1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
//! Types relating to type information provided by validation.
use super::{
component::{ComponentState, ExternKind},
core::Module,
};
use crate::{collections::map::Entry, AbstractHeapType};
use crate::{prelude::*, CompositeInnerType};
use crate::{validator::names::KebabString, HeapType, ValidatorId};
use crate::{
BinaryReaderError, Export, ExternalKind, FuncType, GlobalType, Import, Matches, MemoryType,
PackedIndex, PrimitiveValType, RecGroup, RefType, Result, SubType, TableType, TypeRef,
UnpackedIndex, ValType, WithRecGroup,
};
use alloc::sync::Arc;
use core::ops::{Deref, DerefMut, Index, Range};
use core::sync::atomic::{AtomicUsize, Ordering};
use core::{
borrow::Borrow,
hash::{Hash, Hasher},
mem,
};
/// The maximum number of parameters in the canonical ABI that can be passed by value.
///
/// Functions that exceed this limit will instead pass parameters indirectly from
/// linear memory via a single pointer parameter.
const MAX_FLAT_FUNC_PARAMS: usize = 16;
/// The maximum number of results in the canonical ABI that can be returned by a function.
///
/// Functions that exceed this limit have their results written to linear memory via an
/// additional pointer parameter (imports) or return a single pointer value (exports).
const MAX_FLAT_FUNC_RESULTS: usize = 1;
/// The maximum lowered types, including a possible type for a return pointer parameter.
const MAX_LOWERED_TYPES: usize = MAX_FLAT_FUNC_PARAMS + 1;
/// A simple alloc-free list of types used for calculating lowered function signatures.
pub(crate) struct LoweredTypes {
types: [ValType; MAX_LOWERED_TYPES],
len: usize,
max: usize,
}
impl LoweredTypes {
fn new(max: usize) -> Self {
assert!(max <= MAX_LOWERED_TYPES);
Self {
types: [ValType::I32; MAX_LOWERED_TYPES],
len: 0,
max,
}
}
fn len(&self) -> usize {
self.len
}
fn maxed(&self) -> bool {
self.len == self.max
}
fn get_mut(&mut self, index: usize) -> Option<&mut ValType> {
if index < self.len {
Some(&mut self.types[index])
} else {
None
}
}
fn push(&mut self, ty: ValType) -> bool {
if self.maxed() {
return false;
}
self.types[self.len] = ty;
self.len += 1;
true
}
fn clear(&mut self) {
self.len = 0;
}
pub fn as_slice(&self) -> &[ValType] {
&self.types[..self.len]
}
pub fn iter(&self) -> impl Iterator<Item = ValType> + '_ {
self.as_slice().iter().copied()
}
}
/// Represents information about a component function type lowering.
pub(crate) struct LoweringInfo {
pub(crate) params: LoweredTypes,
pub(crate) results: LoweredTypes,
pub(crate) requires_memory: bool,
pub(crate) requires_realloc: bool,
}
impl LoweringInfo {
pub(crate) fn into_func_type(self) -> FuncType {
FuncType::new(
self.params.as_slice().iter().copied(),
self.results.as_slice().iter().copied(),
)
}
}
impl Default for LoweringInfo {
fn default() -> Self {
Self {
params: LoweredTypes::new(MAX_FLAT_FUNC_PARAMS),
results: LoweredTypes::new(MAX_FLAT_FUNC_RESULTS),
requires_memory: false,
requires_realloc: false,
}
}
}
fn push_primitive_wasm_types(ty: &PrimitiveValType, lowered_types: &mut LoweredTypes) -> bool {
match ty {
PrimitiveValType::Bool
| PrimitiveValType::S8
| PrimitiveValType::U8
| PrimitiveValType::S16
| PrimitiveValType::U16
| PrimitiveValType::S32
| PrimitiveValType::U32
| PrimitiveValType::Char => lowered_types.push(ValType::I32),
PrimitiveValType::S64 | PrimitiveValType::U64 => lowered_types.push(ValType::I64),
PrimitiveValType::F32 => lowered_types.push(ValType::F32),
PrimitiveValType::F64 => lowered_types.push(ValType::F64),
PrimitiveValType::String => {
lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32)
}
}
}
/// A trait shared by all type identifiers.
///
/// Any id that can be used to get a type from a `Types`.
//
// Or, internally, from a `TypeList`.
pub trait TypeIdentifier: core::fmt::Debug + Copy + Eq + Sized + 'static {
/// The data pointed to by this type of id.
type Data: TypeData<Id = Self>;
/// Create a type id from an index.
#[doc(hidden)]
fn from_index(index: u32) -> Self;
/// Get a shared reference to the list where this id's type data is stored
/// within.
#[doc(hidden)]
fn list(types: &TypeList) -> &SnapshotList<Self::Data>;
/// Get an exclusive reference to the list where this id's type data is
/// stored within.
#[doc(hidden)]
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data>;
/// The raw index of this id.
#[doc(hidden)]
fn index(&self) -> usize;
}
/// A trait shared by all types within a `Types`.
///
/// This is the data that can be retreived by indexing with the associated
/// [`TypeIdentifier`].
pub trait TypeData: core::fmt::Debug {
/// The identifier for this type data.
type Id: TypeIdentifier<Data = Self>;
/// Get the info for this type.
#[doc(hidden)]
fn type_info(&self, types: &TypeList) -> TypeInfo;
}
/// A type that can be aliased in the component model.
pub trait Aliasable {
#[doc(hidden)]
fn alias_id(&self) -> u32;
#[doc(hidden)]
fn set_alias_id(&mut self, alias_id: u32);
}
/// A fresh alias id that means the entity is not an alias of anything.
///
/// Note that the `TypeList::alias_counter` starts at zero, so we can't use that
/// as this sentinel. The implementation limits are such that we can't ever
/// generate `u32::MAX` aliases, so we don't need to worryabout running into
/// this value in practice either.
const NO_ALIAS: u32 = u32::MAX;
macro_rules! define_type_id {
($name:ident, $data:ty, $list:ident, $type_str:expr) => {
#[doc = "Represents a unique identifier for a "]
#[doc = $type_str]
#[doc = " type known to a [`crate::Validator`]."]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)] // Use fixed field layout to ensure minimal size.
pub struct $name {
/// The index into the associated list of types.
index: u32,
}
impl TypeIdentifier for $name {
type Data = $data;
fn from_index(index: u32) -> Self {
$name { index }
}
fn list(types: &TypeList) -> &SnapshotList<Self::Data> {
&types.$list
}
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data> {
&mut types.$list
}
fn index(&self) -> usize {
usize::try_from(self.index).unwrap()
}
}
impl Aliasable for $name {
fn alias_id(&self) -> u32 {
NO_ALIAS
}
fn set_alias_id(&mut self, _: u32) {}
}
// The size of type IDs was seen to have a large-ish impact in #844, so
// this assert ensures that it stays relatively small.
const _: () = {
assert!(core::mem::size_of::<$name>() <= 4);
};
};
}
/// A core WebAssembly type, in the core WebAssembly types index space.
pub enum CoreType {
/// A sub type.
Sub(SubType),
/// A module type.
///
/// Does not actually appear in core Wasm at the moment. Only used for the
/// core types index space within components.
Module(ModuleType),
}
/// Represents a unique identifier for a core type type known to a
/// [`crate::Validator`]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub struct CoreTypeId {
index: u32,
}
const _: () = {
assert!(core::mem::size_of::<CoreTypeId>() <= 4);
};
impl TypeIdentifier for CoreTypeId {
type Data = SubType;
fn from_index(index: u32) -> Self {
CoreTypeId { index }
}
fn list(types: &TypeList) -> &SnapshotList<Self::Data> {
&types.core_types
}
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data> {
&mut types.core_types
}
fn index(&self) -> usize {
usize::try_from(self.index).unwrap()
}
}
impl TypeData for SubType {
type Id = CoreTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
// TODO(#1036): calculate actual size for func, array, struct.
let size = 1 + match &self.composite_type.inner {
CompositeInnerType::Func(ty) => 1 + (ty.params().len() + ty.results().len()) as u32,
CompositeInnerType::Array(_) => 2,
CompositeInnerType::Struct(ty) => 1 + 2 * ty.fields.len() as u32,
};
// TODO: handle shared?
TypeInfo::core(size)
}
}
impl CoreType {
/// Get the underlying `SubType` or panic.
pub fn unwrap_sub(&self) -> &SubType {
match self {
CoreType::Sub(s) => s,
CoreType::Module(_) => panic!("`unwrap_sub` on module type"),
}
}
/// Get the underlying `FuncType` within this `SubType` or panic.
pub fn unwrap_func(&self) -> &FuncType {
match &self.unwrap_sub().composite_type.inner {
CompositeInnerType::Func(f) => f,
CompositeInnerType::Array(_) | CompositeInnerType::Struct(_) => {
panic!("`unwrap_func` on non-func composite type")
}
}
}
/// Get the underlying `ModuleType` or panic.
pub fn unwrap_module(&self) -> &ModuleType {
match self {
CoreType::Module(m) => m,
CoreType::Sub(_) => panic!("`unwrap_module` on a subtype"),
}
}
}
macro_rules! define_wrapper_id {
(
$(#[$outer_attrs:meta])*
pub enum $name:ident {
$(
#[unwrap = $unwrap:ident]
$(#[$inner_attrs:meta])*
$variant:ident ( $inner:ty ) ,
)*
}
) => {
$(#[$outer_attrs])*
pub enum $name {
$(
$(#[$inner_attrs])*
$variant ( $inner ) ,
)*
}
$(
impl From<$inner> for $name {
#[inline]
fn from(x: $inner) -> Self {
Self::$variant(x)
}
}
impl TryFrom<$name> for $inner {
type Error = ();
#[inline]
fn try_from(x: $name) -> Result<Self, Self::Error> {
match x {
$name::$variant(x) => Ok(x),
_ => Err(())
}
}
}
)*
impl $name {
$(
#[doc = "Unwrap a `"]
#[doc = stringify!($inner)]
#[doc = "` or panic."]
#[inline]
pub fn $unwrap(self) -> $inner {
<$inner>::try_from(self).unwrap()
}
)*
}
};
}
macro_rules! define_transitive_conversions {
(
$(
$outer:ty,
$middle:ty,
$inner:ty,
$unwrap:ident;
)*
) => {
$(
impl From<$inner> for $outer {
#[inline]
fn from(x: $inner) -> Self {
<$middle>::from(x).into()
}
}
impl TryFrom<$outer> for $inner {
type Error = ();
#[inline]
fn try_from(x: $outer) -> Result<Self, Self::Error> {
let middle = <$middle>::try_from(x)?;
<$inner>::try_from(middle)
}
}
impl $outer {
#[doc = "Unwrap a `"]
#[doc = stringify!($inner)]
#[doc = "` or panic."]
#[inline]
pub fn $unwrap(self) -> $inner {
<$inner>::try_from(self).unwrap()
}
}
)*
};
}
define_wrapper_id! {
/// An identifier pointing to any kind of type, component or core.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum AnyTypeId {
#[unwrap = unwrap_component_core_type]
/// A core type.
