type {
/// Converts the type to a core function type.
pub fn as_func_type(&self) -> Option<&FuncType> {
match self {
Self::Func(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a core module type.
pub fn as_module_type(&self) -> Option<&ModuleType> {
match self {
Self::Module(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a core module instance type.
pub fn as_instance_type(&self) -> Option<&InstanceType> {
match self {
Self::Instance(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a component type.
pub fn as_component_type(&self) -> Option<&ComponentType> {
match self {
Self::Component(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a component instance type.
pub fn as_component_instance_type(&self) -> Option<&ComponentInstanceType> {
match self {
Self::ComponentInstance(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a component function type.
pub fn as_component_func_type(&self) -> Option<&ComponentFuncType> {
match self {
Self::ComponentFunc(ty) => Some(ty),
_ => None,
}
}
/// Converts the type to a component defined type.
pub fn as_defined_type(&self) -> Option<&ComponentDefinedType> {
match self {
Self::Defined(ty) => Some(ty),
_ => None,
}
}
pub(crate) fn type_size(&self) -> u32 {
match self {
Self::Func(ty) => 1 + (ty.params().len() + ty.results().len()) as u32,
Self::Module(ty) => ty.type_size,
Self::Instance(ty) => ty.type_size,
Self::Component(ty) => ty.type_size,
Self::ComponentInstance(ty) => ty.type_size,
Self::ComponentFunc(ty) => ty.type_size,
Self::Defined(ty) => ty.type_size(),
}
}
}
/// A component value type.
#[derive(Debug, Clone, Copy)]
pub enum ComponentValType {
/// The value type is one of the primitive types.
Primitive(PrimitiveValType),
/// The type is represented with the given type identifier.
Type(TypeId),
}
impl ComponentValType {
pub(crate) fn requires_realloc(&self, types: &TypeList) -> bool {
match self {
ComponentValType::Primitive(ty) => ty.requires_realloc(),
ComponentValType::Type(ty) => types[*ty]
.as_defined_type()
.unwrap()
.requires_realloc(types),
}
}
/// Determines if component value type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
match (a, b) {
(ComponentValType::Primitive(a), ComponentValType::Primitive(b)) => {
PrimitiveValType::is_subtype_of(*a, *b)
}
(ComponentValType::Type(a), ComponentValType::Type(b)) => {
ComponentDefinedType::internal_is_subtype_of(
at[*a].as_defined_type().unwrap(),
at,
bt[*b].as_defined_type().unwrap(),
bt,
)
}
(ComponentValType::Primitive(a), ComponentValType::Type(b)) => {
match bt[*b].as_defined_type().unwrap() {
ComponentDefinedType::Primitive(b) => PrimitiveValType::is_subtype_of(*a, *b),
_ => false,
}
}
(ComponentValType::Type(a), ComponentValType::Primitive(b)) => {
match at[*a].as_defined_type().unwrap() {
ComponentDefinedType::Primitive(a) => PrimitiveValType::is_subtype_of(*a, *b),
_ => false,
}
}
}
}
fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
match self {
Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
Self::Type(id) => types[*id]
.as_defined_type()
.unwrap()
.push_wasm_types(types, lowered_types),
}
}
pub(crate) fn type_size(&self) -> u32 {
match self {
Self::Primitive(_) => 1,
Self::Type(id) => id.type_size,
}
}
}
/// The entity type for imports and exports of a module.
#[derive(Debug, Clone, Copy)]
pub enum EntityType {
/// The entity is a function.
Func(TypeId),
/// The entity is a table.
Table(TableType),
/// The entity is a memory.
Memory(MemoryType),
/// The entity is a global.
Global(GlobalType),
/// The entity is a tag.
Tag(TypeId),
}
impl EntityType {
/// Determines if entity type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
macro_rules! limits_match {
($a:expr, $b:expr) => {{
let a = $a;
let b = $b;
a.initial >= b.initial
&& match b.maximum {
Some(b_max) => match a.maximum {
Some(a_max) => a_max <= b_max,
None => false,
},
None => true,
}
}};
}
match (a, b) {
(EntityType::Func(a), EntityType::Func(b)) => {
at[*a].as_func_type().unwrap() == bt[*b].as_func_type().unwrap()
}
(EntityType::Table(a), EntityType::Table(b)) => {
a.element_type == b.element_type && limits_match!(a, b)
}
(EntityType::Memory(a), EntityType::Memory(b)) => {
a.shared == b.shared && a.memory64 == b.memory64 && limits_match!(a, b)
}
(EntityType::Global(a), EntityType::Global(b)) => a == b,
(EntityType::Tag(a), EntityType::Tag(b)) => {
at[*a].as_func_type().unwrap() == bt[*b].as_func_type().unwrap()
}
_ => false,
}
}
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Func(_) => "function",
Self::Table(_) => "table",
Self::Memory(_) => "memory",
Self::Global(_) => "global",
Self::Tag(_) => "tag",
}
}
pub(crate) fn type_size(&self) -> u32 {
match self {
Self::Func(id) | Self::Tag(id) => id.type_size,
Self::Table(_) | Self::Memory(_) | Self::Global(_) => 1,
}
}
}
trait ModuleImportKey {
fn module(&self) -> &str;
fn name(&self) -> &str;
}
impl<'a> Borrow<dyn ModuleImportKey + 'a> for (String, String) {
fn borrow(&self) -> &(dyn ModuleImportKey + 'a) {
self
}
}
impl Hash for (dyn ModuleImportKey + '_) {
fn hash<H: Hasher>(&self, state: &mut H) {
self.module().hash(state);
self.name().hash(state);
}
}
impl PartialOrd for (dyn ModuleImportKey + '_) {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for (dyn ModuleImportKey + '_) {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.module()
.cmp(other.module())
.then(self.name().cmp(other.name()))
}
}
impl PartialEq for (dyn ModuleImportKey + '_) {
fn eq(&self, other: &Self) -> bool {
self.module() == other.module() && self.name() == other.name()
}
}
impl Eq for (dyn ModuleImportKey + '_) {}
impl ModuleImportKey for (String, String) {
fn module(&self) -> &str {
&self.0
}
fn name(&self) -> &str {
&self.1
}
}
impl ModuleImportKey for (&str, &str) {
fn module(&self) -> &str {
self.0
}
fn name(&self) -> &str {
self.1
}
}
/// Represents a core module type.
