1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
//! Types relating to type information provided by validation.

use super::{component::ComponentState, core::Module};
use crate::{
    ComponentExport, ComponentExternalKind, ComponentImport, ComponentTypeRef, Export,
    ExternalKind, FuncType, GlobalType, Import, MemoryType, PrimitiveValType, TableType, TypeRef,
    ValType,
};
use ::alloc::boxed::Box;
use ::alloc::string::String;
use ::alloc::sync::Arc;
use ::alloc::vec::Vec;
use ::core::{
    borrow::Borrow,
    hash::{Hash, Hasher},
    mem,
};
use indexmap::{IndexMap, IndexSet};

/// The maximum number of parameters in the canonical ABI that can be passed by value.
///
/// Functions that exceed this limit will instead pass parameters indirectly from
/// linear memory via a single pointer parameter.
const MAX_FLAT_FUNC_PARAMS: usize = 16;
/// The maximum number of results in the canonical ABI that can be returned by a function.
///
/// Functions that exceed this limit have their results written to linear memory via an
/// additional pointer parameter (imports) or return a single pointer value (exports).
const MAX_FLAT_FUNC_RESULTS: usize = 1;

/// The maximum lowered types, including a possible type for a return pointer parameter.
const MAX_LOWERED_TYPES: usize = MAX_FLAT_FUNC_PARAMS + 1;

/// A simple alloc-free list of types used for calculating lowered function signatures.
pub(crate) struct LoweredTypes {
    types: [ValType; MAX_LOWERED_TYPES],
    len: usize,
    max: usize,
}

impl LoweredTypes {
    fn new(max: usize) -> Self {
        assert!(max <= MAX_LOWERED_TYPES);
        Self {
            types: [ValType::I32; MAX_LOWERED_TYPES],
            len: 0,
            max,
        }
    }

    fn len(&self) -> usize {
        self.len
    }

    fn maxed(&self) -> bool {
        self.len == self.max
    }

    fn get_mut(&mut self, index: usize) -> Option<&mut ValType> {
        if index < self.len {
            Some(&mut self.types[index])
        } else {
            None
        }
    }

    fn push(&mut self, ty: ValType) -> bool {
        if self.maxed() {
            return false;
        }

        self.types[self.len] = ty;
        self.len += 1;
        true
    }

    fn clear(&mut self) {
        self.len = 0;
    }

    pub fn as_slice(&self) -> &[ValType] {
        &self.types[..self.len]
    }

    pub fn iter(&self) -> impl Iterator<Item = ValType> + '_ {
        self.as_slice().iter().copied()
    }
}

/// Represents information about a component function type lowering.
pub(crate) struct LoweringInfo {
    pub(crate) params: LoweredTypes,
    pub(crate) results: LoweredTypes,
    pub(crate) requires_memory: bool,
    pub(crate) requires_realloc: bool,
}

impl LoweringInfo {
    pub(crate) fn into_func_type(self) -> FuncType {
        FuncType::new(
            self.params.as_slice().iter().copied(),
            self.results.as_slice().iter().copied(),
        )
    }
}

impl Default for LoweringInfo {
    fn default() -> Self {
        Self {
            params: LoweredTypes::new(MAX_FLAT_FUNC_PARAMS),
            results: LoweredTypes::new(MAX_FLAT_FUNC_RESULTS),
            requires_memory: false,
            requires_realloc: false,
        }
    }
}

fn push_primitive_wasm_types(ty: &PrimitiveValType, lowered_types: &mut LoweredTypes) -> bool {
    match ty {
        PrimitiveValType::Bool
        | PrimitiveValType::S8
        | PrimitiveValType::U8
        | PrimitiveValType::S16
        | PrimitiveValType::U16
        | PrimitiveValType::S32
        | PrimitiveValType::U32
        | PrimitiveValType::Char => lowered_types.push(ValType::I32),
        PrimitiveValType::S64 | PrimitiveValType::U64 => lowered_types.push(ValType::I64),
        PrimitiveValType::Float32 => lowered_types.push(ValType::F32),
        PrimitiveValType::Float64 => lowered_types.push(ValType::F64),
        PrimitiveValType::String => {
            lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32)
        }
    }
}

/// Represents a unique identifier for a type known to a [`crate::Validator`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TypeId {
    /// The effective type size for the type.
    ///
    /// This is stored as part of the ID to avoid having to recurse through
    /// the global type list when calculating type sizes.
    pub(crate) type_size: usize,
    /// The index into the global list of types.
    pub(crate) index: usize,
}

/// A unified type definition for validating WebAssembly modules and components.
#[derive(Debug)]
pub enum Type {
    /// The definition is for a core function type.
    Func(FuncType),
    /// The definition is for a core module type.
    ///
    /// This variant is only supported when parsing a component.
    Module(ModuleType),
    /// The definition is for a core module instance type.
    ///
    /// This variant is only supported when parsing a component.
    Instance(InstanceType),
    /// The definition is for a component type.
    ///
    /// This variant is only supported when parsing a component.
    Component(ComponentType),
    /// The definition is for a component instance type.
    ///
    /// This variant is only supported when parsing a component.
    ComponentInstance(ComponentInstanceType),
    /// The definition is for a component function type.
    ///
    /// This variant is only supported when parsing a component.
    ComponentFunc(ComponentFuncType),
    /// The definition is for a component defined type.
    ///
    /// This variant is only supported when parsing a component.
    Defined(ComponentDefinedType),
}

impl Type {
    /// Converts the type to a core function type.
    pub fn as_func_type(&self) -> Option<&FuncType> {
        match self {
            Self::Func(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a core module type.
    pub fn as_module_type(&self) -> Option<&ModuleType> {
        match self {
            Self::Module(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a core module instance type.
    pub fn as_instance_type(&self) -> Option<&InstanceType> {
        match self {
            Self::Instance(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a component type.
    pub fn as_component_type(&self) -> Option<&ComponentType> {
        match self {
            Self::Component(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a component instance type.
    pub fn as_component_instance_type(&self) -> Option<&ComponentInstanceType> {
        match self {
            Self::ComponentInstance(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a component function type.
    pub fn as_component_func_type(&self) -> Option<&ComponentFuncType> {
        match self {
            Self::ComponentFunc(ty) => Some(ty),
            _ => None,
        }
    }

    /// Converts the type to a component defined type.
    pub fn as_defined_type(&self) -> Option<&ComponentDefinedType> {
        match self {
            Self::Defined(ty) => Some(ty),
            _ => None,
        }
    }

    pub(crate) fn type_size(&self) -> usize {
        match self {
            Self::Func(ty) => 1 + ty.params().len() + ty.results().len(),
            Self::Module(ty) => ty.type_size,
            Self::Instance(ty) => ty.type_size,
            Self::Component(ty) => ty.type_size,
            Self::ComponentInstance(ty) => ty.type_size,
            Self::ComponentFunc(ty) => ty.type_size,
            Self::Defined(ty) => ty.type_size(),
        }
    }
}