Core(ComponentCoreTypeId),
#[unwrap = unwrap_component_any_type]
/// A component type.
Component(ComponentAnyTypeId),
}
}
define_transitive_conversions! {
AnyTypeId, ComponentCoreTypeId, CoreTypeId, unwrap_core_type;
AnyTypeId, ComponentCoreTypeId, ComponentCoreModuleTypeId, unwrap_component_core_module_type;
AnyTypeId, ComponentAnyTypeId, AliasableResourceId, unwrap_aliasable_resource;
AnyTypeId, ComponentAnyTypeId, ComponentDefinedTypeId, unwrap_component_defined_type;
AnyTypeId, ComponentAnyTypeId, ComponentFuncTypeId, unwrap_component_func_type;
AnyTypeId, ComponentAnyTypeId, ComponentInstanceTypeId, unwrap_component_instance_type;
AnyTypeId, ComponentAnyTypeId, ComponentTypeId, unwrap_component_type;
}
impl AnyTypeId {
/// Peel off one layer of aliasing from this type and return the aliased
/// inner type, or `None` if this type is not aliasing anything.
pub fn peel_alias(&self, types: &Types) -> Option<Self> {
match *self {
Self::Core(id) => id.peel_alias(types).map(Self::Core),
Self::Component(id) => types.peel_alias(id).map(Self::Component),
}
}
}
define_wrapper_id! {
/// An identifier for a core type or a core module's type.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum ComponentCoreTypeId {
#[unwrap = unwrap_sub]
/// A core type.
Sub(CoreTypeId),
#[unwrap = unwrap_module]
/// A core module's type.
Module(ComponentCoreModuleTypeId),
}
}
impl ComponentCoreTypeId {
/// Peel off one layer of aliasing from this type and return the aliased
/// inner type, or `None` if this type is not aliasing anything.
pub fn peel_alias(&self, types: &Types) -> Option<Self> {
match *self {
Self::Sub(_) => None,
Self::Module(id) => types.peel_alias(id).map(Self::Module),
}
}
}
/// An aliasable resource identifier.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct AliasableResourceId {
id: ResourceId,
alias_id: u32,
}
impl Aliasable for AliasableResourceId {
fn alias_id(&self) -> u32 {
self.alias_id
}
fn set_alias_id(&mut self, alias_id: u32) {
self.alias_id = alias_id;
}
}
impl AliasableResourceId {
/// Create a new instance with the specified resource ID and `self`'s alias
/// ID.
pub fn with_resource_id(&self, id: ResourceId) -> Self {
Self {
id,
alias_id: self.alias_id,
}
}
/// Get the underlying resource.
pub fn resource(&self) -> ResourceId {
self.id
}
pub(crate) fn resource_mut(&mut self) -> &mut ResourceId {
&mut self.id
}
}
define_wrapper_id! {
/// An identifier for any kind of component type.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum ComponentAnyTypeId {
#[unwrap = unwrap_resource]
/// The type is a resource with the specified id.
Resource(AliasableResourceId),
#[unwrap = unwrap_defined]
/// The type is a defined type with the specified id.
Defined(ComponentDefinedTypeId),
#[unwrap = unwrap_func]
/// The type is a function type with the specified id.
Func(ComponentFuncTypeId),
#[unwrap = unwrap_instance]
/// The type is an instance type with the specified id.
Instance(ComponentInstanceTypeId),
#[unwrap = unwrap_component]
/// The type is a component type with the specified id.
Component(ComponentTypeId),
}
}
impl Aliasable for ComponentAnyTypeId {
fn alias_id(&self) -> u32 {
match self {
ComponentAnyTypeId::Resource(x) => x.alias_id(),
ComponentAnyTypeId::Defined(x) => x.alias_id(),
ComponentAnyTypeId::Func(x) => x.alias_id(),
ComponentAnyTypeId::Instance(x) => x.alias_id(),
ComponentAnyTypeId::Component(x) => x.alias_id(),
}
}
fn set_alias_id(&mut self, alias_id: u32) {
match self {
ComponentAnyTypeId::Resource(x) => x.set_alias_id(alias_id),
ComponentAnyTypeId::Defined(x) => x.set_alias_id(alias_id),
ComponentAnyTypeId::Func(x) => x.set_alias_id(alias_id),
ComponentAnyTypeId::Instance(x) => x.set_alias_id(alias_id),
ComponentAnyTypeId::Component(x) => x.set_alias_id(alias_id),
}
}
}
impl ComponentAnyTypeId {
pub(crate) fn info(&self, types: &TypeList) -> TypeInfo {
match *self {
Self::Resource(_) => TypeInfo::new(),
Self::Defined(id) => types[id].type_info(types),
Self::Func(id) => types[id].type_info(types),
Self::Instance(id) => types[id].type_info(types),
Self::Component(id) => types[id].type_info(types),
}
}
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Resource(_) => "resource",
Self::Defined(_) => "defined type",
Self::Func(_) => "func",
Self::Instance(_) => "instance",
Self::Component(_) => "component",
}
}
}
define_type_id!(
RecGroupId,
Range<CoreTypeId>,
rec_group_elements,
"recursion group"
);
impl TypeData for Range<CoreTypeId> {
type Id = RecGroupId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
let size = self.end.index() - self.start.index();
TypeInfo::core(u32::try_from(size).unwrap())
}
}
define_type_id!(ComponentTypeId, ComponentType, components, "component");
define_type_id!(
ComponentValueTypeId,
ComponentValType,
component_values,
"component value"
);
define_type_id!(
ComponentInstanceTypeId,
ComponentInstanceType,
component_instances,
"component instance"
);
define_type_id!(
ComponentFuncTypeId,
ComponentFuncType,
component_funcs,
"component function"
);
define_type_id!(
ComponentCoreInstanceTypeId,
InstanceType,
core_instances,
"component's core instance"
);
define_type_id!(
ComponentCoreModuleTypeId,
ModuleType,
core_modules,
"component's core module"
);
/// Represents a unique identifier for a component type type known to a
/// [`crate::Validator`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub struct ComponentDefinedTypeId {
index: u32,
alias_id: u32,
}
const _: () = {
assert!(core::mem::size_of::<ComponentDefinedTypeId>() <= 8);
};
impl TypeIdentifier for ComponentDefinedTypeId {
type Data = ComponentDefinedType;
fn from_index(index: u32) -> Self {
ComponentDefinedTypeId {
index,
alias_id: NO_ALIAS,
}
}
fn list(types: &TypeList) -> &SnapshotList<Self::Data> {
&types.component_defined_types
}
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data> {
&mut types.component_defined_types
}
fn index(&self) -> usize {
usize::try_from(self.index).unwrap()
}
}
impl Aliasable for ComponentDefinedTypeId {
fn alias_id(&self) -> u32 {
self.alias_id
}
fn set_alias_id(&mut self, alias_id: u32) {
self.alias_id = alias_id;
}
}
/// Metadata about a type and its transitive structure.
///
/// Currently contains two properties:
///
/// * The "size" of a type - a proxy to the recursive size of a type if
/// everything in the type were unique (e.g. no shared references). Not an
/// approximation of runtime size, but instead of type-complexity size if
/// someone were to visit each element of the type individually. For example
/// `u32` has size 1 and `(list u32)` has size 2 (roughly). Used to prevent
/// massive trees of types.
///
/// * Whether or not a type contains a "borrow" transitively inside of it. For
/// example `(borrow $t)` and `(list (borrow $t))` both contain borrows, but
/// `(list u32)` does not. Used to validate that component function results do
/// not contain borrows.
///
/// Currently this is represented as a compact 32-bit integer to ensure that
/// `TypeId`, which this is stored in, remains relatively small. The maximum
/// type size allowed in wasmparser is 1M at this time which is 20 bits of
/// information, and then one more bit is used for whether or not a borrow is
/// used. Currently this uses the low 24 bits for the type size and the MSB for
/// the borrow bit.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
pub struct TypeInfo(u32);
impl TypeInfo {
/// Creates a new blank set of type information.
///
/// Defaults to size 1 to ensure that this consumes space in the final type
/// structure.
pub(crate) fn new() -> TypeInfo {
TypeInfo::_new(1, false)
}
/// Creates a new blank set of information about a leaf "borrow" type which
/// has size 1.
pub(crate) fn borrow() -> TypeInfo {
TypeInfo::_new(1, true)
}
/// Creates type information corresponding to a core type of the `size`
/// specified, meaning no borrows are contained within.
pub(crate) fn core(size: u32) -> TypeInfo {
TypeInfo::_new(size, false)
}
fn _new(size: u32, contains_borrow: bool) -> TypeInfo {
assert!(size < (1 << 24));
TypeInfo(size | ((contains_borrow as u32) << 31))
}
/// Combines another set of type information into this one, for example if
/// this is a record which has `other` as a field.
///
/// Updates the size of `self` and whether or not this type contains a
/// borrow based on whether `other` contains a borrow.
///
/// Returns an error if the type size would exceed this crate's static limit
/// of a type size.
pub(crate) fn combine(&mut self, other: TypeInfo, offset: usize) -> Result<()> {
*self = TypeInfo::_new(
super::combine_type_sizes(self.size(), other.size(), offset)?,
self.contains_borrow() || other.contains_borrow(),
);
Ok(())
}
pub(crate) fn size(&self) -> u32 {
self.0 & 0xffffff
}
pub(crate) fn contains_borrow(&self) -> bool {
(self.0 >> 31) != 0
}
}
/// A component value type.
#[derive(Debug, Clone, Copy)]
pub enum ComponentValType {
/// The value type is one of the primitive types.
Primitive(PrimitiveValType),
/// The type is represented with the given type identifier.
Type(ComponentDefinedTypeId),
}
impl TypeData for ComponentValType {
type Id = ComponentValueTypeId;
fn type_info(&self, types: &TypeList) -> TypeInfo {
match self {
ComponentValType::Primitive(_) => TypeInfo::new(),
ComponentValType::Type(id) => types[*id].type_info(types),
}
}
}
impl ComponentValType {
pub(crate) fn contains_ptr(&self, types: &TypeList) -> bool {
match self {
ComponentValType::Primitive(ty) => ty.contains_ptr(),
ComponentValType::Type(ty) => types[*ty].contains_ptr(types),
}
}
fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
match self {
Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
Self::Type(id) => types[*id].push_wasm_types(types, lowered_types),
}
}
pub(crate) fn info(&self, types: &TypeList) -> TypeInfo {
match self {
Self::Primitive(_) => TypeInfo::new(),
Self::Type(id) => types[*id].type_info(types),
}
}
}
/// The entity type for imports and exports of a module.
#[derive(Debug, Clone, Copy)]
pub enum EntityType {
/// The entity is a function.
Func(CoreTypeId),
/// The entity is a table.
Table(TableType),
/// The entity is a memory.
Memory(MemoryType),
/// The entity is a global.
Global(GlobalType),
/// The entity is a tag.