#[derive(Debug, Clone)]
pub struct ModuleType {
/// The effective type size for the module type.
pub(crate) type_size: u32,
/// The imports of the module type.
pub imports: IndexMap<(String, String), EntityType>,
/// The exports of the module type.
pub exports: IndexMap<String, EntityType>,
}
impl ModuleType {
/// Looks up an import by its module and name.
///
/// Returns `None` if the import was not found.
pub fn lookup_import(&self, module: &str, name: &str) -> Option<&EntityType> {
self.imports.get(&(module, name) as &dyn ModuleImportKey)
}
/// Determines if module type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
// For module type subtyping, all exports in the other module type
// must be present in this module type's exports (i.e. it can export
// *more* than what this module type needs).
// However, for imports, the check is reversed (i.e. it is okay
// to import *less* than what this module type needs).
a.imports.iter().all(|(k, a)| match b.imports.get(k) {
Some(b) => EntityType::internal_is_subtype_of(b, bt, a, at),
None => false,
}) && b.exports.iter().all(|(k, b)| match a.exports.get(k) {
Some(a) => EntityType::internal_is_subtype_of(a, at, b, bt),
None => false,
})
}
}
/// Represents the kind of module instance type.
#[derive(Debug, Clone)]
pub enum InstanceTypeKind {
/// The instance type is the result of instantiating a module type.
Instantiated(TypeId),
/// The instance type is the result of instantiating from exported items.
Exports(IndexMap<String, EntityType>),
}
/// Represents a module instance type.
#[derive(Debug, Clone)]
pub struct InstanceType {
/// The effective type size for the module instance type.
pub(crate) type_size: u32,
/// The kind of module instance type.
pub kind: InstanceTypeKind,
}
impl InstanceType {
/// Gets the exports of the instance type.
pub fn exports<'a>(&'a self, types: TypesRef<'a>) -> &'a IndexMap<String, EntityType> {
self.internal_exports(types.list)
}
pub(crate) fn internal_exports<'a>(
&'a self,
types: &'a TypeList,
) -> &'a IndexMap<String, EntityType> {
match &self.kind {
InstanceTypeKind::Instantiated(id) => &types[*id].as_module_type().unwrap().exports,
InstanceTypeKind::Exports(exports) => exports,
}
}
}
/// The entity type for imports and exports of a component.
#[derive(Debug, Clone, Copy)]
pub enum ComponentEntityType {
/// The entity is a core module.
Module(TypeId),
/// The entity is a function.
Func(TypeId),
/// The entity is a value.
Value(ComponentValType),
/// The entity is a type.
Type {
/// This is the identifier of the type that was referenced when this
/// entity was created.
referenced: TypeId,
/// This is the identifier of the type that was created when this type
/// was imported or exported from the component.
///
/// Note that the underlying type information for the `referenced`
/// field and for this `created` field is the same, but these two types
/// will hash to different values.
created: TypeId,
},
/// The entity is a component instance.
Instance(TypeId),
/// The entity is a component.
Component(TypeId),
}
impl ComponentEntityType {
/// Determines if component entity type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
match (a, b) {
(Self::Module(a), Self::Module(b)) => ModuleType::internal_is_subtype_of(
at[*a].as_module_type().unwrap(),
at,
bt[*b].as_module_type().unwrap(),
bt,
),
(Self::Func(a), Self::Func(b)) => ComponentFuncType::internal_is_subtype_of(
at[*a].as_component_func_type().unwrap(),
at,
bt[*b].as_component_func_type().unwrap(),
bt,
),
(Self::Value(a), Self::Value(b)) => {
ComponentValType::internal_is_subtype_of(a, at, b, bt)
}
(Self::Type { referenced: a, .. }, Self::Type { referenced: b, .. }) => {
ComponentDefinedType::internal_is_subtype_of(
at[*a].as_defined_type().unwrap(),
at,
bt[*b].as_defined_type().unwrap(),
bt,
)
}
(Self::Instance(a), Self::Instance(b)) => {
ComponentInstanceType::internal_is_subtype_of(
at[*a].as_component_instance_type().unwrap(),
at,
bt[*b].as_component_instance_type().unwrap(),
bt,
)
}
(Self::Component(a), Self::Component(b)) => ComponentType::internal_is_subtype_of(
at[*a].as_component_type().unwrap(),
at,
bt[*b].as_component_type().unwrap(),
bt,
),
_ => false,
}
}
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Module(_) => "module",
Self::Func(_) => "function",
Self::Value(_) => "value",
Self::Type { .. } => "type",
Self::Instance(_) => "instance",
Self::Component(_) => "component",
}
}
pub(crate) fn type_size(&self) -> u32 {
match self {
Self::Module(ty)
| Self::Func(ty)
| Self::Type { referenced: ty, .. }
| Self::Instance(ty)
| Self::Component(ty) => ty.type_size,
Self::Value(ty) => ty.type_size(),
}
}
}
/// Represents a type of a component.
#[derive(Debug, Clone)]
pub struct ComponentType {
/// The effective type size for the component type.
pub(crate) type_size: u32,
/// The imports of the component type.
pub imports: IndexMap<KebabString, (Option<Url>, ComponentEntityType)>,
/// The exports of the component type.
pub exports: IndexMap<KebabString, (Option<Url>, ComponentEntityType)>,
}
impl ComponentType {
/// Determines if component type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
// For component type subtyping, all exports in the other component type
// must be present in this component type's exports (i.e. it can export
// *more* than what this component type needs).
// However, for imports, the check is reversed (i.e. it is okay
// to import *less* than what this component type needs).
a.imports.iter().all(|(k, (_, a))| match b.imports.get(k) {
Some((_, b)) => ComponentEntityType::internal_is_subtype_of(b, bt, a, at),
None => false,
}) && b.exports.iter().all(|(k, (_, b))| match a.exports.get(k) {
Some((_, a)) => ComponentEntityType::internal_is_subtype_of(a, at, b, bt),
None => false,
})
}
}
/// Represents the kind of a component instance.