/// A component value type.
#[derive(Debug, Clone, Copy)]
pub enum ComponentValType {
    /// The value type is one of the primitive types.
    Primitive(PrimitiveValType),
    /// The type is represented with the given type identifier.
    Type(TypeId),
}

impl ComponentValType {
    pub(crate) fn requires_realloc(&self, types: &TypeList) -> bool {
        match self {
            ComponentValType::Primitive(ty) => ty.requires_realloc(),
            ComponentValType::Type(ty) => types[*ty]
                .as_defined_type()
                .unwrap()
                .requires_realloc(types),
        }
    }

    pub(crate) fn is_optional(&self, types: &TypeList) -> bool {
        match self {
            ComponentValType::Primitive(_) => false,
            ComponentValType::Type(ty) => {
                matches!(
                    types[*ty].as_defined_type().unwrap(),
                    ComponentDefinedType::Option(_)
                )
            }
        }
    }

    /// Determines if component value type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        match (a, b) {
            (ComponentValType::Primitive(a), ComponentValType::Primitive(b)) => {
                PrimitiveValType::is_subtype_of(*a, *b)
            }
            (ComponentValType::Type(a), ComponentValType::Type(b)) => {
                ComponentDefinedType::internal_is_subtype_of(
                    at[*a].as_defined_type().unwrap(),
                    at,
                    bt[*b].as_defined_type().unwrap(),
                    bt,
                )
            }
            (ComponentValType::Primitive(a), ComponentValType::Type(b)) => {
                match bt[*b].as_defined_type().unwrap() {
                    ComponentDefinedType::Primitive(b) => PrimitiveValType::is_subtype_of(*a, *b),
                    _ => false,
                }
            }
            (ComponentValType::Type(a), ComponentValType::Primitive(b)) => {
                match at[*a].as_defined_type().unwrap() {
                    ComponentDefinedType::Primitive(a) => PrimitiveValType::is_subtype_of(*a, *b),
                    _ => false,
                }
            }
        }
    }

    fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
        match self {
            Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
            Self::Type(id) => types[*id]
                .as_defined_type()
                .unwrap()
                .push_wasm_types(types, lowered_types),
        }
    }

    pub(crate) fn type_size(&self) -> usize {
        match self {
            Self::Primitive(_) => 1,
            Self::Type(id) => id.type_size,
        }
    }
}

/// The entity type for imports and exports of a module.
#[derive(Debug, Clone, Copy)]
pub enum EntityType {
    /// The entity is a function.
    Func(TypeId),
    /// The entity is a table.
    Table(TableType),
    /// The entity is a memory.
    Memory(MemoryType),
    /// The entity is a global.
    Global(GlobalType),
    /// The entity is a tag.
    Tag(TypeId),
}

impl EntityType {
    /// Determines if entity type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        macro_rules! limits_match {
            ($a:expr, $b:expr) => {{
                let a = $a;
                let b = $b;
                a.initial >= b.initial
                    && match b.maximum {
                        Some(b_max) => match a.maximum {
                            Some(a_max) => a_max <= b_max,
                            None => false,
                        },
                        None => true,
                    }
            }};
        }

        match (a, b) {
            (EntityType::Func(a), EntityType::Func(b)) => {
                at[*a].as_func_type().unwrap() == bt[*b].as_func_type().unwrap()
            }
            (EntityType::Table(a), EntityType::Table(b)) => {
                a.element_type == b.element_type && limits_match!(a, b)
            }
            (EntityType::Memory(a), EntityType::Memory(b)) => {
                a.shared == b.shared && a.memory64 == b.memory64 && limits_match!(a, b)
            }
            (EntityType::Global(a), EntityType::Global(b)) => a == b,
            (EntityType::Tag(a), EntityType::Tag(b)) => {
                at[*a].as_func_type().unwrap() == bt[*b].as_func_type().unwrap()
            }
            _ => false,
        }
    }

    pub(crate) fn desc(&self) -> &'static str {
        match self {
            Self::Func(_) => "function",
            Self::Table(_) => "table",
            Self::Memory(_) => "memory",
            Self::Global(_) => "global",
            Self::Tag(_) => "tag",
        }
    }

    pub(crate) fn type_size(&self) -> usize {
        match self {
            Self::Func(id) | Self::Tag(id) => id.type_size,
            Self::Table(_) | Self::Memory(_) | Self::Global(_) => 1,
        }
    }
}

trait ModuleImportKey {
    fn module(&self) -> &str;
    fn name(&self) -> &str;
}

impl<'a> Borrow<dyn ModuleImportKey + 'a> for (String, String) {
    fn borrow(&self) -> &(dyn ModuleImportKey + 'a) {
        self
    }
}

impl Hash for (dyn ModuleImportKey + '_) {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.module().hash(state);
        self.name().hash(state);
    }
}

impl Ord for (dyn ModuleImportKey + '_) {
    fn cmp(&self, other: &Self) -> ::core::cmp::Ordering {
        self.module()
            .cmp(other.module())
            .then(self.name().cmp(other.name()))
    }
}
impl PartialOrd for (dyn ModuleImportKey + '_) {
    fn partial_cmp(&self, other: &Self) -> Option<::core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for (dyn ModuleImportKey + '_) {
    fn eq(&self, other: &Self) -> bool {
        self.module() == other.module() && self.name() == other.name()
    }
}

impl Eq for (dyn ModuleImportKey + '_) {}

impl ModuleImportKey for (String, String) {
    fn module(&self) -> &str {
        &self.0
    }

    fn name(&self) -> &str {
        &self.1
    }
}

impl ModuleImportKey for (&str, &str) {
    fn module(&self) -> &str {
        self.0
    }

    fn name(&self) -> &str {
        self.1
    }
}

/// Represents a core module type.
#[derive(Debug, Clone)]
pub struct ModuleType {
    /// The effective type size for the module type.
    pub(crate) type_size: usize,
    /// The imports of the module type.
    pub imports: IndexMap<(String, String), EntityType>,
    /// The exports of the module type.
    pub exports: IndexMap<String, EntityType>,
}

impl ModuleType {
    /// Looks up an import by its module and name.
    ///
    /// Returns `None` if the import was not found.
    pub fn lookup_import(&self, module: &str, name: &str) -> Option<&EntityType> {
        self.imports.get(&(module, name) as &dyn ModuleImportKey)
    }