Tag(CoreTypeId),
}
impl EntityType {
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Func(_) => "func",
Self::Table(_) => "table",
Self::Memory(_) => "memory",
Self::Global(_) => "global",
Self::Tag(_) => "tag",
}
}
pub(crate) fn info(&self, types: &TypeList) -> TypeInfo {
match self {
Self::Func(id) | Self::Tag(id) => types[*id].type_info(types),
Self::Table(_) | Self::Memory(_) | Self::Global(_) => TypeInfo::new(),
}
}
}
trait ModuleImportKey {
fn module(&self) -> &str;
fn name(&self) -> &str;
}
impl<'a> Borrow<dyn ModuleImportKey + 'a> for (String, String) {
fn borrow(&self) -> &(dyn ModuleImportKey + 'a) {
self
}
}
impl Hash for (dyn ModuleImportKey + '_) {
fn hash<H: Hasher>(&self, state: &mut H) {
self.module().hash(state);
self.name().hash(state);
}
}
impl PartialEq for (dyn ModuleImportKey + '_) {
fn eq(&self, other: &Self) -> bool {
self.module() == other.module() && self.name() == other.name()
}
}
impl Eq for (dyn ModuleImportKey + '_) {}
impl Ord for (dyn ModuleImportKey + '_) {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
match self.module().cmp(other.module()) {
core::cmp::Ordering::Equal => (),
order => return order,
};
self.name().cmp(other.name())
}
}
impl PartialOrd for (dyn ModuleImportKey + '_) {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl ModuleImportKey for (String, String) {
fn module(&self) -> &str {
&self.0
}
fn name(&self) -> &str {
&self.1
}
}
impl ModuleImportKey for (&str, &str) {
fn module(&self) -> &str {
self.0
}
fn name(&self) -> &str {
self.1
}
}
/// Represents a core module type.
#[derive(Debug, Clone)]
pub struct ModuleType {
/// Metadata about this module type
pub(crate) info: TypeInfo,
/// The imports of the module type.
pub imports: IndexMap<(String, String), EntityType>,
/// The exports of the module type.
pub exports: IndexMap<String, EntityType>,
}
impl TypeData for ModuleType {
type Id = ComponentCoreModuleTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
self.info
}
}
impl ModuleType {
/// Looks up an import by its module and name.
///
/// Returns `None` if the import was not found.
pub fn lookup_import(&self, module: &str, name: &str) -> Option<&EntityType> {
self.imports.get(&(module, name) as &dyn ModuleImportKey)
}
}
/// Represents the kind of module instance type.
#[derive(Debug, Clone)]
pub enum CoreInstanceTypeKind {
/// The instance type is the result of instantiating a module type.
Instantiated(ComponentCoreModuleTypeId),
/// The instance type is the result of instantiating from exported items.
Exports(IndexMap<String, EntityType>),
}
/// Represents a module instance type.
#[derive(Debug, Clone)]
pub struct InstanceType {
/// Metadata about this instance type
pub(crate) info: TypeInfo,
/// The kind of module instance type.
pub kind: CoreInstanceTypeKind,
}
impl TypeData for InstanceType {
type Id = ComponentCoreInstanceTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
self.info
}
}
impl InstanceType {
/// Gets the exports of the instance type.
pub fn exports<'a>(&'a self, types: TypesRef<'a>) -> &'a IndexMap<String, EntityType> {
self.internal_exports(types.list)
}
pub(crate) fn internal_exports<'a>(
&'a self,
types: &'a TypeList,
) -> &'a IndexMap<String, EntityType> {
match &self.kind {
CoreInstanceTypeKind::Instantiated(id) => &types[*id].exports,
CoreInstanceTypeKind::Exports(exports) => exports,
}
}
}
/// The entity type for imports and exports of a component.
#[derive(Debug, Clone, Copy)]
pub enum ComponentEntityType {
/// The entity is a core module.
Module(ComponentCoreModuleTypeId),
/// The entity is a function.
Func(ComponentFuncTypeId),
/// The entity is a value.
Value(ComponentValType),
/// The entity is a type.
Type {
/// This is the identifier of the type that was referenced when this
/// entity was created.
referenced: ComponentAnyTypeId,
/// This is the identifier of the type that was created when this type
/// was imported or exported from the component.
///
/// Note that the underlying type information for the `referenced`
/// field and for this `created` field is the same, but these two types
/// will hash to different values.
created: ComponentAnyTypeId,
},
/// The entity is a component instance.
Instance(ComponentInstanceTypeId),
/// The entity is a component.
Component(ComponentTypeId),
}
impl ComponentEntityType {
/// Determines if component entity type `a` is a subtype of `b`.
pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
SubtypeCx::new(at.list, bt.list)
.component_entity_type(a, b, 0)
.is_ok()
}
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Module(_) => "module",
Self::Func(_) => "func",
Self::Value(_) => "value",
Self::Type { .. } => "type",
Self::Instance(_) => "instance",
Self::Component(_) => "component",
}
}
pub(crate) fn info(&self, types: &TypeList) -> TypeInfo {
match self {
Self::Module(ty) => types[*ty].type_info(types),
Self::Func(ty) => types[*ty].type_info(types),
Self::Type { referenced: ty, .. } => ty.info(types),
Self::Instance(ty) => types[*ty].type_info(types),
Self::Component(ty) => types[*ty].type_info(types),
Self::Value(ty) => ty.info(types),
}
}
}
/// Represents a type of a component.
#[derive(Debug, Clone)]
pub struct ComponentType {
/// Metadata about this component type
pub(crate) info: TypeInfo,
/// The imports of the component type.
///
/// Each import has its own kebab-name and an optional URL listed. Note that
/// the set of import names is disjoint with the set of export names.
pub imports: IndexMap<String, ComponentEntityType>,
/// The exports of the component type.
///
/// Each export has its own kebab-name and an optional URL listed. Note that
/// the set of export names is disjoint with the set of import names.
pub exports: IndexMap<String, ComponentEntityType>,
/// Universally quantified resources required to be provided when
/// instantiating this component type.
///
/// Each resource in this map is explicitly imported somewhere in the
/// `imports` map. The "path" to where it's imported is specified by the
/// `Vec<usize>` payload here. For more information about the indexes see
/// the documentation on `ComponentState::imported_resources`.
///
/// This should technically be inferrable from the structure of `imports`,
/// but it's stored as an auxiliary set for subtype checking and
/// instantiation.
///
/// Note that this is not a set of all resources referred to by the
/// `imports`. Instead it's only those created, relative to the internals of
/// this component, by the imports.
pub imported_resources: Vec<(ResourceId, Vec<usize>)>,
/// The dual of the `imported_resources`, or the set of defined
/// resources -- those created through the instantiation process which are
/// unique to this component.
///
/// This set is similar to the `imported_resources` set but it's those
/// contained within the `exports`. Instantiating this component will
/// create fresh new versions of all of these resources. The path here is
/// within the `exports` array.
pub defined_resources: Vec<(ResourceId, Vec<usize>)>,
/// The set of all resources which are explicitly exported by this
/// component, and where they're exported.
///
/// This mapping is stored separately from `defined_resources` to ensure
/// that it contains all exported resources, not just those which are
/// defined. That means that this can cover reexports of imported
/// resources, exports of local resources, or exports of closed-over
/// resources for example.
pub explicit_resources: IndexMap<ResourceId, Vec<usize>>,
}
impl TypeData for ComponentType {
type Id = ComponentTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
self.info
}
}
/// Represents a type of a component instance.
#[derive(Debug, Clone)]
pub struct ComponentInstanceType {
/// Metadata about this instance type
pub(crate) info: TypeInfo,
/// The list of exports, keyed by name, that this instance has.
///
/// An optional URL and type of each export is provided as well.
pub exports: IndexMap<String, ComponentEntityType>,
/// The list of "defined resources" or those which are closed over in
/// this instance type.
///
/// This list is populated, for example, when the type of an instance is
/// declared and it contains its own resource type exports defined
/// internally. For example:
///
/// ```wasm
/// (component
/// (type (instance
/// (export "x" (type sub resource)) ;; one `defined_resources` entry
/// ))
/// )
/// ```
///
/// This list is also a bit of an oddity, however, because the type of a
/// concrete instance will always have this as empty. For example:
///
/// ```wasm
/// (component
/// (type $t (instance (export "x" (type sub resource))))
///
/// ;; the type of this instance has no defined resources
/// (import "i" (instance (type $t)))
/// )
/// ```
///
/// This list ends up only being populated for instance types declared in a
/// module which aren't yet "attached" to anything. Once something is
/// instantiated, imported, exported, or otherwise refers to a concrete
/// instance then this list is always empty. For concrete instances
/// defined resources are tracked in the component state or component type.
pub defined_resources: Vec<ResourceId>,
/// The list of all resources that are explicitly exported from this
/// instance type along with the path they're exported at.
pub explicit_resources: IndexMap<ResourceId, Vec<usize>>,
}
impl TypeData for ComponentInstanceType {
type Id = ComponentInstanceTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
self.info
}
}
/// Represents a type of a component function.
#[derive(Debug, Clone)]
pub struct ComponentFuncType {
/// Metadata about this function type.
pub(crate) info: TypeInfo,
/// The function parameters.
pub params: Box<[(KebabString, ComponentValType)]>,
/// The function's results.
pub results: Box<[(Option<KebabString>, ComponentValType)]>,
}
impl TypeData for ComponentFuncType {
type Id = ComponentFuncTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
self.info
}
}
impl ComponentFuncType {
/// Lowers the component function type to core parameter and result types for the
/// canonical ABI.
pub(crate) fn lower(&self, types: &TypeList, is_lower: bool) -> LoweringInfo {
let mut info = LoweringInfo::default();
for (_, ty) in self.params.iter() {
// Check to see if `ty` has a pointer somewhere in it, needed for
// any type that transitively contains either a string or a list.
// In this situation lowered functions must specify `memory`, and
// lifted functions must specify `realloc` as well. Lifted functions
// gain their memory requirement through the final clause of this
// function.
if is_lower {
if !info.requires_memory {
info.requires_memory = ty.contains_ptr(types);
}
} else {
if !info.requires_realloc {
info.requires_realloc = ty.contains_ptr(types);
}
}
if !ty.push_wasm_types(types, &mut info.params) {
// Too many parameters to pass directly
// Function will have a single pointer parameter to pass the arguments
// via linear memory
info.params.clear();
assert!(info.params.push(ValType::I32));
info.requires_memory = true;
// We need realloc as well when lifting a function
if !is_lower {
info.requires_realloc = true;
}
break;
}
}
for (_, ty) in self.results.iter() {
// Results of lowered functions that contains pointers must be
// allocated by the callee meaning that realloc is required.
// Results of lifted function are allocated by the guest which
// means that no realloc option is necessary.
if is_lower && !info.requires_realloc {
info.requires_realloc = ty.contains_ptr(types);
}
if !ty.push_wasm_types(types, &mut info.results) {
// Too many results to return directly, either a retptr parameter will be used (import)
// or a single pointer will be returned (export)
info.results.clear();
if is_lower {
info.params.max = MAX_LOWERED_TYPES;
assert!(info.params.push(ValType::I32));
} else {
assert!(info.results.push(ValType::I32));
}
info.requires_memory = true;
break;
}
}
// Memory is always required when realloc is required
info.requires_memory |= info.requires_realloc;
info
}
}
/// Represents a variant case.