#[derive(Debug, Clone)]
pub enum ComponentInstanceTypeKind {
/// The instance type is from a definition.
Defined(IndexMap<KebabString, (Option<Url>, ComponentEntityType)>),
/// The instance type is the result of instantiating a component type.
Instantiated(TypeId),
/// The instance type is the result of instantiating from exported items.
Exports(IndexMap<KebabString, (Option<Url>, ComponentEntityType)>),
}
/// Represents a type of a component instance.
#[derive(Debug, Clone)]
pub struct ComponentInstanceType {
/// The effective type size for the instance type.
pub(crate) type_size: u32,
/// The kind of instance type.
pub kind: ComponentInstanceTypeKind,
}
impl ComponentInstanceType {
/// Gets the exports of the instance type.
pub fn exports<'a>(
&'a self,
types: TypesRef<'a>,
) -> impl ExactSizeIterator<Item = (&'a KebabStr, &'a Option<Url>, ComponentEntityType)> + Clone
{
self.internal_exports(types.list)
.iter()
.map(|(n, (u, t))| (n.as_kebab_str(), u, *t))
}
pub(crate) fn internal_exports<'a>(
&'a self,
types: &'a TypeList,
) -> &'a IndexMap<KebabString, (Option<Url>, ComponentEntityType)> {
match &self.kind {
ComponentInstanceTypeKind::Defined(exports)
| ComponentInstanceTypeKind::Exports(exports) => exports,
ComponentInstanceTypeKind::Instantiated(id) => {
&types[*id].as_component_type().unwrap().exports
}
}
}
/// Determines if component instance type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
let exports = a.internal_exports(at);
// For instance type subtyping, all exports in the other instance type
// must be present in this instance type's exports (i.e. it can export
// *more* than what this instance type needs).
b.internal_exports(bt)
.iter()
.all(|(k, (_, b))| match exports.get(k) {
Some((_, a)) => ComponentEntityType::internal_is_subtype_of(a, at, b, bt),
None => false,
})
}
}
/// Represents a type of a component function.
#[derive(Debug, Clone)]
pub struct ComponentFuncType {
/// The effective type size for the component function type.
pub(crate) type_size: u32,
/// The function parameters.
pub params: Box<[(KebabString, ComponentValType)]>,
/// The function's results.
pub results: Box<[(Option<KebabString>, ComponentValType)]>,
}
impl ComponentFuncType {
/// Determines if component function type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
// Note that this intentionally diverges from the upstream specification
// in terms of subtyping. This is a full type-equality check which
// ensures that the structure of `a` exactly matches the structure of
// `b`. The rationale for this is:
//
// * Primarily in Wasmtime subtyping based on function types is not
// implemented. This includes both subtyping a host import and
// additionally handling subtyping as functions cross component
// boundaries. The host import subtyping (or component export
// subtyping) is not clear how to handle at all at this time. The
// subtyping of functions between components can more easily be
// handled by extending the `fact` compiler, but that hasn't been done
// yet.
//
// * The upstream specification is currently pretty intentionally vague
// precisely what subtyping is allowed. Implementing a strict check
// here is intended to be a conservative starting point for the
// component model which can be extended in the future if necessary.
//
// * The interaction with subtyping on bindings generation, for example,
// is a tricky problem that doesn't have a clear answer at this time.
// Effectively this is more rationale for being conservative in the
// first pass of the component model.
//
// So, in conclusion, the test here (and other places that reference
// this comment) is for exact type equality with no differences.
a.params.len() == b.params.len()
&& a.results.len() == b.results.len()
&& a.params
.iter()
.zip(b.params.iter())
.all(|((an, a), (bn, b))| {
an == bn && ComponentValType::internal_is_subtype_of(a, at, b, bt)
})
&& a.results
.iter()
.zip(b.results.iter())
.all(|((an, a), (bn, b))| {
an == bn && ComponentValType::internal_is_subtype_of(a, at, b, bt)
})
}
/// Lowers the component function type to core parameter and result types for the
/// canonical ABI.
pub(crate) fn lower(&self, types: &TypeList, import: bool) -> LoweringInfo {
let mut info = LoweringInfo::default();
for (_, ty) in self.params.iter() {
// When `import` is false, it means we're lifting a core function,
// check if the parameters needs realloc
if !import && !info.requires_realloc {
info.requires_realloc = ty.requires_realloc(types);
}
if !ty.push_wasm_types(types, &mut info.params) {
// Too many parameters to pass directly
// Function will have a single pointer parameter to pass the arguments
// via linear memory
info.params.clear();
assert!(info.params.push(ValType::I32));
info.requires_memory = true;
// We need realloc as well when lifting a function
if !import {
info.requires_realloc = true;
}
break;
}
}
for (_, ty) in self.results.iter() {
// When `import` is true, it means we're lowering a component function,
// check if the result needs realloc
if import && !info.requires_realloc {
info.requires_realloc = ty.requires_realloc(types);
}
if !ty.push_wasm_types(types, &mut info.results) {
// Too many results to return directly, either a retptr parameter will be used (import)
// or a single pointer will be returned (export)
info.results.clear();
if import {
info.params.max = MAX_LOWERED_TYPES;
assert!(info.params.push(ValType::I32));
} else {
assert!(info.results.push(ValType::I32));
}
info.requires_memory = true;
break;
}
}
// Memory is always required when realloc is required
info.requires_memory |= info.requires_realloc;
info
}
}
/// Represents a variant case.
#[derive(Debug, Clone)]
pub struct VariantCase {
/// The variant case type.
pub ty: Option<ComponentValType>,
/// The name of the variant case refined by this one.
pub refines: Option<KebabString>,
}
/// Represents a record type.
#[derive(Debug, Clone)]
pub struct RecordType {
/// The effective type size for the record type.
pub(crate) type_size: u32,
/// The map of record fields.
pub fields: IndexMap<KebabString, ComponentValType>,
}
/// Represents a variant type.