    /// Determines if module type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        // For module type subtyping, all exports in the other module type
        // must be present in this module type's exports (i.e. it can export
        // *more* than what this module type needs).
        // However, for imports, the check is reversed (i.e. it is okay
        // to import *less* than what this module type needs).
        a.imports.iter().all(|(k, a)| match b.imports.get(k) {
            Some(b) => EntityType::internal_is_subtype_of(b, bt, a, at),
            None => false,
        }) && b.exports.iter().all(|(k, b)| match a.exports.get(k) {
            Some(a) => EntityType::internal_is_subtype_of(a, at, b, bt),
            None => false,
        })
    }
}

/// Represents the kind of module instance type.
#[derive(Debug, Clone)]
pub enum InstanceTypeKind {
    /// The instance type is the result of instantiating a module type.
    Instantiated(TypeId),
    /// The instance type is the result of instantiating from exported items.
    Exports(IndexMap<String, EntityType>),
}

/// Represents a module instance type.
#[derive(Debug, Clone)]
pub struct InstanceType {
    /// The effective type size for the module instance type.
    pub(crate) type_size: usize,
    /// The kind of module instance type.
    pub kind: InstanceTypeKind,
}

impl InstanceType {
    /// Gets the exports of the instance type.
    pub fn exports<'a>(&'a self, types: TypesRef<'a>) -> &'a IndexMap<String, EntityType> {
        self.internal_exports(types.list)
    }

    pub(crate) fn internal_exports<'a>(
        &'a self,
        types: &'a TypeList,
    ) -> &'a IndexMap<String, EntityType> {
        match &self.kind {
            InstanceTypeKind::Instantiated(id) => &types[*id].as_module_type().unwrap().exports,
            InstanceTypeKind::Exports(exports) => exports,
        }
    }
}

/// The entity type for imports and exports of a component.
#[derive(Debug, Clone, Copy)]
pub enum ComponentEntityType {
    /// The entity is a core module.
    Module(TypeId),
    /// The entity is a function.
    Func(TypeId),
    /// The entity is a value.
    Value(ComponentValType),
    /// The entity is a type.
    Type(TypeId),
    /// The entity is a component instance.
    Instance(TypeId),
    /// The entity is a component.
    Component(TypeId),
}

impl ComponentEntityType {
    /// Determines if component entity type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        match (a, b) {
            (Self::Module(a), Self::Module(b)) => ModuleType::internal_is_subtype_of(
                at[*a].as_module_type().unwrap(),
                at,
                bt[*b].as_module_type().unwrap(),
                bt,
            ),
            (Self::Func(a), Self::Func(b)) => ComponentFuncType::internal_is_subtype_of(
                at[*a].as_component_func_type().unwrap(),
                at,
                bt[*b].as_component_func_type().unwrap(),
                bt,
            ),
            (Self::Value(a), Self::Value(b)) => {
                ComponentValType::internal_is_subtype_of(a, at, b, bt)
            }
            (Self::Type(a), Self::Type(b)) => ComponentDefinedType::internal_is_subtype_of(
                at[*a].as_defined_type().unwrap(),
                at,
                bt[*b].as_defined_type().unwrap(),
                bt,
            ),
            (Self::Instance(a), Self::Instance(b)) => {
                ComponentInstanceType::internal_is_subtype_of(
                    at[*a].as_component_instance_type().unwrap(),
                    at,
                    bt[*b].as_component_instance_type().unwrap(),
                    bt,
                )
            }
            (Self::Component(a), Self::Component(b)) => ComponentType::internal_is_subtype_of(
                at[*a].as_component_type().unwrap(),
                at,
                bt[*b].as_component_type().unwrap(),
                bt,
            ),
            _ => false,
        }
    }

    pub(crate) fn desc(&self) -> &'static str {
        match self {
            Self::Module(_) => "module",
            Self::Func(_) => "function",
            Self::Value(_) => "value",
            Self::Type(_) => "type",
            Self::Instance(_) => "instance",
            Self::Component(_) => "component",
        }
    }

    pub(crate) fn type_size(&self) -> usize {
        match self {
            Self::Module(ty)
            | Self::Func(ty)
            | Self::Type(ty)
            | Self::Instance(ty)
            | Self::Component(ty) => ty.type_size,
            Self::Value(ty) => ty.type_size(),
        }
    }
}

/// Represents a type of a component.
#[derive(Debug, Clone)]
pub struct ComponentType {
    /// The effective type size for the component type.
    pub(crate) type_size: usize,
    /// The imports of the component type.
    pub imports: IndexMap<String, ComponentEntityType>,
    /// The exports of the component type.
    pub exports: IndexMap<String, ComponentEntityType>,
}

impl ComponentType {
    /// Determines if component type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        // For component type subtyping, all exports in the other component type
        // must be present in this component type's exports (i.e. it can export
        // *more* than what this component type needs).
        // However, for imports, the check is reversed (i.e. it is okay
        // to import *less* than what this component type needs).
        a.imports.iter().all(|(k, a)| match b.imports.get(k) {
            Some(b) => ComponentEntityType::internal_is_subtype_of(b, bt, a, at),
            None => false,
        }) && b.exports.iter().all(|(k, b)| match a.exports.get(k) {
            Some(a) => ComponentEntityType::internal_is_subtype_of(a, at, b, bt),
            None => false,
        })
    }
}

/// Represents the kind of a component instance.
#[derive(Debug, Clone)]
pub enum ComponentInstanceTypeKind {
    /// The instance type is from a definition.
    Defined(IndexMap<String, ComponentEntityType>),
    /// The instance type is the result of instantiating a component type.
    Instantiated(TypeId),
    /// The instance type is the result of instantiating from exported items.
    Exports(IndexMap<String, ComponentEntityType>),
}

/// Represents a type of a component instance.
#[derive(Debug, Clone)]
pub struct ComponentInstanceType {
    /// The effective type size for the instance type.
    pub(crate) type_size: usize,
    /// The kind of instance type.
    pub kind: ComponentInstanceTypeKind,
}

impl ComponentInstanceType {
    /// Gets the exports of the instance type.
    pub fn exports<'a>(&'a self, types: TypesRef<'a>) -> &'a IndexMap<String, ComponentEntityType> {
        self.internal_exports(types.list)
    }

    pub(crate) fn internal_exports<'a>(
        &'a self,
        types: &'a TypeList,
    ) -> &'a IndexMap<String, ComponentEntityType> {
        match &self.kind {
            ComponentInstanceTypeKind::Defined(exports)
            | ComponentInstanceTypeKind::Exports(exports) => exports,
            ComponentInstanceTypeKind::Instantiated(id) => {
                &types[*id].as_component_type().unwrap().exports
            }
        }
    }

    /// Determines if component instance type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        let exports = a.internal_exports(at);