#[derive(Debug, Clone)]
pub struct VariantCase {
/// The variant case type.
pub ty: Option<ComponentValType>,
/// The name of the variant case refined by this one.
pub refines: Option<KebabString>,
}
/// Represents a record type.
#[derive(Debug, Clone)]
pub struct RecordType {
/// Metadata about this record type.
pub(crate) info: TypeInfo,
/// The map of record fields.
pub fields: IndexMap<KebabString, ComponentValType>,
}
/// Represents a variant type.
#[derive(Debug, Clone)]
pub struct VariantType {
/// Metadata about this variant type.
pub(crate) info: TypeInfo,
/// The map of variant cases.
pub cases: IndexMap<KebabString, VariantCase>,
}
/// Represents a tuple type.
#[derive(Debug, Clone)]
pub struct TupleType {
/// Metadata about this tuple type.
pub(crate) info: TypeInfo,
/// The types of the tuple.
pub types: Box<[ComponentValType]>,
}
/// Represents a component defined type.
#[derive(Debug, Clone)]
pub enum ComponentDefinedType {
/// The type is a primitive value type.
Primitive(PrimitiveValType),
/// The type is a record.
Record(RecordType),
/// The type is a variant.
Variant(VariantType),
/// The type is a list.
List(ComponentValType),
/// The type is a tuple.
Tuple(TupleType),
/// The type is a set of flags.
Flags(IndexSet<KebabString>),
/// The type is an enumeration.
Enum(IndexSet<KebabString>),
/// The type is an `option`.
Option(ComponentValType),
/// The type is a `result`.
Result {
/// The `ok` type.
ok: Option<ComponentValType>,
/// The `error` type.
err: Option<ComponentValType>,
},
/// The type is an owned handle to the specified resource.
Own(AliasableResourceId),
/// The type is a borrowed handle to the specified resource.
Borrow(AliasableResourceId),
}
impl TypeData for ComponentDefinedType {
type Id = ComponentDefinedTypeId;
fn type_info(&self, types: &TypeList) -> TypeInfo {
match self {
Self::Primitive(_) | Self::Flags(_) | Self::Enum(_) | Self::Own(_) => TypeInfo::new(),
Self::Borrow(_) => TypeInfo::borrow(),
Self::Record(r) => r.info,
Self::Variant(v) => v.info,
Self::Tuple(t) => t.info,
Self::List(ty) | Self::Option(ty) => ty.info(types),
Self::Result { ok, err } => {
let default = TypeInfo::new();
let mut info = ok.map(|ty| ty.type_info(types)).unwrap_or(default);
info.combine(err.map(|ty| ty.type_info(types)).unwrap_or(default), 0)
.unwrap();
info
}
}
}
}
impl ComponentDefinedType {
pub(crate) fn contains_ptr(&self, types: &TypeList) -> bool {
match self {
Self::Primitive(ty) => ty.contains_ptr(),
Self::Record(r) => r.fields.values().any(|ty| ty.contains_ptr(types)),
Self::Variant(v) => v
.cases
.values()
.any(|case| case.ty.map(|ty| ty.contains_ptr(types)).unwrap_or(false)),
Self::List(_) => true,
Self::Tuple(t) => t.types.iter().any(|ty| ty.contains_ptr(types)),
Self::Flags(_) | Self::Enum(_) | Self::Own(_) | Self::Borrow(_) => false,
Self::Option(ty) => ty.contains_ptr(types),
Self::Result { ok, err } => {
ok.map(|ty| ty.contains_ptr(types)).unwrap_or(false)
|| err.map(|ty| ty.contains_ptr(types)).unwrap_or(false)
}
}
}
fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
match self {
Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
Self::Record(r) => r
.fields
.iter()
.all(|(_, ty)| ty.push_wasm_types(types, lowered_types)),
Self::Variant(v) => Self::push_variant_wasm_types(
v.cases.iter().filter_map(|(_, case)| case.ty.as_ref()),
types,
lowered_types,
),
Self::List(_) => lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32),
Self::Tuple(t) => t
.types
.iter()
.all(|ty| ty.push_wasm_types(types, lowered_types)),
Self::Flags(names) => {
(0..(names.len() + 31) / 32).all(|_| lowered_types.push(ValType::I32))
}
Self::Enum(_) | Self::Own(_) | Self::Borrow(_) => lowered_types.push(ValType::I32),
Self::Option(ty) => {
Self::push_variant_wasm_types([ty].into_iter(), types, lowered_types)
}
Self::Result { ok, err } => {
Self::push_variant_wasm_types(ok.iter().chain(err.iter()), types, lowered_types)
}
}
}
fn push_variant_wasm_types<'a>(
cases: impl Iterator<Item = &'a ComponentValType>,
types: &TypeList,
lowered_types: &mut LoweredTypes,
) -> bool {
// Push the discriminant
if !lowered_types.push(ValType::I32) {
return false;
}
let start = lowered_types.len();
for ty in cases {
let mut temp = LoweredTypes::new(lowered_types.max);
if !ty.push_wasm_types(types, &mut temp) {
return false;
}
for (i, ty) in temp.iter().enumerate() {
match lowered_types.get_mut(start + i) {
Some(prev) => *prev = Self::join_types(*prev, ty),
None => {
if !lowered_types.push(ty) {
return false;
}
}
}
}
}
true
}
fn join_types(a: ValType, b: ValType) -> ValType {
use ValType::*;
match (a, b) {
(I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => a,
(I32, F32) | (F32, I32) => I32,
(_, I64 | F64) | (I64 | F64, _) => I64,
_ => panic!("unexpected wasm type for canonical ABI"),
}
}
fn desc(&self) -> &'static str {
match self {
ComponentDefinedType::Record(_) => "record",
ComponentDefinedType::Primitive(_) => "primitive",
ComponentDefinedType::Variant(_) => "variant",
ComponentDefinedType::Tuple(_) => "tuple",
ComponentDefinedType::Enum(_) => "enum",
ComponentDefinedType::Flags(_) => "flags",
ComponentDefinedType::Option(_) => "option",
ComponentDefinedType::List(_) => "list",
ComponentDefinedType::Result { .. } => "result",
ComponentDefinedType::Own(_) => "own",
ComponentDefinedType::Borrow(_) => "borrow",
}
}
}
/// An opaque identifier intended to be used to distinguish whether two
/// resource types are equivalent or not.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, Copy)]
#[repr(packed(4))] // try to not waste 4 bytes in padding
pub struct ResourceId {
// This is a globally unique identifier which is assigned once per
// `TypeAlloc`. This ensures that resource identifiers from different
// instances of `Types`, for example, are considered unique.
//
// Technically 64-bits should be enough for all resource ids ever, but
// they're allocated so often it's predicted that an atomic increment
// per resource id is probably too expensive. To amortize that cost each
// top-level wasm component gets a single globally unique identifier, and
// then within a component contextually unique identifiers are handed out.
globally_unique_id: usize,
// A contextually unique id within the globally unique id above. This is
// allocated within a `TypeAlloc` with its own counter, and allocations of
// this are cheap as nothing atomic is required.
//
// The 32-bit storage here should ideally be enough for any component
// containing resources. If memory usage becomes an issue (this struct is
// 12 bytes instead of 8 or 4) then this could get folded into the globally
// unique id with everything using an atomic increment perhaps.
contextually_unique_id: u32,
}
#[allow(clippy::large_enum_variant)]
enum TypesKind {
Module(Arc<Module>),
Component(ComponentState),
}
/// Represents the types known to a [`crate::Validator`] once validation has completed.
///
/// The type information is returned via the [`crate::Validator::end`] method.
pub struct Types {
id: ValidatorId,
list: TypeList,
kind: TypesKind,
}
#[derive(Clone, Copy)]
enum TypesRefKind<'a> {
Module(&'a Module),
Component(&'a ComponentState),
}
/// Represents the types known to a [`crate::Validator`] during validation.
///
/// Retrieved via the [`crate::Validator::types`] method.
#[derive(Clone, Copy)]
pub struct TypesRef<'a> {
id: ValidatorId,
list: &'a TypeList,
kind: TypesRefKind<'a>,
}
impl<'a> TypesRef<'a> {
pub(crate) fn from_module(id: ValidatorId, types: &'a TypeList, module: &'a Module) -> Self {
Self {
id,
list: types,
kind: TypesRefKind::Module(module),
}
}
pub(crate) fn from_component(
id: ValidatorId,
types: &'a TypeList,
component: &'a ComponentState,
) -> Self {
Self {
id,
list: types,
kind: TypesRefKind::Component(component),
}
}
/// Get the id of the validator that these types are associated with.
#[inline]
pub fn id(&self) -> ValidatorId {
self.id
}
/// Gets a type based on its type id.
///
/// Returns `None` if the type id is unknown.
pub fn get<T>(&self, id: T) -> Option<&'a T::Data>
where
T: TypeIdentifier,
{
self.list.get(id)
}
/// Get the id of the rec group that the given type id was defined within.
pub fn rec_group_id_of(&self, id: CoreTypeId) -> RecGroupId {
self.list.rec_group_id_of(id)
}
/// Get the types within a rec group.
pub fn rec_group_elements(&self, id: RecGroupId) -> impl ExactSizeIterator<Item = CoreTypeId> {
let range = &self.list.rec_group_elements[id];
(range.start.index..range.end.index).map(|index| CoreTypeId { index })
}
/// Get the super type of the given type id, if any.
pub fn supertype_of(&self, id: CoreTypeId) -> Option<CoreTypeId> {
self.list.supertype_of(id)
}
/// Gets a core WebAssembly type id from a type index.
///
/// Note that this is in contrast to [`TypesRef::component_type_at`] which
/// gets a component type from its index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn core_type_at(&self, index: u32) -> ComponentCoreTypeId {
match &self.kind {
TypesRefKind::Module(module) => ComponentCoreTypeId::Sub(module.types[index as usize]),
TypesRefKind::Component(component) => component.core_types[index as usize],
}
}
/// Gets a type id from a type index.
///
/// # Panics
///
/// Panics if `index` is not a valid type index or if this type information
/// represents a core module.
pub fn component_any_type_at(&self, index: u32) -> ComponentAnyTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.types[index as usize],
}
}
/// Gets a component type id from a type index.