#[derive(Debug, Clone)]
pub struct VariantType {
/// The effective type size for the variant type.
pub(crate) type_size: u32,
/// The map of variant cases.
pub cases: IndexMap<KebabString, VariantCase>,
}
/// Represents a tuple type.
#[derive(Debug, Clone)]
pub struct TupleType {
/// The effective type size for the tuple type.
pub(crate) type_size: u32,
/// The types of the tuple.
pub types: Box<[ComponentValType]>,
}
/// Represents a union type.
#[derive(Debug, Clone)]
pub struct UnionType {
/// The inclusive type count for the union type.
pub(crate) type_size: u32,
/// The types of the union.
pub types: Box<[ComponentValType]>,
}
/// Represents a component defined type.
#[derive(Debug, Clone)]
pub enum ComponentDefinedType {
/// The type is a primitive value type.
Primitive(PrimitiveValType),
/// The type is a record.
Record(RecordType),
/// The type is a variant.
Variant(VariantType),
/// The type is a list.
List(ComponentValType),
/// The type is a tuple.
Tuple(TupleType),
/// The type is a set of flags.
Flags(IndexSet<KebabString>),
/// The type is an enumeration.
Enum(IndexSet<KebabString>),
/// The type is a union.
Union(UnionType),
/// The type is an `option`.
Option(ComponentValType),
/// The type is a `result`.
Result {
/// The `ok` type.
ok: Option<ComponentValType>,
/// The `error` type.
err: Option<ComponentValType>,
},
}
impl ComponentDefinedType {
pub(crate) fn requires_realloc(&self, types: &TypeList) -> bool {
match self {
Self::Primitive(ty) => ty.requires_realloc(),
Self::Record(r) => r.fields.values().any(|ty| ty.requires_realloc(types)),
Self::Variant(v) => v.cases.values().any(|case| {
case.ty
.map(|ty| ty.requires_realloc(types))
.unwrap_or(false)
}),
Self::List(_) => true,
Self::Tuple(t) => t.types.iter().any(|ty| ty.requires_realloc(types)),
Self::Union(u) => u.types.iter().any(|ty| ty.requires_realloc(types)),
Self::Flags(_) | Self::Enum(_) => false,
Self::Option(ty) => ty.requires_realloc(types),
Self::Result { ok, err } => {
ok.map(|ty| ty.requires_realloc(types)).unwrap_or(false)
|| err.map(|ty| ty.requires_realloc(types)).unwrap_or(false)
}
}
}
/// Determines if component defined type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
Self::internal_is_subtype_of(a, at.list, b, bt.list)
}
pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
// Note that the implementation of subtyping here diverges from the
// upstream specification intentionally, see the documentation on
// function subtyping for more information.
match (a, b) {
(Self::Primitive(a), Self::Primitive(b)) => PrimitiveValType::is_subtype_of(*a, *b),
(Self::Record(a), Self::Record(b)) => {
a.fields.len() == b.fields.len()
&& a.fields
.iter()
.zip(b.fields.iter())
.all(|((aname, a), (bname, b))| {
aname == bname && ComponentValType::internal_is_subtype_of(a, at, b, bt)
})
}
(Self::Variant(a), Self::Variant(b)) => {
a.cases.len() == b.cases.len()
&& a.cases
.iter()
.zip(b.cases.iter())
.all(|((aname, a), (bname, b))| {
aname == bname
&& match (&a.ty, &b.ty) {
(Some(a), Some(b)) => {
ComponentValType::internal_is_subtype_of(a, at, b, bt)
}
(None, None) => true,
_ => false,
}
})
}
(Self::List(a), Self::List(b)) | (Self::Option(a), Self::Option(b)) => {
ComponentValType::internal_is_subtype_of(a, at, b, bt)
}
(Self::Tuple(a), Self::Tuple(b)) => {
if a.types.len() != b.types.len() {
return false;
}
a.types
.iter()
.zip(b.types.iter())
.all(|(a, b)| ComponentValType::internal_is_subtype_of(a, at, b, bt))
}
(Self::Union(a), Self::Union(b)) => {
if a.types.len() != b.types.len() {
return false;
}
a.types
.iter()
.zip(b.types.iter())
.all(|(a, b)| ComponentValType::internal_is_subtype_of(a, at, b, bt))
}
(Self::Flags(a), Self::Flags(b)) | (Self::Enum(a), Self::Enum(b)) => {
a.len() == b.len() && a.iter().eq(b.iter())
}
(Self::Result { ok: ao, err: ae }, Self::Result { ok: bo, err: be }) => {
Self::is_optional_subtype_of(*ao, at, *bo, bt)
&& Self::is_optional_subtype_of(*ae, at, *be, bt)
}
_ => false,
}
}
pub(crate) fn type_size(&self) -> u32 {
match self {
Self::Primitive(_) => 1,
Self::Flags(_) | Self::Enum(_) => 1,
Self::Record(r) => r.type_size,
Self::Variant(v) => v.type_size,
Self::Tuple(t) => t.type_size,
Self::Union(u) => u.type_size,
Self::List(ty) | Self::Option(ty) => ty.type_size(),
Self::Result { ok, err } => {
ok.map(|ty| ty.type_size()).unwrap_or(1) + err.map(|ty| ty.type_size()).unwrap_or(1)
}
}
}
fn is_optional_subtype_of(
a: Option<ComponentValType>,
at: &TypeList,
b: Option<ComponentValType>,
bt: &TypeList,
) -> bool {
match (a, b) {
(None, None) => true,
(Some(a), Some(b)) => ComponentValType::internal_is_subtype_of(&a, at, &b, bt),
_ => false,
}
}
fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
match self {
Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
Self::Record(r) => r
.fields
.iter()
.all(|(_, ty)| ty.push_wasm_types(types, lowered_types)),
Self::Variant(v) => Self::push_variant_wasm_types(
v.cases.iter().filter_map(|(_, case)| case.ty.as_ref()),
types,
lowered_types,
),
Self::List(_) => lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32),
Self::Tuple(t) => t
.types
.iter()
.all(|ty| ty.push_wasm_types(types, lowered_types)),
Self::Flags(names) => {
(0..(names.len() + 31) / 32).all(|_| lowered_types.push(ValType::I32))
}
Self::Enum(_) => lowered_types.push(ValType::I32),
Self::Union(u) => Self::push_variant_wasm_types(u.types.iter(), types, lowered_types),
Self::Option(ty) => {
Self::push_variant_wasm_types([ty].into_iter(), types, lowered_types)
}
Self::Result { ok, err } => {