        // For instance type subtyping, all exports in the other instance type
        // must be present in this instance type's exports (i.e. it can export
        // *more* than what this instance type needs).
        b.internal_exports(bt)
            .iter()
            .all(|(k, b)| match exports.get(k) {
                Some(a) => ComponentEntityType::internal_is_subtype_of(a, at, b, bt),
                None => false,
            })
    }
}

/// Represents a type of a component function.
#[derive(Debug, Clone)]
pub struct ComponentFuncType {
    /// The effective type size for the component function type.
    pub(crate) type_size: usize,
    /// The function parameters.
    pub params: Box<[(String, ComponentValType)]>,
    /// The function's results.
    pub results: Box<[(Option<String>, ComponentValType)]>,
}

impl ComponentFuncType {
    /// Determines if component function type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        // Subtyping rules:
        // https://github.com/WebAssembly/component-model/blob/main/design/mvp/Subtyping.md

        // The subtype cannot have more parameters than the supertype
        if b.params.len() < a.params.len() {
            return false;
        }

        // The supertype cannot have more results than the subtype
        if a.results.len() < b.results.len() {
            return false;
        }

        for ((an, a), (bn, b)) in a.params.iter().zip(b.params.iter()) {
            // All overlapping parameters must have the same name
            if an != bn {
                return false;
            }

            // Contravariant on parameters
            if !ComponentValType::internal_is_subtype_of(b, bt, a, at) {
                return false;
            }
        }

        // All remaining parameters in the supertype must be optional
        if !b
            .params
            .iter()
            .skip(a.params.len())
            .all(|(_, b)| b.is_optional(bt))
        {
            return false;
        }

        for ((an, a), (bn, b)) in a.results.iter().zip(b.results.iter()) {
            // All overlapping results must have the same name
            if an != bn {
                return false;
            }

            // Covariant on results
            if !ComponentValType::internal_is_subtype_of(a, at, b, bt) {
                return false;
            }
        }

        true
    }

    /// Lowers the component function type to core parameter and result types for the
    /// canonical ABI.
    pub(crate) fn lower(&self, types: &TypeList, import: bool) -> LoweringInfo {
        let mut info = LoweringInfo::default();

        for (_, ty) in self.params.iter() {
            // When `import` is false, it means we're lifting a core function,
            // check if the parameters needs realloc
            if !import && !info.requires_realloc {
                info.requires_realloc = ty.requires_realloc(types);
            }

            if !ty.push_wasm_types(types, &mut info.params) {
                // Too many parameters to pass directly
                // Function will have a single pointer parameter to pass the arguments
                // via linear memory
                info.params.clear();
                assert!(info.params.push(ValType::I32));
                info.requires_memory = true;

                // We need realloc as well when lifting a function
                if !import {
                    info.requires_realloc = true;
                }
                break;
            }
        }

        for (_, ty) in self.results.iter() {
            // When `import` is true, it means we're lowering a component function,
            // check if the result needs realloc
            if import && !info.requires_realloc {
                info.requires_realloc = ty.requires_realloc(types);
            }

            if !ty.push_wasm_types(types, &mut info.results) {
                // Too many results to return directly, either a retptr parameter will be used (import)
                // or a single pointer will be returned (export)
                info.results.clear();
                if import {
                    info.params.max = MAX_LOWERED_TYPES;
                    assert!(info.params.push(ValType::I32));
                } else {
                    assert!(info.results.push(ValType::I32));
                }
                info.requires_memory = true;
                break;
            }
        }

        // Memory is always required when realloc is required
        info.requires_memory |= info.requires_realloc;

        info
    }
}

/// Represents a variant case.
#[derive(Debug, Clone)]
pub struct VariantCase {
    /// The variant case type.
    pub ty: Option<ComponentValType>,
    /// The name of the variant case refined by this one.
    pub refines: Option<String>,
}

/// Represents a record type.
#[derive(Debug, Clone)]
pub struct RecordType {
    /// The effective type size for the record type.
    pub(crate) type_size: usize,
    /// The map of record fields.
    pub fields: IndexMap<String, ComponentValType>,
}

/// Represents a variant type.
#[derive(Debug, Clone)]
pub struct VariantType {
    /// The effective type size for the variant type.
    pub(crate) type_size: usize,
    /// The map of variant cases.
    pub cases: IndexMap<String, VariantCase>,
}

/// Represents a tuple type.
#[derive(Debug, Clone)]
pub struct TupleType {
    /// The effective type size for the tuple type.
    pub(crate) type_size: usize,
    /// The types of the tuple.
    pub types: Box<[ComponentValType]>,
}

/// Represents a union type.
#[derive(Debug, Clone)]
pub struct UnionType {
    /// The inclusive type count for the union type.
    pub(crate) type_size: usize,
    /// The types of the union.
    pub types: Box<[ComponentValType]>,
}

/// Represents a component defined type.
#[derive(Debug, Clone)]
pub enum ComponentDefinedType {
    /// The type is a primitive value type.
    Primitive(PrimitiveValType),
    /// The type is a record.
    Record(RecordType),
    /// The type is a variant.
    Variant(VariantType),
    /// The type is a list.
    List(ComponentValType),
    /// The type is a tuple.
    Tuple(TupleType),
    /// The type is a set of flags.
    Flags(IndexSet<String>),
    /// The type is an enumeration.
    Enum(IndexSet<String>),
    /// The type is a union.
    Union(UnionType),
    /// The type is an `option`.
    Option(ComponentValType),
    /// The type is a `result`.
    Result {
        /// The `ok` type.
        ok: Option<ComponentValType>,
        /// The `error` type.
        err: Option<ComponentValType>,
    },
}

impl ComponentDefinedType {
    pub(crate) fn requires_realloc(&self, types: &TypeList) -> bool {
        match self {
            Self::Primitive(ty) => ty.requires_realloc(),
            Self::Record(r) => r.fields.values().any(|ty| ty.requires_realloc(types)),
            Self::Variant(v) => v.cases.values().any(|case| {
                case.ty
                    .map(|ty| ty.requires_realloc(types))
                    .unwrap_or(false)
            }),
            Self::List(_) => true,
            Self::Tuple(t) => t.types.iter().any(|ty| ty.requires_realloc(types)),
            Self::Union(u) => u.types.iter().any(|ty| ty.requires_realloc(types)),
            Self::Flags(_) | Self::Enum(_) => false,
            Self::Option(ty) => ty.requires_realloc(types),
            Self::Result { ok, err } => {
                ok.map(|ty| ty.requires_realloc(types)).unwrap_or(false)
                    || err.map(|ty| ty.requires_realloc(types)).unwrap_or(false)
            }
        }
    }