///
/// # Panics
///
/// Panics if `index` is not a valid component type index or if this type
/// information represents a core module.
pub fn component_type_at(&self, index: u32) -> ComponentTypeId {
match self.component_any_type_at(index) {
ComponentAnyTypeId::Component(id) => id,
_ => panic!("not a component type"),
}
}
/// Gets a type id from a type index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index or if this type
/// information represents a core module.
pub fn component_defined_type_at(&self, index: u32) -> ComponentDefinedTypeId {
match self.component_any_type_at(index) {
ComponentAnyTypeId::Defined(id) => id,
_ => panic!("not a defined type"),
}
}
/// Returns the number of core types defined so far.
pub fn core_type_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.types.len() as u32,
TypesRefKind::Component(component) => component.core_types.len() as u32,
}
}
/// Returns the number of component types defined so far.
pub fn component_type_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.types.len() as u32,
}
}
/// Gets the type of a table at the given table index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn table_at(&self, index: u32) -> TableType {
let tables = match &self.kind {
TypesRefKind::Module(module) => &module.tables,
TypesRefKind::Component(component) => &component.core_tables,
};
tables[index as usize]
}
/// Returns the number of tables defined so far.
pub fn table_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.tables.len() as u32,
TypesRefKind::Component(component) => component.core_tables.len() as u32,
}
}
/// Gets the type of a memory at the given memory index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn memory_at(&self, index: u32) -> MemoryType {
let memories = match &self.kind {
TypesRefKind::Module(module) => &module.memories,
TypesRefKind::Component(component) => &component.core_memories,
};
memories[index as usize]
}
/// Returns the number of memories defined so far.
pub fn memory_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.memories.len() as u32,
TypesRefKind::Component(component) => component.core_memories.len() as u32,
}
}
/// Gets the type of a global at the given global index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn global_at(&self, index: u32) -> GlobalType {
let globals = match &self.kind {
TypesRefKind::Module(module) => &module.globals,
TypesRefKind::Component(component) => &component.core_globals,
};
globals[index as usize]
}
/// Returns the number of globals defined so far.
pub fn global_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.globals.len() as u32,
TypesRefKind::Component(component) => component.core_globals.len() as u32,
}
}
/// Gets the type of a tag at the given tag index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn tag_at(&self, index: u32) -> CoreTypeId {
let tags = match &self.kind {
TypesRefKind::Module(module) => &module.tags,
TypesRefKind::Component(component) => &component.core_tags,
};
tags[index as usize]
}
/// Returns the number of tags defined so far.
pub fn tag_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.tags.len() as u32,
TypesRefKind::Component(component) => component.core_tags.len() as u32,
}
}
/// Gets the type of a core function at the given function index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn core_function_at(&self, index: u32) -> CoreTypeId {
match &self.kind {
TypesRefKind::Module(module) => module.types[module.functions[index as usize] as usize],
TypesRefKind::Component(component) => component.core_funcs[index as usize],
}
}
/// Gets the count of core functions defined so far.
///
/// Note that this includes imported functions, defined functions, and for
/// components lowered/aliased functions.
pub fn function_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.functions.len() as u32,
TypesRefKind::Component(component) => component.core_funcs.len() as u32,
}
}
/// Gets the type of an element segment at the given element segment index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn element_at(&self, index: u32) -> RefType {
match &self.kind {
TypesRefKind::Module(module) => module.element_types[index as usize],
TypesRefKind::Component(_) => {
panic!("no elements on a component")
}
}
}
/// Returns the number of elements defined so far.
pub fn element_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.element_types.len() as u32,
TypesRefKind::Component(_) => 0,
}
}
/// Gets the type of a component function at the given function index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_function_at(&self, index: u32) -> ComponentFuncTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.funcs[index as usize],
}
}
/// Returns the number of component functions defined so far.
pub fn component_function_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.funcs.len() as u32,
}
}
/// Gets the type of a module at the given module index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn module_at(&self, index: u32) -> ComponentCoreModuleTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.core_modules[index as usize],
}
}
/// Returns the number of core wasm modules defined so far.
pub fn module_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.core_modules.len() as u32,
}
}
/// Gets the type of a module instance at the given module instance index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn core_instance_at(&self, index: u32) -> ComponentCoreInstanceTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.core_instances[index as usize],
}
}
/// Returns the number of core wasm instances defined so far.
pub fn core_instance_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.core_instances.len() as u32,
}
}
/// Gets the type of a component at the given component index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_at(&self, index: u32) -> ComponentTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.components[index as usize],
}
}
/// Returns the number of components defined so far.
pub fn component_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.components.len() as u32,
}
}
/// Gets the type of an component instance at the given component instance index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_instance_at(&self, index: u32) -> ComponentInstanceTypeId {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.instances[index as usize],
}
}
/// Returns the number of component instances defined so far.
pub fn component_instance_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(_module) => 0,
TypesRefKind::Component(component) => component.instances.len() as u32,
}
}
/// Gets the type of a value at the given value index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn value_at(&self, index: u32) -> ComponentValType {
match &self.kind {
TypesRefKind::Module(_) => panic!("not a component"),
TypesRefKind::Component(component) => component.values[index as usize].0,
}
}
/// Gets the entity type for the given import.
pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match import.ty {
TypeRef::Func(idx) => EntityType::Func(*module.types.get(idx as usize)?),
TypeRef::Table(ty) => EntityType::Table(ty),
TypeRef::Memory(ty) => EntityType::Memory(ty),
TypeRef::Global(ty) => EntityType::Global(ty),
TypeRef::Tag(ty) => EntityType::Tag(*module.types.get(ty.func_type_idx as usize)?),
}),
TypesRefKind::Component(_) => None,
}
}
/// Gets the entity type from the given export.
pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match export.kind {
ExternalKind::Func => EntityType::Func(
module.types[*module.functions.get(export.index as usize)? as usize],
),
ExternalKind::Table => {
EntityType::Table(*module.tables.get(export.index as usize)?)
}
ExternalKind::Memory => {
EntityType::Memory(*module.memories.get(export.index as usize)?)
}
ExternalKind::Global => {
EntityType::Global(*module.globals.get(export.index as usize)?)
}
ExternalKind::Tag => EntityType::Tag(
module.types[*module.functions.get(export.index as usize)? as usize],
),
}),
TypesRefKind::Component(_) => None,
}
}
/// Gets the component entity type for the given component import.
pub fn component_entity_type_of_import(&self, name: &str) -> Option<ComponentEntityType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => Some(*component.imports.get(name)?),
}
}
/// Gets the component entity type for the given component export.
pub fn component_entity_type_of_export(&self, name: &str) -> Option<ComponentEntityType> {
match &self.kind {
TypesRefKind::Module(_) => None,
TypesRefKind::Component(component) => Some(*component.exports.get(name)?),
}
}
/// Attempts to lookup the type id that `ty` is an alias of.
///
/// Returns `None` if `ty` wasn't listed as aliasing a prior type.
pub fn peel_alias<T>(&self, ty: T) -> Option<T>
where
T: Aliasable,
{
self.list.peel_alias(ty)
}
/// Returns an iterator over the core wasm imports found.
///
/// Returns `None` if this type information is for a component.
pub fn core_imports(
&self,
) -> Option<impl Iterator<Item = (&'a str, &'a str, EntityType)> + 'a> {
match &self.kind {
TypesRefKind::Module(module) => Some(
module
.imports
.iter()
.flat_map(|((m, n), t)| t.iter().map(move |t| (m.as_str(), n.as_str(), *t))),
),
TypesRefKind::Component(_) => None,
}
}
/// Returns an iterator over the core wasm exports found.
///
/// Returns `None` if this type information is for a component.
pub fn core_exports(&self) -> Option<impl Iterator<Item = (&'a str, EntityType)> + 'a> {
match &self.kind {
TypesRefKind::Module(module) => {
Some(module.exports.iter().map(|(n, t)| (n.as_str(), *t)))
}
TypesRefKind::Component(_) => None,
}
}
}
impl<T> Index<T> for TypesRef<'_>
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, index: T) -> &Self::Output {
&self.list[index]
}
}
impl Types {
pub(crate) fn from_module(id: ValidatorId, types: TypeList, module: Arc<Module>) -> Self {
Self {
id,
list: types,
kind: TypesKind::Module(module),
}
}
pub(crate) fn from_component(
id: ValidatorId,
types: TypeList,
component: ComponentState,
) -> Self {
Self {
id,
list: types,
kind: TypesKind::Component(component),
}
}
/// Get the id of the validator that these types are associated with.
#[inline]
pub fn id(&self) -> ValidatorId {
self.id
}
/// Gets a reference to this validation type information.
pub fn as_ref(&self) -> TypesRef {
TypesRef {
id: self.id,
list: &self.list,
kind: match &self.kind {
TypesKind::Module(module) => TypesRefKind::Module(module),
TypesKind::Component(component) => TypesRefKind::Component(component),
},
}
}
/// Gets a type based on its type id.
///
/// Returns `None` if the type id is unknown.
pub fn get<T>(&self, id: T) -> Option<&T::Data>
where
T: TypeIdentifier,
{
self.as_ref().get(id)
}
/// Gets a core WebAssembly type at the given type index.
///
/// Note that this is in contrast to [`TypesRef::component_type_at`] which
/// gets a component type from its index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn core_type_at(&self, index: u32) -> ComponentCoreTypeId {
self.as_ref().core_type_at(index)
}
/// Gets a component WebAssembly type at the given type index.
///
/// Note that this is in contrast to [`TypesRef::core_type_at`] which gets a
/// core type from its index.
///
/// # Panics
///
/// Panics if `index` is not a valid type index.
pub fn component_any_type_at(&self, index: u32) -> ComponentAnyTypeId {
self.as_ref().component_any_type_at(index)
}
/// Gets a component type at the given type index.
///
/// # Panics
///
/// Panics if `index` is not a valid component type index.
pub fn component_type_at(&self, index: u32) -> ComponentTypeId {
self.as_ref().component_type_at(index)
}
/// Gets a component type from the given component type index.
///
/// # Panics
///
/// Panics if `index` is not a valid defined type index or if this type
/// information represents a core module.
pub fn component_defined_type_at(&self, index: u32) -> ComponentDefinedTypeId {
self.as_ref().component_defined_type_at(index)
}
/// Gets the count of core types.
pub fn type_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.types.len(),
TypesKind::Component(component) => component.core_types.len(),
}
}
/// Gets the type of a table at the given table index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn table_at(&self, index: u32) -> TableType {
self.as_ref().table_at(index)
}
/// Gets the count of imported and defined tables.
pub fn table_count(&self) -> usize {
match &self.kind {
TypesKind::Module(module) => module.tables.len(),
TypesKind::Component(component) => component.core_tables.len(),
}
}
/// Gets the type of a memory at the given memory index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn memory_at(&self, index: u32) -> MemoryType {
self.as_ref().memory_at(index)
}
/// Gets the count of imported and defined memories.
pub fn memory_count(&self) -> u32 {
self.as_ref().memory_count()
}
/// Gets the type of a global at the given global index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn global_at(&self, index: u32) -> GlobalType {
self.as_ref().global_at(index)
}
/// Gets the count of imported and defined globals.
pub fn global_count(&self) -> u32 {
self.as_ref().global_count()
}
/// Gets the type of a tag at the given tag index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn tag_at(&self, index: u32) -> CoreTypeId {
self.as_ref().tag_at(index)
}
/// Gets the count of imported and defined tags.
pub fn tag_count(&self) -> u32 {
self.as_ref().tag_count()
}
/// Gets the type of a core function at the given function index.
///
/// # Panics
///
/// Panics if `index` is not a valid function index.
pub fn core_function_at(&self, index: u32) -> CoreTypeId {
self.as_ref().core_function_at(index)
}
/// Gets the count of core functions defined so far.