Self::push_variant_wasm_types(ok.iter().chain(err.iter()), types, lowered_types)
}
}
}
fn push_variant_wasm_types<'a>(
cases: impl Iterator<Item = &'a ComponentValType>,
types: &TypeList,
lowered_types: &mut LoweredTypes,
) -> bool {
// Push the discriminant
if !lowered_types.push(ValType::I32) {
return false;
}
let start = lowered_types.len();
for ty in cases {
let mut temp = LoweredTypes::new(lowered_types.max);
if !ty.push_wasm_types(types, &mut temp) {
return false;
}
for (i, ty) in temp.iter().enumerate() {
match lowered_types.get_mut(start + i) {
Some(prev) => *prev = Self::join_types(*prev, ty),
None => {
if !lowered_types.push(ty) {
return false;
}
}
}
}
}
true
}
fn join_types(a: ValType, b: ValType) -> ValType {
use ValType::*;
match (a, b) {
(I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => a,
(I32, F32) | (F32, I32) => I32,
(_, I64 | F64) | (I64 | F64, _) => I64,
_ => panic!("unexpected wasm type for canonical ABI"),
}
}
}
#[allow(clippy::large_enum_variant)]
enum TypesKind {
Module(Arc<Module>),
Component(ComponentState),
}
/// Represents the types known to a [`crate::Validator`] once validation has completed.
///
/// The type information is returned via the [`crate::Validator::end`] method.
pub struct Types {
list: TypeList,
kind: TypesKind,
}
#[derive(Clone, Copy)]
enum TypesRefKind<'a> {
Module(&'a Module),
Component(&'a ComponentState),
}
/// Represents the types known to a [`crate::Validator`] during validation.
///
/// Retrieved via the [`crate::Validator::types`] method.
#[derive(Clone, Copy)]
pub struct TypesRef<'a> {
list: &'a TypeList,
kind: TypesRefKind<'a>,
}
impl<'a> TypesRef<'a> {
pub(crate) fn from_module(types: &'a TypeList, module: &'a Module) -> Self {
Self {
list: types,
kind: TypesRefKind::Module(module),
}
}
pub(crate) fn from_component(types: &'a TypeList, component: &'a ComponentState) -> Self {
Self {
list: types,
kind: TypesRefKind::Component(component),
}
}
fn types(&self, core: bool) -> Option<&'a [TypeId]> {
Some(match &self.kind {
TypesRefKind::Module(module) => {
if core {
&module.types
} else {
return None;
}
}
TypesRefKind::Component(component) => {
if core {
&component.core_types
} else {
&component.types
}
}
})
}
/// Gets a type based on its type id.
///
/// Returns `None` if the type id is unknown.
pub fn type_from_id(&self, id: TypeId) -> Option<&'a Type> {
self.list.get(id.index)
}
/// Gets a type id from a type index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn id_from_type_index(&self, index: u32, core: bool) -> Option<TypeId> {
self.types(core)?.get(index as usize).copied()
}
/// Gets a type at the given type index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn type_at(&self, index: u32, core: bool) -> Option<&'a Type> {
self.type_from_id(*self.types(core)?.get(index as usize)?)
}
/// Gets a defined core function type at the given type index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn func_type_at(&self, index: u32) -> Option<&'a FuncType> {
match self.type_at(index, true)? {
Type::Func(ty) => Some(ty),
_ => None,
}
}
/// Gets the type of a table at the given table index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn table_at(&self, index: u32) -> Option<TableType> {
let tables = match &self.kind {
TypesRefKind::Module(module) => &module.tables,
TypesRefKind::Component(component) => &component.core_tables,
};
tables.get(index as usize).copied()
}
/// Gets the type of a memory at the given memory index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn memory_at(&self, index: u32) -> Option<MemoryType> {
let memories = match &self.kind {
TypesRefKind::Module(module) => &module.memories,
TypesRefKind::Component(component) => &component.core_memories,
};
memories.get(index as usize).copied()
}
/// Gets the type of a global at the given global index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn global_at(&self, index: u32) -> Option<GlobalType> {
let globals = match &self.kind {
TypesRefKind::Module(module) => &module.globals,
TypesRefKind::Component(component) => &component.core_globals,
};
globals.get(index as usize).copied()
}
/// Gets the type of a tag at the given tag index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn tag_at(&self, index: u32) -> Option<&'a FuncType> {
let tags = match &self.kind {
TypesRefKind::Module(module) => &module.tags,
TypesRefKind::Component(component) => &component.core_tags,
};
Some(
self.list[*tags.get(index as usize)?]
.as_func_type()
.unwrap(),
)
}
/// Gets the type of a core function at the given function index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn function_at(&self, index: u32) -> Option<&'a FuncType> {
let id = match &self.kind {
TypesRefKind::Module(module) => {
&module.types[*module.functions.get(index as usize)? as usize]
}
TypesRefKind::Component(component) => component.core_funcs.get(index as usize)?,
};
match &self.list[*id] {
Type::Func(ty) => Some(ty),
_ => None,
}
}
/// Gets the type of an element segment at the given element segment index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn element_at(&self, index: u32) -> Option<ValType> {
match &self.kind {
TypesRefKind::Module(module) => module.element_types.get(index as usize).copied(),
TypesRefKind::Component(_) => None,
}
}
/// Gets the type of a component function at the given function index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn component_function_at(&self, index: u32) -> Option<&'a ComponentFuncType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => Some(
self.list[*component.funcs.get(index as usize)?]