    /// Determines if component defined type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        Self::internal_is_subtype_of(a, at.list, b, bt.list)
    }

    pub(crate) fn internal_is_subtype_of(a: &Self, at: &TypeList, b: &Self, bt: &TypeList) -> bool {
        // Subtyping rules according to
        // https://github.com/WebAssembly/component-model/blob/main/design/mvp/Subtyping.md
        match (a, b) {
            (Self::Primitive(a), Self::Primitive(b)) => PrimitiveValType::is_subtype_of(*a, *b),
            (Self::Record(a), Self::Record(b)) => {
                for (name, a) in a.fields.iter() {
                    if let Some(b) = b.fields.get(name) {
                        if !ComponentValType::internal_is_subtype_of(a, at, b, bt) {
                            return false;
                        }
                    } else {
                        // Superfluous fields can be ignored in the subtype
                    }
                }
                // Check for missing required fields in the supertype
                for (name, b) in b.fields.iter() {
                    if !b.is_optional(bt) && !a.fields.contains_key(name) {
                        return false;
                    }
                }
                true
            }
            (Self::Variant(a), Self::Variant(b)) => {
                for (name, a) in a.cases.iter() {
                    if let Some(b) = b.cases.get(name) {
                        // Covariant subtype on the case type
                        if !Self::is_optional_subtype_of(a.ty, at, b.ty, bt) {
                            return false;
                        }
                    } else if let Some(refines) = &a.refines {
                        if !b.cases.contains_key(refines) {
                            // The refinement case is not in the supertype
                            return false;
                        }
                    } else {
                        // This case is not in the supertype and there is no
                        // default
                        return false;
                    }
                }
                true
            }
            (Self::List(a), Self::List(b)) | (Self::Option(a), Self::Option(b)) => {
                ComponentValType::internal_is_subtype_of(a, at, b, bt)
            }
            (Self::Tuple(a), Self::Tuple(b)) => {
                if a.types.len() != b.types.len() {
                    return false;
                }
                a.types
                    .iter()
                    .zip(b.types.iter())
                    .all(|(a, b)| ComponentValType::internal_is_subtype_of(a, at, b, bt))
            }
            (Self::Union(a), Self::Union(b)) => {
                if a.types.len() != b.types.len() {
                    return false;
                }
                a.types
                    .iter()
                    .zip(b.types.iter())
                    .all(|(a, b)| ComponentValType::internal_is_subtype_of(a, at, b, bt))
            }
            (Self::Flags(a), Self::Flags(b)) | (Self::Enum(a), Self::Enum(b)) => a.is_subset(b),
            (Self::Result { ok: ao, err: ae }, Self::Result { ok: bo, err: be }) => {
                Self::is_optional_subtype_of(*ao, at, *bo, bt)
                    && Self::is_optional_subtype_of(*ae, at, *be, bt)
            }
            _ => false,
        }
    }

    pub(crate) fn type_size(&self) -> usize {
        match self {
            Self::Primitive(_) => 1,
            Self::Flags(_) | Self::Enum(_) => 1,
            Self::Record(r) => r.type_size,
            Self::Variant(v) => v.type_size,
            Self::Tuple(t) => t.type_size,
            Self::Union(u) => u.type_size,
            Self::List(ty) | Self::Option(ty) => ty.type_size(),
            Self::Result { ok, err } => {
                ok.map(|ty| ty.type_size()).unwrap_or(1) + err.map(|ty| ty.type_size()).unwrap_or(1)
            }
        }
    }

    fn is_optional_subtype_of(
        a: Option<ComponentValType>,
        at: &TypeList,
        b: Option<ComponentValType>,
        bt: &TypeList,
    ) -> bool {
        match (a, b) {
            (None, None) | (Some(_), None) => true,
            (None, Some(_)) => false,
            (Some(a), Some(b)) => ComponentValType::internal_is_subtype_of(&a, at, &b, bt),
        }
    }
    fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
        match self {
            Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
            Self::Record(r) => r
                .fields
                .iter()
                .all(|(_, ty)| ty.push_wasm_types(types, lowered_types)),
            Self::Variant(v) => Self::push_variant_wasm_types(
                v.cases.iter().filter_map(|(_, case)| case.ty.as_ref()),
                types,
                lowered_types,
            ),
            Self::List(_) => lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32),
            Self::Tuple(t) => t
                .types
                .iter()
                .all(|ty| ty.push_wasm_types(types, lowered_types)),
            Self::Flags(names) => {
                (0..(names.len() + 31) / 32).all(|_| lowered_types.push(ValType::I32))
            }
            Self::Enum(_) => lowered_types.push(ValType::I32),
            Self::Union(u) => Self::push_variant_wasm_types(u.types.iter(), types, lowered_types),
            Self::Option(ty) => {
                Self::push_variant_wasm_types([ty].into_iter(), types, lowered_types)
            }
            Self::Result { ok, err } => {
                Self::push_variant_wasm_types(ok.iter().chain(err.iter()), types, lowered_types)
            }
        }
    }

    fn push_variant_wasm_types<'a>(
        cases: impl Iterator<Item = &'a ComponentValType>,
        types: &TypeList,
        lowered_types: &mut LoweredTypes,
    ) -> bool {
        // Push the discriminant
        if !lowered_types.push(ValType::I32) {
            return false;
        }

        let start = lowered_types.len();

        for ty in cases {
            let mut temp = LoweredTypes::new(lowered_types.max);

            if !ty.push_wasm_types(types, &mut temp) {
                return false;
            }

            for (i, ty) in temp.iter().enumerate() {
                match lowered_types.get_mut(start + i) {
                    Some(prev) => *prev = Self::join_types(*prev, ty),
                    None => {
                        if !lowered_types.push(ty) {
                            return false;
                        }
                    }
                }
            }
        }

        true
    }

    fn join_types(a: ValType, b: ValType) -> ValType {
        use ValType::*;

        match (a, b) {
            (I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => a,
            (I32, F32) | (F32, I32) => I32,
            (_, I64 | F64) | (I64 | F64, _) => I64,
            _ => panic!("unexpected wasm type for canonical ABI"),
        }
    }
}

#[allow(clippy::large_enum_variant)]
enum TypesKind {
    Module(Arc<Module>),
    Component(ComponentState),
}

/// Represents the types known to a [`crate::Validator`] once validation has completed.
///
/// The type information is returned via the [`crate::Validator::end`] method.
pub struct Types {
    list: TypeList,
    kind: TypesKind,
}

#[derive(Clone, Copy)]
enum TypesRefKind<'a> {
    Module(&'a Module),
    Component(&'a ComponentState),
}