///
/// Note that this includes imported functions, defined functions, and for
/// components lowered/aliased functions.
pub fn core_function_count(&self) -> u32 {
self.as_ref().function_count()
}
/// Gets the type of an element segment at the given element segment index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn element_at(&self, index: u32) -> RefType {
self.as_ref().element_at(index)
}
/// Gets the count of element segments.
pub fn element_count(&self) -> u32 {
self.as_ref().element_count()
}
/// Gets the type of a component function at the given function index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_function_at(&self, index: u32) -> ComponentFuncTypeId {
self.as_ref().component_function_at(index)
}
/// Gets the count of imported, exported, or aliased component functions.
pub fn component_function_count(&self) -> u32 {
self.as_ref().component_function_count()
}
/// Gets the type of a module at the given module index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn module_at(&self, index: u32) -> ComponentCoreModuleTypeId {
self.as_ref().module_at(index)
}
/// Gets the count of imported, exported, or aliased modules.
pub fn module_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.core_modules.len(),
}
}
/// Gets the type of a module instance at the given module instance index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn core_instance_at(&self, index: u32) -> ComponentCoreInstanceTypeId {
self.as_ref().core_instance_at(index)
}
/// Gets the count of imported, exported, or aliased core module instances.
pub fn core_instance_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.core_instances.len(),
}
}
/// Gets the type of a component at the given component index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_at(&self, index: u32) -> ComponentTypeId {
self.as_ref().component_at(index)
}
/// Gets the count of imported, exported, or aliased components.
pub fn component_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.components.len(),
}
}
/// Gets the type of an component instance at the given component instance index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn component_instance_at(&self, index: u32) -> ComponentInstanceTypeId {
self.as_ref().component_instance_at(index)
}
/// Gets the count of imported, exported, or aliased component instances.
pub fn component_instance_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.instances.len(),
}
}
/// Gets the type of a value at the given value index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds or if this type
/// information represents a core module.
pub fn value_at(&self, index: u32) -> ComponentValType {
self.as_ref().value_at(index)
}
/// Gets the count of imported, exported, or aliased values.
pub fn value_count(&self) -> usize {
match &self.kind {
TypesKind::Module(_) => 0,
TypesKind::Component(component) => component.values.len(),
}
}
/// Gets the entity type from the given import.
pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
self.as_ref().entity_type_from_import(import)
}
/// Gets the entity type from the given export.
pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
self.as_ref().entity_type_from_export(export)
}
/// Gets the component entity type for the given component import name.
pub fn component_entity_type_of_import(&self, name: &str) -> Option<ComponentEntityType> {
self.as_ref().component_entity_type_of_import(name)
}
/// Gets the component entity type for the given component export name.
pub fn component_entity_type_of_export(&self, name: &str) -> Option<ComponentEntityType> {
self.as_ref().component_entity_type_of_export(name)
}
/// Attempts to lookup the type id that `ty` is an alias of.
///
/// Returns `None` if `ty` wasn't listed as aliasing a prior type.
pub fn peel_alias<T>(&self, ty: T) -> Option<T>
where
T: Aliasable,
{
self.list.peel_alias(ty)
}
/// Same as [`TypesRef::core_imports`]
pub fn core_imports<'a>(&self) -> Option<impl Iterator<Item = (&str, &str, EntityType)> + '_> {
self.as_ref().core_imports()
}
/// Same as [`TypesRef::core_exports`]
pub fn core_exports(&self) -> Option<impl Iterator<Item = (&str, EntityType)> + '_> {
self.as_ref().core_exports()
}
}
impl<T> Index<T> for Types
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, id: T) -> &Self::Output {
&self.list[id]
}
}
/// This is a type which mirrors a subset of the `Vec<T>` API, but is intended
/// to be able to be cheaply snapshotted and cloned.
///
/// When each module's code sections start we "commit" the current list of types
/// in the global list of types. This means that the temporary `cur` vec here is
/// pushed onto `snapshots` and wrapped up in an `Arc`. At that point we clone
/// this entire list (which is then O(modules), not O(types in all modules)) and
/// pass out as a context to each function validator.
///
/// Otherwise, though, this type behaves as if it were a large `Vec<T>`, but
/// it's represented by lists of contiguous chunks.
//
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
#[derive(Debug)]
pub struct SnapshotList<T> {
// All previous snapshots, the "head" of the list that this type represents.
// The first entry in this pair is the starting index for all elements
// contained in the list, and the second element is the list itself. Note
// the `Arc` wrapper around sub-lists, which makes cloning time for this
// `SnapshotList` O(snapshots) rather than O(snapshots_total), which for
// us in this context means the number of modules, not types.
//
// Note that this list is sorted least-to-greatest in order of the index for
// binary searching.
snapshots: Vec<Arc<Snapshot<T>>>,
// This is the total length of all lists in the `snapshots` array.
snapshots_total: usize,
// The current list of types for the current snapshot that are being built.
cur: Vec<T>,
}
#[derive(Debug)]
struct Snapshot<T> {
prior_types: usize,
items: Vec<T>,
}
impl<T> SnapshotList<T> {
/// Same as `<&[T]>::get`
pub(crate) fn get(&self, index: usize) -> Option<&T> {
// Check to see if this index falls on our local list
if index >= self.snapshots_total {
return self.cur.get(index - self.snapshots_total);
}
// ... and failing that we do a binary search to figure out which bucket
// it's in. Note the `i-1` in the `Err` case because if we don't find an
// exact match the type is located in the previous bucket.
let i = match self
.snapshots
.binary_search_by_key(&index, |snapshot| snapshot.prior_types)
{
Ok(i) => i,
Err(i) => i - 1,
};
let snapshot = &self.snapshots[i];
Some(&snapshot.items[index - snapshot.prior_types])
}
/// Same as `Vec::push`
pub(crate) fn push(&mut self, val: T) {
self.cur.push(val);
}
/// Same as `<[T]>::len`
pub(crate) fn len(&self) -> usize {
self.cur.len() + self.snapshots_total
}
/// Same as `Vec::truncate` but can only truncate uncommitted elements.
pub(crate) fn truncate(&mut self, len: usize) {
assert!(len >= self.snapshots_total);
self.cur.truncate(len - self.snapshots_total);
}
/// Commits previously pushed types into this snapshot vector, and returns a
/// clone of this list.
///
/// The returned `SnapshotList` can be used to access all the same types as
/// this list itself. This list also is not changed (from an external
/// perspective) and can continue to access all the same types.
pub(crate) fn commit(&mut self) -> SnapshotList<T> {
// If the current chunk has new elements, commit them in to an
// `Arc`-wrapped vector in the snapshots list. Note the `shrink_to_fit`
// ahead of time to hopefully keep memory usage lower than it would
// otherwise be.
let len = self.cur.len();
if len > 0 {
self.cur.shrink_to_fit();
self.snapshots.push(Arc::new(Snapshot {
prior_types: self.snapshots_total,
items: mem::take(&mut self.cur),
}));
self.snapshots_total += len;
}
SnapshotList {
snapshots: self.snapshots.clone(),
snapshots_total: self.snapshots_total,
cur: Vec::new(),
}
}
}
impl<T> Index<usize> for SnapshotList<T> {
type Output = T;
#[inline]
fn index(&self, index: usize) -> &T {
self.get(index).unwrap()
}
}
impl<T, U> Index<U> for SnapshotList<T>
where
U: TypeIdentifier<Data = T>,
{
type Output = T;
#[inline]
fn index(&self, id: U) -> &T {
self.get(id.index()).unwrap()
}
}
impl<T> Default for SnapshotList<T> {
fn default() -> SnapshotList<T> {
SnapshotList {
snapshots: Vec::new(),
snapshots_total: 0,
cur: Vec::new(),
}
}
}
/// A snapshot list of types.
///
/// Note that the snapshot lists below do not correspond with index spaces. Many
/// different kinds of types are in the same index space (e.g. all of the
/// component model's {component, instance, defined, func} types are in the same
/// index space). However, we store each of them in their own type-specific
/// snapshot list and give each of them their own identifier type.
#[derive(Default, Debug)]
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
pub struct TypeList {
// Keeps track of which `alias_id` is an alias of which other `alias_id`.
alias_mappings: Map<u32, u32>,
// Counter for generating new `alias_id`s.
alias_counter: u32,
// Snapshots of previously committed `TypeList`s' aliases.
alias_snapshots: Vec<TypeListAliasSnapshot>,
// Core Wasm types.
//
// A primary map from `CoreTypeId` to `SubType`.
core_types: SnapshotList<SubType>,
// The id of each core Wasm type's rec group.
//
// A secondary map from `CoreTypeId` to `RecGroupId`.
core_type_to_rec_group: SnapshotList<RecGroupId>,
// The supertype of each core type.
//
// A secondary map from `CoreTypeId` to `Option<CoreTypeId>`.
core_type_to_supertype: SnapshotList<Option<CoreTypeId>>,
// The subtyping depth of each core type. We use `u8::MAX` as a sentinel for
// an uninitialized entry.
//
// A secondary map from `CoreTypeId` to `u8`.
core_type_to_depth: Option<IndexMap<CoreTypeId, u8>>,
// A primary map from `RecGroupId` to the range of the rec group's elements
// within `core_types`.
rec_group_elements: SnapshotList<Range<CoreTypeId>>,
// A hash map from rec group elements to their canonical `RecGroupId`.
//
// This is `None` when a list is "committed" meaning that no more insertions
// can happen.
canonical_rec_groups: Option<Map<RecGroup, RecGroupId>>,
// Component model types.
components: SnapshotList<ComponentType>,
component_defined_types: SnapshotList<ComponentDefinedType>,
component_values: SnapshotList<ComponentValType>,
component_instances: SnapshotList<ComponentInstanceType>,
component_funcs: SnapshotList<ComponentFuncType>,
core_modules: SnapshotList<ModuleType>,
core_instances: SnapshotList<InstanceType>,
}
#[derive(Clone, Debug)]
struct TypeListAliasSnapshot {
// The `alias_counter` at the time that this snapshot was taken.
alias_counter: u32,
// The alias mappings in this snapshot.
alias_mappings: Map<u32, u32>,
}
struct TypeListCheckpoint {
core_types: usize,
components: usize,
component_defined_types: usize,
component_values: usize,
component_instances: usize,
component_funcs: usize,
core_modules: usize,
core_instances: usize,
core_type_to_rec_group: usize,
core_type_to_supertype: usize,
core_type_to_depth: usize,
rec_group_elements: usize,
canonical_rec_groups: usize,
}
impl TypeList {
pub fn get<T>(&self, id: T) -> Option<&T::Data>
where
T: TypeIdentifier,
{
T::list(self).get(id.index())
}
pub fn push<T>(&mut self, ty: T) -> T::Id
where
T: TypeData,
{
let index = u32::try_from(T::Id::list(self).len()).unwrap();
let id = T::Id::from_index(index);
T::Id::list_mut(self).push(ty);
id
}
/// Intern the given recursion group (that has already been canonicalized)
/// and return its associated id and whether this was a new recursion group
/// or not.