.as_component_func_type()
.unwrap(),
),
}
}
/// Gets the type of a module at the given module index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn module_at(&self, index: u32) -> Option<&'a ModuleType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => Some(
self.list[*component.core_modules.get(index as usize)?]
.as_module_type()
.unwrap(),
),
}
}
/// Gets the type of a module instance at the given module instance index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn instance_at(&self, index: u32) -> Option<&'a InstanceType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => {
let id = component.core_instances.get(index as usize)?;
match &self.list[*id] {
Type::Instance(ty) => Some(ty),
_ => None,
}
}
}
}
/// Gets the type of a component at the given component index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn component_at(&self, index: u32) -> Option<&'a ComponentType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => Some(
self.list[*component.components.get(index as usize)?]
.as_component_type()
.unwrap(),
),
}
}
/// Gets the type of an component instance at the given component instance index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn component_instance_at(&self, index: u32) -> Option<&'a ComponentInstanceType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => {
let id = component.instances.get(index as usize)?;
match &self.list[*id] {
Type::ComponentInstance(ty) => Some(ty),
_ => None,
}
}
}
}
/// Gets the type of a value at the given value index.
///
/// Returns `None` if the type index is out of bounds or the type has not
/// been parsed yet.
pub fn value_at(&self, index: u32) -> Option<ComponentValType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => {
component.values.get(index as usize).map(|(r, _)| *r)
}
}
}
/// Gets the entity type for the given import.
pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match import.ty {
TypeRef::Func(idx) => EntityType::Func(*module.types.get(idx as usize)?),
TypeRef::Table(ty) => EntityType::Table(ty),
TypeRef::Memory(ty) => EntityType::Memory(ty),
TypeRef::Global(ty) => EntityType::Global(ty),
TypeRef::Tag(ty) => EntityType::Tag(*module.types.get(ty.func_type_idx as usize)?),
}),
TypesRefKind::Component(_) => None,
}
}
/// Gets the entity type from the given export.
pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match export.kind {
ExternalKind::Func => EntityType::Func(
module.types[*module.functions.get(export.index as usize)? as usize],
),
ExternalKind::Table => {
EntityType::Table(*module.tables.get(export.index as usize)?)
}
ExternalKind::Memory => {
EntityType::Memory(*module.memories.get(export.index as usize)?)
}
ExternalKind::Global => {
EntityType::Global(*module.globals.get(export.index as usize)?)
}
ExternalKind::Tag => EntityType::Tag(
module.types[*module.functions.get(export.index as usize)? as usize],
),
}),
TypesRefKind::Component(_) => None,
}
}
/// Gets the component entity type for the given component import.
pub fn component_entity_type_from_import(
&self,
import: &ComponentImport,
) -> Option<ComponentEntityType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => {
let key = KebabStr::new(import.name)?;
Some(component.imports.get(key)?.1)
}
}
}
/// Gets the component entity type from the given component export.
pub fn component_entity_type_from_export(
&self,
export: &ComponentExport,
) -> Option<ComponentEntityType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => {
let key = KebabStr::new(export.name)?;
Some(component.exports.get(key)?.1)
}
}
}
}
impl Types {
pub(crate) fn from_module(types: TypeList, module: Arc<Module>) -> Self {
Self {
list: types,
kind: TypesKind::Module(module),
}
}
pub(crate) fn from_component(types: TypeList, component: ComponentState) -> Self {
Self {
list: types,
kind: TypesKind::Component(component),
}
}
/// Gets a reference to this validation type information.
pub fn as_ref(&self) -> TypesRef {
TypesRef {
list: &self.list,
kind: match &self.kind {
TypesKind::Module(module) => TypesRefKind::Module(module),
TypesKind::Component(component) => TypesRefKind::Component(component),
},
}
}
/// Gets a type based on its type id.
///
/// Returns `None` if the type id is unknown.
pub fn type_from_id(&self, id: TypeId) -> Option<&Type> {
self.as_ref().type_from_id(id)
}
/// Gets a type id from a type index.
///
/// Returns `None` if the type index is out of bounds.
pub fn id_from_type_index(&self, index: u32, core: bool) -> Option<TypeId> {
self.as_ref().id_from_type_index(index, core)
}
/// Gets a type at the given type index.
///
/// Returns `None` if the index is out of bounds.
pub fn type_at(&self, index: u32, core: bool) -> Option<&Type> {
self.as_ref().type_at(index, core)
}
/// Gets a defined core function type at the given type index.
///
/// Returns `None` if the index is out of bounds.
pub fn func_type_at(&self, index: u32) -> Option<&FuncType> {
self.as_ref().func_type_at(index)
}
/// Gets the count of core types.
pub fn type_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.types.len(),
TypesKind::Component(component) => component.core_types.len(),
}
}
/// Gets the type of a table at the given table index.
///
/// Returns `None` if the index is out of bounds.
pub fn table_at(&self, index: u32) -> Option<TableType> {
self.as_ref().table_at(index)
}
/// Gets the count of imported and defined tables.
pub fn table_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.tables.len(),
TypesKind::Component(component) => component.core_tables.len(),
}
}
/// Gets the type of a memory at the given memory index.
///
/// Returns `None` if the index is out of bounds.
pub fn memory_at(&self, index: u32) -> Option<MemoryType> {
self.as_ref().memory_at(index)
}
/// Gets the count of imported and defined memories.
pub fn memory_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.memories.len(),
TypesKind::Component(component) => component.core_memories.len(),
}
}
/// Gets the type of a global at the given global index.
///
/// Returns `None` if the index is out of bounds.
pub fn global_at(&self, index: u32) -> Option<GlobalType> {
self.as_ref().global_at(index)
}
/// Gets the count of imported and defined globals.
pub fn global_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.globals.len(),
TypesKind::Component(component) => component.core_globals.len(),
}
}
/// Gets the type of a tag at the given tag index.
///
/// Returns `None` if the index is out of bounds.
pub fn tag_at(&self, index: u32) -> Option<&FuncType> {
self.as_ref().tag_at(index)
}
/// Gets the count of imported and defined tags.
pub fn tag_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.tags.len(),
TypesKind::Component(component) => component.core_tags.len(),
}
}
/// Gets the type of a core function at the given function index.