/// Represents the types known to a [`crate::Validator`] during validation.
///
/// Retrieved via the [`crate::Validator::types`] method.
#[derive(Clone, Copy)]
pub struct TypesRef<'a> {
    list: &'a TypeList,
    kind: TypesRefKind<'a>,
}

impl<'a> TypesRef<'a> {
    pub(crate) fn from_module(types: &'a TypeList, module: &'a Module) -> Self {
        Self {
            list: types,
            kind: TypesRefKind::Module(module),
        }
    }

    pub(crate) fn from_component(types: &'a TypeList, component: &'a ComponentState) -> Self {
        Self {
            list: types,
            kind: TypesRefKind::Component(component),
        }
    }

    fn types(&self, core: bool) -> Option<&'a [TypeId]> {
        Some(match &self.kind {
            TypesRefKind::Module(module) => {
                if core {
                    &module.types
                } else {
                    return None;
                }
            }
            TypesRefKind::Component(component) => {
                if core {
                    &component.core_types
                } else {
                    &component.types
                }
            }
        })
    }

    /// Gets a type based on its type id.
    ///
    /// Returns `None` if the type id is unknown.
    pub fn type_from_id(&self, id: TypeId) -> Option<&'a Type> {
        self.list.get(id.index)
    }

    /// Gets a type id from a type index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn id_from_type_index(&self, index: u32, core: bool) -> Option<TypeId> {
        self.types(core)?.get(index as usize).copied()
    }

    /// Gets a type at the given type index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn type_at(&self, index: u32, core: bool) -> Option<&'a Type> {
        self.type_from_id(*self.types(core)?.get(index as usize)?)
    }

    /// Gets a defined core function type at the given type index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn func_type_at(&self, index: u32) -> Option<&'a FuncType> {
        match self.type_at(index, true)? {
            Type::Func(ty) => Some(ty),
            _ => None,
        }
    }

    /// Gets the type of a table at the given table index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn table_at(&self, index: u32) -> Option<TableType> {
        let tables = match &self.kind {
            TypesRefKind::Module(module) => &module.tables,
            TypesRefKind::Component(component) => &component.core_tables,
        };

        tables.get(index as usize).copied()
    }

    /// Gets the type of a memory at the given memory index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn memory_at(&self, index: u32) -> Option<MemoryType> {
        let memories = match &self.kind {
            TypesRefKind::Module(module) => &module.memories,
            TypesRefKind::Component(component) => &component.core_memories,
        };

        memories.get(index as usize).copied()
    }

    /// Gets the type of a global at the given global index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn global_at(&self, index: u32) -> Option<GlobalType> {
        let globals = match &self.kind {
            TypesRefKind::Module(module) => &module.globals,
            TypesRefKind::Component(component) => &component.core_globals,
        };

        globals.get(index as usize).copied()
    }

    /// Gets the type of a tag at the given tag index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn tag_at(&self, index: u32) -> Option<&'a FuncType> {
        let tags = match &self.kind {
            TypesRefKind::Module(module) => &module.tags,
            TypesRefKind::Component(component) => &component.core_tags,
        };

        Some(
            self.list[*tags.get(index as usize)?]
                .as_func_type()
                .unwrap(),
        )
    }

    /// Gets the type of a core function at the given function index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn function_at(&self, index: u32) -> Option<&'a FuncType> {
        let id = match &self.kind {
            TypesRefKind::Module(module) => {
                &module.types[*module.functions.get(index as usize)? as usize]
            }
            TypesRefKind::Component(component) => component.core_funcs.get(index as usize)?,
        };

        match &self.list[*id] {
            Type::Func(ty) => Some(ty),
            _ => None,
        }
    }

    /// Gets the type of an element segment at the given element segment index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn element_at(&self, index: u32) -> Option<ValType> {
        match &self.kind {
            TypesRefKind::Module(module) => module.element_types.get(index as usize).copied(),
            TypesRefKind::Component(_) => None,
        }
    }

    /// Gets the type of a component function at the given function index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn component_function_at(&self, index: u32) -> Option<&'a ComponentFuncType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(
                self.list[*component.funcs.get(index as usize)?]
                    .as_component_func_type()
                    .unwrap(),
            ),
        }
    }

    /// Gets the type of a module at the given module index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn module_at(&self, index: u32) -> Option<&'a ModuleType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(
                self.list[*component.core_modules.get(index as usize)?]
                    .as_module_type()
                    .unwrap(),
            ),
        }
    }

    /// Gets the type of a module instance at the given module instance index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn instance_at(&self, index: u32) -> Option<&'a InstanceType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => {
                let id = component.core_instances.get(index as usize)?;
                match &self.list[*id] {
                    Type::Instance(ty) => Some(ty),
                    _ => None,
                }
            }
        }
    }

    /// Gets the type of a component at the given component index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn component_at(&self, index: u32) -> Option<&'a ComponentType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(
                self.list[*component.components.get(index as usize)?]
                    .as_component_type()
                    .unwrap(),
            ),
        }
    }

    /// Gets the type of an component instance at the given component instance index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn component_instance_at(&self, index: u32) -> Option<&'a ComponentInstanceType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => {
                let id = component.instances.get(index as usize)?;
                match &self.list[*id] {
                    Type::ComponentInstance(ty) => Some(ty),
                    _ => None,
                }
            }
        }
    }

    /// Gets the type of a value at the given value index.
    ///
    /// Returns `None` if the type index is out of bounds or the type has not
    /// been parsed yet.
    pub fn value_at(&self, index: u32) -> Option<ComponentValType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => {
                component.values.get(index as usize).map(|(r, _)| *r)
            }
        }
    }

    /// Gets the entity type for the given import.
    pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
        match &self.kind {
            TypesRefKind::Module(module) => Some(match import.ty {
                TypeRef::Func(idx) => EntityType::Func(*module.types.get(idx as usize)?),
                TypeRef::Table(ty) => EntityType::Table(ty),
                TypeRef::Memory(ty) => EntityType::Memory(ty),
                TypeRef::Global(ty) => EntityType::Global(ty),
                TypeRef::Tag(ty) => EntityType::Tag(*module.types.get(ty.func_type_idx as usize)?),
            }),
            TypesRefKind::Component(_) => None,
        }
    }

    /// Gets the entity type from the given export.
    pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
        match &self.kind {
            TypesRefKind::Module(module) => Some(match export.kind {
                ExternalKind::Func => EntityType::Func(
                    module.types[*module.functions.get(export.index as usize)? as usize],
                ),
                ExternalKind::Table => {
                    EntityType::Table(*module.tables.get(export.index as usize)?)
                }
                ExternalKind::Memory => {
                    EntityType::Memory(*module.memories.get(export.index as usize)?)
                }
                ExternalKind::Global => {
                    EntityType::Global(*module.globals.get(export.index as usize)?)
                }
                ExternalKind::Tag => EntityType::Tag(
                    module.types[*module.functions.get(export.index as usize)? as usize],
                ),
            }),
            TypesRefKind::Component(_) => None,
        }
    }