pub fn intern_canonical_rec_group(&mut self, rec_group: RecGroup) -> (bool, RecGroupId) {
let canonical_rec_groups = self
.canonical_rec_groups
.as_mut()
.expect("cannot intern into a committed list");
let entry = match canonical_rec_groups.entry(rec_group) {
Entry::Occupied(e) => return (false, *e.get()),
Entry::Vacant(e) => e,
};
let rec_group_id = self.rec_group_elements.len();
let rec_group_id = u32::try_from(rec_group_id).unwrap();
let rec_group_id = RecGroupId::from_index(rec_group_id);
let start = self.core_types.len();
let start = u32::try_from(start).unwrap();
let start = CoreTypeId::from_index(start);
for ty in entry.key().types() {
debug_assert_eq!(self.core_types.len(), self.core_type_to_supertype.len());
debug_assert_eq!(self.core_types.len(), self.core_type_to_rec_group.len());
self.core_type_to_supertype
.push(ty.supertype_idx.map(|idx| match idx.unpack() {
UnpackedIndex::RecGroup(offset) => CoreTypeId::from_index(start.index + offset),
UnpackedIndex::Id(id) => id,
UnpackedIndex::Module(_) => unreachable!("in canonical form"),
}));
let mut ty = ty.clone();
ty.remap_indices(&mut |index| {
match index.unpack() {
UnpackedIndex::Id(_) => {}
UnpackedIndex::Module(_) => unreachable!(),
UnpackedIndex::RecGroup(offset) => {
*index = UnpackedIndex::Id(CoreTypeId::from_index(start.index + offset))
.pack()
.unwrap();
}
};
Ok(())
})
.expect("cannot fail");
self.core_types.push(ty);
self.core_type_to_rec_group.push(rec_group_id);
}
let end = self.core_types.len();
let end = u32::try_from(end).unwrap();
let end = CoreTypeId::from_index(end);
let range = start..end;
self.rec_group_elements.push(range.clone());
entry.insert(rec_group_id);
return (true, rec_group_id);
}
/// Get the `CoreTypeId` for a local index into a rec group.
pub fn rec_group_local_id(
&self,
rec_group: RecGroupId,
index: u32,
offset: usize,
) -> Result<CoreTypeId> {
let elems = &self[rec_group];
let len = elems.end.index() - elems.start.index();
let len = u32::try_from(len).unwrap();
if index < len {
let id = u32::try_from(elems.start.index()).unwrap() + index;
let id = CoreTypeId::from_index(id);
Ok(id)
} else {
bail!(
offset,
"unknown type {index}: type index out of rec group bounds"
)
}
}
/// Get the id of the rec group that the given type id was defined within.
pub fn rec_group_id_of(&self, id: CoreTypeId) -> RecGroupId {
self.core_type_to_rec_group[id.index()]
}
/// Get the super type of the given type id, if any.
pub fn supertype_of(&self, id: CoreTypeId) -> Option<CoreTypeId> {
self.core_type_to_supertype[id.index()]
}
/// Get the subtyping depth of the given type. A type without any supertype
/// has depth 0.
pub fn get_subtyping_depth(&self, id: CoreTypeId) -> u8 {
let depth = self
.core_type_to_depth
.as_ref()
.expect("cannot get subtype depth from a committed list")[id.index()];
debug_assert!(usize::from(depth) <= crate::limits::MAX_WASM_SUBTYPING_DEPTH);
depth
}
/// Set the subtyping depth of the given type. This may only be done once
/// per type.
pub fn set_subtyping_depth(&mut self, id: CoreTypeId, depth: u8) {
debug_assert!(usize::from(depth) <= crate::limits::MAX_WASM_SUBTYPING_DEPTH);
let map = self
.core_type_to_depth
.as_mut()
.expect("cannot set a subtype depth in a committed list");
debug_assert!(!map.contains_key(&id));
map.insert(id, depth);
}
/// Get the `CoreTypeId` for a canonicalized `PackedIndex`.
///
/// Panics when given a non-canonicalized `PackedIndex`.
pub fn at_canonicalized_packed_index(
&self,
rec_group: RecGroupId,
index: PackedIndex,
offset: usize,
) -> Result<CoreTypeId> {
self.at_canonicalized_unpacked_index(rec_group, index.unpack(), offset)
}
/// Get the `CoreTypeId` for a canonicalized `UnpackedIndex`.
///
/// Panics when given a non-canonicalized `PackedIndex`.
pub fn at_canonicalized_unpacked_index(
&self,
rec_group: RecGroupId,
index: UnpackedIndex,
offset: usize,
) -> Result<CoreTypeId> {
match index {
UnpackedIndex::Module(_) => panic!("not canonicalized"),
UnpackedIndex::Id(id) => Ok(id),
UnpackedIndex::RecGroup(idx) => self.rec_group_local_id(rec_group, idx, offset),
}
}
/// Does `a` structurally match `b`?
pub fn matches(&self, a: CoreTypeId, b: CoreTypeId) -> bool {
let a = WithRecGroup::new(self, a);
let a = WithRecGroup::map(a, |a| &self[a]);
let b = WithRecGroup::new(self, b);
let b = WithRecGroup::map(b, |b| &self[b]);
Matches::matches(self, a, b)
}
/// Is `a == b` or was `a` declared (potentially transitively) to be a
/// subtype of `b`?
pub fn id_is_subtype(&self, mut a: CoreTypeId, b: CoreTypeId) -> bool {
loop {
if a == b {
return true;
}
// TODO: maintain supertype vectors and implement this check in O(1)
// instead of O(n) time.
a = match self.supertype_of(a) {
Some(a) => a,
None => return false,
};
}
}
/// Like `id_is_subtype` but for `RefType`s.
///
/// Both `a` and `b` must be canonicalized already.
pub fn reftype_is_subtype(&self, a: RefType, b: RefType) -> bool {
// NB: Don't need `RecGroupId`s since we are calling from outside of the
// rec group, and so any `PackedIndex`es we encounter have already been
// canonicalized to `CoreTypeId`s directly.
self.reftype_is_subtype_impl(a, None, b, None)
}
/// Implementation of `RefType` and `HeapType` subtyping.
///
/// Panics if we need rec groups but aren't given them. Rec groups only need
/// to be passed in when checking subtyping of `RefType`s that we encounter
/// while validating a rec group itself.
pub(crate) fn reftype_is_subtype_impl(
&self,
a: RefType,
a_group: Option<RecGroupId>,
b: RefType,
b_group: Option<RecGroupId>,
) -> bool {
if a == b && a_group == b_group {
return true;
}
if a.is_nullable() && !b.is_nullable() {
return false;
}
let core_type_id = |group: Option<RecGroupId>, index: UnpackedIndex| -> CoreTypeId {
if let Some(id) = index.as_core_type_id() {
id
} else {
self.at_canonicalized_unpacked_index(group.unwrap(), index, usize::MAX)
.expect("type references are checked during canonicalization")
}
};
let subtype = |group, index| -> &SubType {
let id = core_type_id(group, index);
&self[id]
};
use AbstractHeapType::*;
use CompositeInnerType as CT;
use HeapType as HT;
match (a.heap_type(), b.heap_type()) {
(a, b) if a == b => true,
(
HT::Abstract {
shared: a_shared,
ty: a_ty,
},
HT::Abstract {
shared: b_shared,
ty: b_ty,
},
) => a_shared == b_shared && a_ty.is_subtype_of(b_ty),
(HT::Concrete(a), HT::Abstract { shared, ty }) => {
let a_ty = &subtype(a_group, a).composite_type;
if a_ty.shared != shared {
return false;
}
match ty {
Any | Eq => matches!(a_ty.inner, CT::Array(_) | CT::Struct(_)),
Struct => matches!(a_ty.inner, CT::Struct(_)),
Array => matches!(a_ty.inner, CT::Array(_)),
Func => matches!(a_ty.inner, CT::Func(_)),
// Nothing else matches. (Avoid full wildcard matches so
// that adding/modifying variants is easier in the future.)
Extern | Exn | I31 | None | NoFunc | NoExtern | NoExn => false,
}
}
(HT::Abstract { shared, ty }, HT::Concrete(b)) => {
let b_ty = &subtype(b_group, b).composite_type;
if shared != b_ty.shared {
return false;
}
match ty {
None => matches!(b_ty.inner, CT::Array(_) | CT::Struct(_)),
NoFunc => matches!(b_ty.inner, CT::Func(_)),
// Nothing else matches. (Avoid full wildcard matches so
// that adding/modifying variants is easier in the future.)
Func | Extern | Exn | Any | Eq | Array | I31 | Struct | NoExtern | NoExn => {
false
}
}
}
(HT::Concrete(a), HT::Concrete(b)) => {
self.id_is_subtype(core_type_id(a_group, a), core_type_id(b_group, b))
}
}
}
/// Like `id_is_subtype` but for `RefType`s.
///
/// Both `a` and `b` must be canonicalized already.
pub fn valtype_is_subtype(&self, a: ValType, b: ValType) -> bool {
match (a, b) {
(a, b) if a == b => true,
(ValType::Ref(a), ValType::Ref(b)) => self.reftype_is_subtype(a, b),
(ValType::Ref(_), _)
| (ValType::I32, _)
| (ValType::I64, _)
| (ValType::F32, _)
| (ValType::F64, _)
| (ValType::V128, _) => false,
}
}
/// Is `ty` shared?
pub fn valtype_is_shared(&self, ty: ValType) -> bool {
match ty {
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => true,
ValType::Ref(rt) => self.reftype_is_shared(rt),
}
}
/// Is the reference type `ty` shared?
///
/// This is complicated by concrete heap types whose shared-ness must be
/// checked by looking at the type they point to.
pub fn reftype_is_shared(&self, ty: RefType) -> bool {
match ty.heap_type() {
HeapType::Abstract { shared, .. } => shared,
HeapType::Concrete(index) => {
self[index.as_core_type_id().unwrap()].composite_type.shared
}
}
}
/// Get the top type of the given heap type.