///
/// Returns `None` if the index is out of bounds.
pub fn function_at(&self, index: u32) -> Option<&FuncType> {
self.as_ref().function_at(index)
}
/// Gets the count of imported and defined core functions.
///
/// The count also includes aliased core functions in components.
pub fn function_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.functions.len(),
TypesKind::Component(component) => component.core_funcs.len(),
}
}
/// Gets the type of an element segment at the given element segment index.
///
/// Returns `None` if the index is out of bounds.
pub fn element_at(&self, index: u32) -> Option<ValType> {
self.as_ref().element_at(index)
}
/// Gets the count of element segments.
pub fn element_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.element_types.len(),
TypesKind::Component(_) => 0,
}
}
/// Gets the type of a component function at the given function index.
///
/// Returns `None` if the index is out of bounds.
pub fn component_function_at(&self, index: u32) -> Option<&ComponentFuncType> {
self.as_ref().component_function_at(index)
}
/// Gets the count of imported, exported, or aliased component functions.
pub fn component_function_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.funcs.len(),
}
}
/// Gets the type of a module at the given module index.
///
/// Returns `None` if the index is out of bounds.
pub fn module_at(&self, index: u32) -> Option<&ModuleType> {
self.as_ref().module_at(index)
}
/// Gets the count of imported, exported, or aliased modules.
pub fn module_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.core_modules.len(),
}
}
/// Gets the type of a module instance at the given module instance index.
///
/// Returns `None` if the index is out of bounds.
pub fn instance_at(&self, index: u32) -> Option<&InstanceType> {
self.as_ref().instance_at(index)
}
/// Gets the count of imported, exported, or aliased core module instances.
pub fn instance_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.core_instances.len(),
}
}
/// Gets the type of a component at the given component index.
///
/// Returns `None` if the index is out of bounds.
pub fn component_at(&self, index: u32) -> Option<&ComponentType> {
self.as_ref().component_at(index)
}
/// Gets the count of imported, exported, or aliased components.
pub fn component_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.components.len(),
}
}
/// Gets the type of an component instance at the given component instance index.
///
/// Returns `None` if the index is out of bounds.
pub fn component_instance_at(&self, index: u32) -> Option<&ComponentInstanceType> {
self.as_ref().component_instance_at(index)
}
/// Gets the count of imported, exported, or aliased component instances.
pub fn component_instance_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.instances.len(),
}
}
/// Gets the type of a value at the given value index.
///
/// Returns `None` if the index is out of bounds.
pub fn value_at(&self, index: u32) -> Option<ComponentValType> {
self.as_ref().value_at(index)
}
/// Gets the count of imported, exported, or aliased values.
pub fn value_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.values.len(),
}
}
/// Gets the entity type from the given import.
pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
self.as_ref().entity_type_from_import(import)
}
/// Gets the entity type from the given export.
pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
self.as_ref().entity_type_from_export(export)
}
/// Gets the component entity type for the given component import.
pub fn component_entity_type_from_import(
&self,
import: &ComponentImport,
) -> Option<ComponentEntityType> {
self.as_ref().component_entity_type_from_import(import)
}
/// Gets the component entity type from the given component export.
pub fn component_entity_type_from_export(
&self,
export: &ComponentExport,
) -> Option<ComponentEntityType> {
self.as_ref().component_entity_type_from_export(export)
}
/// Attempts to lookup the type id that `ty` is an alias of.
///
/// Returns `None` if `ty` wasn't listed as aliasing a prior type.
pub fn peel_alias(&self, ty: TypeId) -> Option<TypeId> {
self.list.peel_alias(ty)
}
}
/// This is a type which mirrors a subset of the `Vec<T>` API, but is intended
/// to be able to be cheaply snapshotted and cloned.
///
/// When each module's code sections start we "commit" the current list of types
/// in the global list of types. This means that the temporary `cur` vec here is
/// pushed onto `snapshots` and wrapped up in an `Arc`. At that point we clone
/// this entire list (which is then O(modules), not O(types in all modules)) and
/// pass out as a context to each function validator.
///
/// Otherwise, though, this type behaves as if it were a large `Vec<T>`, but
/// it's represented by lists of contiguous chunks.
pub(crate) struct SnapshotList<T> {
// All previous snapshots, the "head" of the list that this type represents.
// The first entry in this pair is the starting index for all elements
// contained in the list, and the second element is the list itself. Note
// the `Arc` wrapper around sub-lists, which makes cloning time for this
// `SnapshotList` O(snapshots) rather than O(snapshots_total), which for
// us in this context means the number of modules, not types.
//
// Note that this list is sorted least-to-greatest in order of the index for
// binary searching.
snapshots: Vec<Arc<Snapshot<T>>>,
// This is the total length of all lists in the `snapshots` array.
snapshots_total: usize,
// The current list of types for the current snapshot that are being built.
cur: Vec<T>,
unique_mappings: BTreeMap<u32, u32>,
unique_counter: u32,
}
struct Snapshot<T> {
prior_types: usize,
unique_counter: u32,
unique_mappings: BTreeMap<u32, u32>,
items: Vec<T>,
}
impl<T> SnapshotList<T> {
/// Same as `<&[T]>::get`
pub(crate) fn get(&self, index: usize) -> Option<&T> {
// Check to see if this index falls on our local list
if index >= self.snapshots_total {
return self.cur.get(index - self.snapshots_total);
}
// ... and failing that we do a binary search to figure out which bucket
// it's in. Note the `i-1` in the `Err` case because if we don't find an
// exact match the type is located in the previous bucket.
let i = match self
.snapshots
.binary_search_by_key(&index, |snapshot| snapshot.prior_types)
{
Ok(i) => i,
Err(i) => i - 1,
};
let snapshot = &self.snapshots[i];
Some(&snapshot.items[index - snapshot.prior_types])
}
/// Same as `<&mut [T]>::get_mut`, except only works for indexes into the
/// current snapshot being built.