    /// Gets the component entity type for the given component import.
    pub fn component_entity_type_from_import(
        &self,
        import: &ComponentImport,
    ) -> Option<ComponentEntityType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(match import.ty {
                ComponentTypeRef::Module(idx) => {
                    ComponentEntityType::Module(*component.core_types.get(idx as usize)?)
                }
                ComponentTypeRef::Func(idx) => {
                    ComponentEntityType::Func(*component.types.get(idx as usize)?)
                }
                ComponentTypeRef::Value(ty) => ComponentEntityType::Value(match ty {
                    crate::ComponentValType::Primitive(ty) => ComponentValType::Primitive(ty),
                    crate::ComponentValType::Type(idx) => {
                        ComponentValType::Type(*component.types.get(idx as usize)?)
                    }
                }),
                ComponentTypeRef::Type(_, idx) => {
                    ComponentEntityType::Type(*component.types.get(idx as usize)?)
                }
                ComponentTypeRef::Instance(idx) => {
                    ComponentEntityType::Instance(*component.types.get(idx as usize)?)
                }
                ComponentTypeRef::Component(idx) => {
                    ComponentEntityType::Component(*component.types.get(idx as usize)?)
                }
            }),
        }
    }

    /// Gets the component entity type from the given component export.
    pub fn component_entity_type_from_export(
        &self,
        export: &ComponentExport,
    ) -> Option<ComponentEntityType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(match export.kind {
                ComponentExternalKind::Module => {
                    ComponentEntityType::Module(*component.core_modules.get(export.index as usize)?)
                }
                ComponentExternalKind::Func => {
                    ComponentEntityType::Func(*component.funcs.get(export.index as usize)?)
                }
                ComponentExternalKind::Value => ComponentEntityType::Value(
                    component
                        .values
                        .get(export.index as usize)
                        .map(|(r, _)| *r)?,
                ),
                ComponentExternalKind::Type => {
                    ComponentEntityType::Type(*component.types.get(export.index as usize)?)
                }
                ComponentExternalKind::Instance => {
                    ComponentEntityType::Instance(*component.instances.get(export.index as usize)?)
                }
                ComponentExternalKind::Component => ComponentEntityType::Component(
                    *component.components.get(export.index as usize)?,
                ),
            }),
        }
    }
}

impl Types {
    pub(crate) fn from_module(types: TypeList, module: Arc<Module>) -> Self {
        Self {
            list: types,
            kind: TypesKind::Module(module),
        }
    }

    pub(crate) fn from_component(types: TypeList, component: ComponentState) -> Self {
        Self {
            list: types,
            kind: TypesKind::Component(component),
        }
    }

    /// Gets a reference to this validation type information.
    pub fn as_ref(&self) -> TypesRef {
        TypesRef {
            list: &self.list,
            kind: match &self.kind {
                TypesKind::Module(module) => TypesRefKind::Module(module),
                TypesKind::Component(component) => TypesRefKind::Component(component),
            },
        }
    }

    /// Gets a type based on its type id.
    ///
    /// Returns `None` if the type id is unknown.
    pub fn type_from_id(&self, id: TypeId) -> Option<&Type> {
        self.as_ref().type_from_id(id)
    }

    /// Gets a type id from a type index.
    ///
    /// Returns `None` if the type index is out of bounds.
    pub fn id_from_type_index(&self, index: u32, core: bool) -> Option<TypeId> {
        self.as_ref().id_from_type_index(index, core)
    }

    /// Gets a type at the given type index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn type_at(&self, index: u32, core: bool) -> Option<&Type> {
        self.as_ref().type_at(index, core)
    }

    /// Gets a defined core function type at the given type index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn func_type_at(&self, index: u32) -> Option<&FuncType> {
        self.as_ref().func_type_at(index)
    }

    /// Gets the count of core types.
    pub fn type_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.types.len(),
            TypesKind::Component(component) => component.core_types.len(),
        }
    }

    /// Gets the type of a table at the given table index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn table_at(&self, index: u32) -> Option<TableType> {
        self.as_ref().table_at(index)
    }

    /// Gets the count of imported and defined tables.
    pub fn table_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.tables.len(),
            TypesKind::Component(component) => component.core_tables.len(),
        }
    }

    /// Gets the type of a memory at the given memory index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn memory_at(&self, index: u32) -> Option<MemoryType> {
        self.as_ref().memory_at(index)
    }

    /// Gets the count of imported and defined memories.
    pub fn memory_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.memories.len(),
            TypesKind::Component(component) => component.core_memories.len(),
        }
    }

    /// Gets the type of a global at the given global index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn global_at(&self, index: u32) -> Option<GlobalType> {
        self.as_ref().global_at(index)
    }

    /// Gets the count of imported and defined globals.
    pub fn global_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.globals.len(),
            TypesKind::Component(component) => component.core_globals.len(),
        }
    }

    /// Gets the type of a tag at the given tag index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn tag_at(&self, index: u32) -> Option<&FuncType> {
        self.as_ref().tag_at(index)
    }

    /// Gets the count of imported and defined tags.
    pub fn tag_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.tags.len(),
            TypesKind::Component(component) => component.core_tags.len(),
        }
    }

    /// Gets the type of a core function at the given function index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn function_at(&self, index: u32) -> Option<&FuncType> {
        self.as_ref().function_at(index)
    }

    /// Gets the count of imported and defined core functions.
    ///
    /// The count also includes aliased core functions in components.
    pub fn function_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.functions.len(),
            TypesKind::Component(component) => component.core_funcs.len(),
        }
    }

    /// Gets the type of an element segment at the given element segment index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn element_at(&self, index: u32) -> Option<ValType> {
        self.as_ref().element_at(index)
    }

    /// Gets the count of element segments.
    pub fn element_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.element_types.len(),
            TypesKind::Component(_) => 0,
        }
    }

    /// Gets the type of a component function at the given function index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn component_function_at(&self, index: u32) -> Option<&ComponentFuncType> {
        self.as_ref().component_function_at(index)
    }

    /// Gets the count of imported, exported, or aliased component functions.
    pub fn component_function_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.funcs.len(),
        }
    }

    /// Gets the type of a module at the given module index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn module_at(&self, index: u32) -> Option<&ModuleType> {
        self.as_ref().module_at(index)
    }

    /// Gets the count of imported, exported, or aliased modules.
    pub fn module_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.core_modules.len(),
        }
    }

    /// Gets the type of a module instance at the given module instance index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn instance_at(&self, index: u32) -> Option<&InstanceType> {
        self.as_ref().instance_at(index)
    }