///
/// # Panics
///
/// Panics if an index is passed in which falls within the
/// previously-snapshotted list of types. This should never happen in our
/// context and the panic is intended to weed out possible bugs in
/// wasmparser_nostd.
pub(crate) fn get_mut(&mut self, index: usize) -> Option<&mut T> {
if index >= self.snapshots_total {
return self.cur.get_mut(index - self.snapshots_total);
}
panic!("cannot get a mutable reference in snapshotted part of list")
}
/// Same as `Vec::push`
pub(crate) fn push(&mut self, val: T) {
self.cur.push(val);
}
/// Same as `<[T]>::len`
pub(crate) fn len(&self) -> usize {
self.cur.len() + self.snapshots_total
}
/// Reserve space for an additional count of items.
pub(crate) fn reserve(&mut self, additional: usize) {
self.cur.reserve(additional);
}
/// Commits previously pushed types into this snapshot vector, and returns a
/// clone of this list.
///
/// The returned `SnapshotList` can be used to access all the same types as
/// this list itself. This list also is not changed (from an external
/// perspective) and can continue to access all the same types.
pub(crate) fn commit(&mut self) -> SnapshotList<T> {
// If the current chunk has new elements, commit them in to an
// `Arc`-wrapped vector in the snapshots list. Note the `shrink_to_fit`
// ahead of time to hopefully keep memory usage lower than it would
// otherwise be. Additionally note that the `unique_counter` is bumped
// here to ensure that the previous value of the unique counter is
// never used for an actual type so it's suitable for lookup via a
// binary search.
let len = self.cur.len();
if len > 0 {
self.unique_counter += 1;
self.cur.shrink_to_fit();
self.snapshots.push(Arc::new(Snapshot {
prior_types: self.snapshots_total,
unique_counter: self.unique_counter - 1,
unique_mappings: mem::take(&mut self.unique_mappings),
items: mem::take(&mut self.cur),
}));
self.snapshots_total += len;
}
SnapshotList {
snapshots: self.snapshots.clone(),
snapshots_total: self.snapshots_total,
unique_mappings: BTreeMap::new(),
unique_counter: self.unique_counter,
cur: Vec::new(),
}
}
/// Modifies a `TypeId` to have the same contents but a fresh new unique id.
///
/// This is used during aliasing with components to assign types a unique
/// identifier that isn't equivalent to anything else but still
/// points to the same underlying type.
pub fn with_unique(&mut self, mut ty: TypeId) -> TypeId {
self.unique_mappings
.insert(self.unique_counter, ty.unique_id);
ty.unique_id = self.unique_counter;
self.unique_counter += 1;
ty
}
/// Attempts to lookup the type id that `ty` is an alias of.
///
/// Returns `None` if `ty` wasn't listed as aliasing a prior type.
pub fn peel_alias(&self, ty: TypeId) -> Option<TypeId> {
// The unique counter in each snapshot is the unique counter at the
// time of the snapshot so it's guaranteed to never be used, meaning
// that `Ok` should never show up here. With an `Err` it's where the
// index would be placed meaning that the index in question is the
// smallest value over the unique id's value, meaning that slot has the
// mapping we're interested in.
let i = match self
.snapshots
.binary_search_by_key(&ty.unique_id, |snapshot| snapshot.unique_counter)
{
Ok(_) => unreachable!(),
Err(i) => i,
};
// If the `i` index is beyond the snapshot array then lookup in the
// current mappings instead since it may refer to a type not snapshot
// yet.
let unique_id = match self.snapshots.get(i) {
Some(snapshot) => *snapshot.unique_mappings.get(&ty.unique_id)?,
None => *self.unique_mappings.get(&ty.unique_id)?,
};
Some(TypeId { unique_id, ..ty })
}
}
impl<T> ::core::ops::Index<usize> for SnapshotList<T> {
type Output = T;
#[inline]
fn index(&self, index: usize) -> &T {
self.get(index).unwrap()
}
}
impl<T> ::core::ops::IndexMut<usize> for SnapshotList<T> {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut T {
self.get_mut(index).unwrap()
}
}
impl<T> ::core::ops::Index<TypeId> for SnapshotList<T> {
type Output = T;
#[inline]
fn index(&self, id: TypeId) -> &T {
self.get(id.index).unwrap()
}
}
impl<T> ::core::ops::IndexMut<TypeId> for SnapshotList<T> {
#[inline]
fn index_mut(&mut self, id: TypeId) -> &mut T {
self.get_mut(id.index).unwrap()
}
}
impl<T> Default for SnapshotList<T> {
fn default() -> SnapshotList<T> {
SnapshotList {
snapshots: Vec::new(),
snapshots_total: 0,
cur: Vec::new(),
unique_counter: 1,
unique_mappings: BTreeMap::new(),
}
}
}
/// A snapshot list of types.
pub(crate) type TypeList = SnapshotList<Type>;
/// Thin wrapper around `TypeList` which provides an allocator of unique ids for
/// types contained within this list.
pub(crate) struct TypeAlloc {
list: TypeList,
}
impl Deref for TypeAlloc {
type Target = TypeList;
fn deref(&self) -> &TypeList {
&self.list
}
}
impl DerefMut for TypeAlloc {
fn deref_mut(&mut self) -> &mut TypeList {
&mut self.list
}
}
impl TypeAlloc {
/// Pushes a new anonymous type into this list which will have its
/// `unique_id` field cleared.
pub fn push_anon(&mut self, ty: Type) -> TypeId {
let index = self.list.len();
let type_size = ty.type_size();
self.list.push(ty);
TypeId {
index,
type_size,
unique_id: 0,
}
}
/// Pushes a new defined type which has an index in core wasm onto this
/// list.
///
/// The returned `TypeId` is guaranteed to be unique and not hash-equivalent
/// to any other prior ID in this list.
pub fn push_defined(&mut self, ty: Type) -> TypeId {
let id = self.push_anon(ty);
self.with_unique(id)
}
}
impl Default for TypeAlloc {
fn default() -> TypeAlloc {
TypeAlloc {
list: Default::default(),
}
}
}