    /// Gets the count of imported, exported, or aliased core module instances.
    pub fn instance_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.core_instances.len(),
        }
    }

    /// Gets the type of a component at the given component index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn component_at(&self, index: u32) -> Option<&ComponentType> {
        self.as_ref().component_at(index)
    }

    /// Gets the count of imported, exported, or aliased components.
    pub fn component_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.components.len(),
        }
    }

    /// Gets the type of an component instance at the given component instance index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn component_instance_at(&self, index: u32) -> Option<&ComponentInstanceType> {
        self.as_ref().component_instance_at(index)
    }

    /// Gets the count of imported, exported, or aliased component instances.
    pub fn component_instance_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.instances.len(),
        }
    }

    /// Gets the type of a value at the given value index.
    ///
    /// Returns `None` if the index is out of bounds.
    pub fn value_at(&self, index: u32) -> Option<ComponentValType> {
        self.as_ref().value_at(index)
    }

    /// Gets the count of imported, exported, or aliased values.
    pub fn value_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.values.len(),
        }
    }

    /// Gets the entity type from the given import.
    pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
        self.as_ref().entity_type_from_import(import)
    }

    /// Gets the entity type from the given export.
    pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
        self.as_ref().entity_type_from_export(export)
    }

    /// Gets the component entity type for the given component import.
    pub fn component_entity_type_from_import(
        &self,
        import: &ComponentImport,
    ) -> Option<ComponentEntityType> {
        self.as_ref().component_entity_type_from_import(import)
    }

    /// Gets the component entity type from the given component export.
    pub fn component_entity_type_from_export(
        &self,
        export: &ComponentExport,
    ) -> Option<ComponentEntityType> {
        self.as_ref().component_entity_type_from_export(export)
    }
}

/// This is a type which mirrors a subset of the `Vec<T>` API, but is intended
/// to be able to be cheaply snapshotted and cloned.
///
/// When each module's code sections start we "commit" the current list of types
/// in the global list of types. This means that the temporary `cur` vec here is
/// pushed onto `snapshots` and wrapped up in an `Arc`. At that point we clone
/// this entire list (which is then O(modules), not O(types in all modules)) and
/// pass out as a context to each function validator.
///
/// Otherwise, though, this type behaves as if it were a large `Vec<T>`, but
/// it's represented by lists of contiguous chunks.
pub(crate) struct SnapshotList<T> {
    // All previous snapshots, the "head" of the list that this type represents.
    // The first entry in this pair is the starting index for all elements
    // contained in the list, and the second element is the list itself. Note
    // the `Arc` wrapper around sub-lists, which makes cloning time for this
    // `SnapshotList` O(snapshots) rather than O(snapshots_total), which for
    // us in this context means the number of modules, not types.
    //
    // Note that this list is sorted least-to-greatest in order of the index for
    // binary searching.
    snapshots: Vec<(usize, Arc<Vec<T>>)>,

    // This is the total length of all lists in the `snapshots` array.
    snapshots_total: usize,

    // The current list of types for the current snapshot that are being built.
    cur: Vec<T>,
}

impl<T> SnapshotList<T> {
    /// Same as `<&[T]>::get`
    pub(crate) fn get(&self, index: usize) -> Option<&T> {
        // Check to see if this index falls on our local list
        if index >= self.snapshots_total {
            return self.cur.get(index - self.snapshots_total);
        }
        // ... and failing that we do a binary search to figure out which bucket
        // it's in. Note the `i-1` in the `Err` case because if we don't find an
        // exact match the type is located in the previous bucket.
        let i = match self.snapshots.binary_search_by_key(&index, |(i, _)| *i) {
            Ok(i) => i,
            Err(i) => i - 1,
        };
        let (len, list) = &self.snapshots[i];
        Some(&list[index - len])
    }

    /// Same as `<&mut [T]>::get_mut`, except only works for indexes into the
    /// current snapshot being built.
    ///
    /// # Panics
    ///
    /// Panics if an index is passed in which falls within the
    /// previously-snapshotted list of types. This should never happen in our
    /// context and the panic is intended to weed out possible bugs in
    /// wasmparser.
    pub(crate) fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        if index >= self.snapshots_total {
            return self.cur.get_mut(index - self.snapshots_total);
        }
        panic!("cannot get a mutable reference in snapshotted part of list")
    }

    /// Same as `Vec::push`
    pub(crate) fn push(&mut self, val: T) {
        self.cur.push(val);
    }

    /// Same as `<[T]>::len`
    pub(crate) fn len(&self) -> usize {
        self.cur.len() + self.snapshots_total
    }

    /// Reserve space for an additional count of items.
    pub(crate) fn reserve(&mut self, additional: usize) {
        self.cur.reserve(additional);
    }

    /// Commits previously pushed types into this snapshot vector, and returns a
    /// clone of this list.
    ///
    /// The returned `SnapshotList` can be used to access all the same types as
    /// this list itself. This list also is not changed (from an external
    /// perspective) and can continue to access all the same types.
    pub(crate) fn commit(&mut self) -> SnapshotList<T> {
        // If the current chunk has new elements, commit them in to an
        // `Arc`-wrapped vector in the snapshots list. Note the `shrink_to_fit`
        // ahead of time to hopefully keep memory usage lower than it would
        // otherwise be.
        let len = self.cur.len();
        if len > 0 {
            self.cur.shrink_to_fit();
            self.snapshots
                .push((self.snapshots_total, Arc::new(mem::take(&mut self.cur))));
            self.snapshots_total += len;
        }
        SnapshotList {
            snapshots: self.snapshots.clone(),
            snapshots_total: self.snapshots_total,
            cur: Vec::new(),
        }
    }
}

impl<T> ::core::ops::Index<usize> for SnapshotList<T> {
    type Output = T;

    #[inline]
    fn index(&self, index: usize) -> &T {
        self.get(index).unwrap()
    }
}

impl<T> ::core::ops::IndexMut<usize> for SnapshotList<T> {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut T {
        self.get_mut(index).unwrap()
    }
}

impl<T> ::core::ops::Index<TypeId> for SnapshotList<T> {
    type Output = T;

    #[inline]
    fn index(&self, id: TypeId) -> &T {
        self.get(id.index).unwrap()
    }
}

impl<T> ::core::ops::IndexMut<TypeId> for SnapshotList<T> {
    #[inline]
    fn index_mut(&mut self, id: TypeId) -> &mut T {
        self.get_mut(id.index).unwrap()
    }
}

impl<T> Default for SnapshotList<T> {
    fn default() -> SnapshotList<T> {
        SnapshotList {
            snapshots: Vec::new(),
            snapshots_total: 0,
            cur: Vec::new(),
        }
    }
}

/// A snapshot list of types.
pub(crate) type TypeList = SnapshotList<Type>;