///
/// Concrete types must have had their indices canonicalized to core type
/// ids, otherwise this method will panic.
pub fn top_type(&self, heap_type: &HeapType) -> HeapType {
use AbstractHeapType::*;
match *heap_type {
HeapType::Concrete(idx) => {
let ty = &self[idx.as_core_type_id().unwrap()].composite_type;
let shared = ty.shared;
match ty.inner {
CompositeInnerType::Func(_) => HeapType::Abstract { shared, ty: Func },
CompositeInnerType::Array(_) | CompositeInnerType::Struct(_) => {
HeapType::Abstract { shared, ty: Any }
}
}
}
HeapType::Abstract { shared, ty } => {
let ty = match ty {
Func | NoFunc => Func,
Extern | NoExtern => Extern,
Any | Eq | Struct | Array | I31 | None => Any,
Exn | NoExn => Exn,
};
HeapType::Abstract { shared, ty }
}
}
}
fn checkpoint(&self) -> TypeListCheckpoint {
let TypeList {
alias_mappings: _,
alias_counter: _,
alias_snapshots: _,
core_types,
components,
component_defined_types,
component_values,
component_instances,
component_funcs,
core_modules,
core_instances,
core_type_to_rec_group,
core_type_to_supertype,
core_type_to_depth,
rec_group_elements,
canonical_rec_groups,
} = self;
TypeListCheckpoint {
core_types: core_types.len(),
components: components.len(),
component_defined_types: component_defined_types.len(),
component_values: component_values.len(),
component_instances: component_instances.len(),
component_funcs: component_funcs.len(),
core_modules: core_modules.len(),
core_instances: core_instances.len(),
core_type_to_rec_group: core_type_to_rec_group.len(),
core_type_to_supertype: core_type_to_supertype.len(),
core_type_to_depth: core_type_to_depth.as_ref().map(|m| m.len()).unwrap_or(0),
rec_group_elements: rec_group_elements.len(),
canonical_rec_groups: canonical_rec_groups.as_ref().map(|m| m.len()).unwrap_or(0),
}
}
fn reset_to_checkpoint(&mut self, checkpoint: TypeListCheckpoint) {
let TypeList {
alias_mappings: _,
alias_counter: _,
alias_snapshots: _,
core_types,
components,
component_defined_types,
component_values,
component_instances,
component_funcs,
core_modules,
core_instances,
core_type_to_rec_group,
core_type_to_supertype,
core_type_to_depth,
rec_group_elements,
canonical_rec_groups,
} = self;
core_types.truncate(checkpoint.core_types);
components.truncate(checkpoint.components);
component_defined_types.truncate(checkpoint.component_defined_types);
component_values.truncate(checkpoint.component_values);
component_instances.truncate(checkpoint.component_instances);
component_funcs.truncate(checkpoint.component_funcs);
core_modules.truncate(checkpoint.core_modules);
core_instances.truncate(checkpoint.core_instances);
core_type_to_rec_group.truncate(checkpoint.core_type_to_rec_group);
core_type_to_supertype.truncate(checkpoint.core_type_to_supertype);
rec_group_elements.truncate(checkpoint.rec_group_elements);
if let Some(core_type_to_depth) = core_type_to_depth {
assert_eq!(
core_type_to_depth.len(),
checkpoint.core_type_to_depth,
"checkpointing does not support resetting `core_type_to_depth` (it would require a \
proper immutable and persistent hash map) so adding new groups is disallowed"
);
}
if let Some(canonical_rec_groups) = canonical_rec_groups {
assert_eq!(
canonical_rec_groups.len(),
checkpoint.canonical_rec_groups,
"checkpointing does not support resetting `canonical_rec_groups` (it would require a \
proper immutable and persistent hash map) so adding new groups is disallowed"
);
}
}
pub fn commit(&mut self) -> TypeList {
// Note that the `alias_counter` is bumped here to ensure that the
// previous value of the unique counter is never used for an actual type
// so it's suitable for lookup via a binary search.
let alias_counter = self.alias_counter;
self.alias_counter += 1;
self.alias_snapshots.push(TypeListAliasSnapshot {
alias_counter,
alias_mappings: mem::take(&mut self.alias_mappings),
});
TypeList {
alias_mappings: Map::default(),
alias_counter: self.alias_counter,
alias_snapshots: self.alias_snapshots.clone(),
core_types: self.core_types.commit(),
components: self.components.commit(),
component_defined_types: self.component_defined_types.commit(),
component_values: self.component_values.commit(),
component_instances: self.component_instances.commit(),
component_funcs: self.component_funcs.commit(),
core_modules: self.core_modules.commit(),
core_instances: self.core_instances.commit(),
core_type_to_rec_group: self.core_type_to_rec_group.commit(),
core_type_to_supertype: self.core_type_to_supertype.commit(),
core_type_to_depth: None,
rec_group_elements: self.rec_group_elements.commit(),
canonical_rec_groups: None,
}
}
/// See `SnapshotList::with_unique`.
pub fn with_unique<T>(&mut self, mut ty: T) -> T
where
T: Aliasable,
{
self.alias_mappings
.insert(self.alias_counter, ty.alias_id());
ty.set_alias_id(self.alias_counter);
self.alias_counter += 1;
ty
}
/// Attempts to lookup the type id that `ty` is an alias of.
///
/// Returns `None` if `ty` wasn't listed as aliasing a prior type.
pub fn peel_alias<T>(&self, mut ty: T) -> Option<T>
where
T: Aliasable,
{
let alias_id = ty.alias_id();
// The unique counter in each snapshot is the unique counter at the
// time of the snapshot so it's guaranteed to never be used, meaning
// that `Ok` should never show up here. With an `Err` it's where the
// index would be placed meaning that the index in question is the
// smallest value over the unique id's value, meaning that slot has the
// mapping we're interested in.
let i = match self
.alias_snapshots
.binary_search_by_key(&alias_id, |snapshot| snapshot.alias_counter)
{
Ok(_) => unreachable!(),
Err(i) => i,
};
// If the `i` index is beyond the snapshot array then lookup in the
// current mappings instead since it may refer to a type not snapshot
// yet.
ty.set_alias_id(match self.alias_snapshots.get(i) {
Some(snapshot) => *snapshot.alias_mappings.get(&alias_id)?,
None => *self.alias_mappings.get(&alias_id)?,
});
Some(ty)
}
}
impl<T> Index<T> for TypeList
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, id: T) -> &Self::Output {
let arena = T::list(self);
&arena[id.index()]
}
}
/// Thin wrapper around `TypeList` which provides an allocator of unique ids for
/// types contained within this list.
pub(crate) struct TypeAlloc {
list: TypeList,
// This is assigned at creation of a `TypeAlloc` and then never changed.
// It's used in one entry for all `ResourceId`s contained within.
globally_unique_id: usize,
// This is a counter that's incremeneted each time `alloc_resource_id` is
// called.
next_resource_id: u32,
}
impl Default for TypeAlloc {
fn default() -> TypeAlloc {
static NEXT_GLOBAL_ID: AtomicUsize = AtomicUsize::new(0);
let mut ret = TypeAlloc {
list: TypeList::default(),
globally_unique_id: {
let id = NEXT_GLOBAL_ID.fetch_add(1, Ordering::Relaxed);
if id > usize::MAX - 10_000 {
NEXT_GLOBAL_ID.store(usize::MAX - 10_000, Ordering::Relaxed);
panic!("overflow on the global id counter");
}
id
},
next_resource_id: 0,
};
ret.list.core_type_to_depth = Some(Default::default());
ret.list.canonical_rec_groups = Some(Default::default());
ret
}
}
impl Deref for TypeAlloc {
type Target = TypeList;
fn deref(&self) -> &TypeList {
&self.list
}
}
impl DerefMut for TypeAlloc {
fn deref_mut(&mut self) -> &mut TypeList {
&mut self.list
}
}
impl TypeAlloc {
/// Pushes a new type into this list, returning an identifier which can be
/// used to later retrieve it.
///
/// The returned identifier is unique within this `TypeAlloc` and won't be
/// hash-equivalent to anything else.
pub fn push_ty<T>(&mut self, ty: T) -> T::Id
where
T: TypeData,
{
self.list.push(ty)
}
/// Allocates a new unique resource identifier.
///
/// Note that uniqueness is only a property within this `TypeAlloc`.
pub fn alloc_resource_id(&mut self) -> AliasableResourceId {
let contextually_unique_id = self.next_resource_id;
self.next_resource_id = self.next_resource_id.checked_add(1).unwrap();
AliasableResourceId {
id: ResourceId {
globally_unique_id: self.globally_unique_id,
contextually_unique_id,
},
alias_id: NO_ALIAS,
}
}
/// Adds the set of "free variables" of the `id` provided to the `set`
/// provided.
///
/// Free variables are defined as resources. Any resource, perhaps
/// transitively, referred to but not defined by `id` is added to the `set`
/// and returned.
pub fn free_variables_any_type_id(
&self,
id: ComponentAnyTypeId,
set: &mut IndexSet<ResourceId>,
) {
match id {
ComponentAnyTypeId::Resource(r) => {
set.insert(r.resource());
}
ComponentAnyTypeId::Defined(id) => {
self.free_variables_component_defined_type_id(id, set)
}
ComponentAnyTypeId::Func(id) => self.free_variables_component_func_type_id(id, set),
ComponentAnyTypeId::Instance(id) => {
self.free_variables_component_instance_type_id(id, set)
}
ComponentAnyTypeId::Component(id) => self.free_variables_component_type_id(id, set),
}
}
pub fn free_variables_component_defined_type_id(
&self,
id: ComponentDefinedTypeId,
set: &mut IndexSet<ResourceId>,
) {
match &self[id] {
ComponentDefinedType::Primitive(_)
| ComponentDefinedType::Flags(_)
| ComponentDefinedType::Enum(_) => {}
ComponentDefinedType::Record(r) => {
for ty in r.fields.values() {
self.free_variables_valtype(ty, set);
}
}
ComponentDefinedType::Tuple(r) => {
for ty in r.types.iter() {
self.free_variables_valtype(ty, set);
}
}
ComponentDefinedType::Variant(r) => {
for ty in r.cases.values() {
if let Some(ty) = &ty.ty {
self.free_variables_valtype(ty, set);
}
}
}
ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
self.free_variables_valtype(ty, set);
}
ComponentDefinedType::Result { ok, err } => {
if let Some(ok) = ok {
self.free_variables_valtype(ok, set);
}
if let Some(err) = err {
self.free_variables_valtype(err, set);
}
}
ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
set.insert(id.resource());
}
}
}
pub fn free_variables_component_type_id(
&self,
id: ComponentTypeId,
set: &mut IndexSet<ResourceId>,
) {
let i = &self[id];
// Recurse on the imports/exports of components, but remove the
// imported and defined resources within the component itself.
//
// Technically this needs to add all the free variables of the
// exports, remove the defined resources, then add the free
// variables of imports, then remove the imported resources. Given
// prior validation of component types, however, the defined
// and imported resources are disjoint and imports can't refer to
// defined resources, so doing this all in one go should be
// equivalent.
for ty in i.imports.values().chain(i.exports.values()) {
self.free_variables_component_entity(ty, set);
}
for (id, _path) in i.imported_resources.iter().chain(&i.defined_resources) {
set.swap_remove(id);
}
}
pub fn free_variables_component_instance_type_id(
&self,
id: ComponentInstanceTypeId,
set: &mut IndexSet<ResourceId>,
) {
let i = &self[id];
// Like components, add in all the free variables of referenced
// types but then remove those defined by this component instance
// itself.
for ty in i.exports.values() {
self.free_variables_component_entity(ty, set);
}
for id in i.defined_resources.iter() {
set.swap_remove(id);
}
}
pub fn free_variables_component_func_type_id(
&self,
id: ComponentFuncTypeId,
set: &mut IndexSet<ResourceId>,
) {
let i = &self[id];
for ty in i
.params
.iter()
.map(|(_, ty)| ty)
.chain(i.results.iter().map(|(_, ty)| ty))
{
self.free_variables_valtype(ty, set);
}
}
/// Same as `free_variables_type_id`, but for `ComponentEntityType`.
pub fn free_variables_component_entity(
&self,
ty: &ComponentEntityType,
set: &mut IndexSet<ResourceId>,
) {
match ty {
ComponentEntityType::Module(_) => {}
ComponentEntityType::Func(id) => self.free_variables_component_func_type_id(*id, set),
ComponentEntityType::Instance(id) => {
self.free_variables_component_instance_type_id(*id, set)
}
ComponentEntityType::Component(id) => self.free_variables_component_type_id(*id, set),
ComponentEntityType::Type { created, .. } => {
self.free_variables_any_type_id(*created, set);
}
ComponentEntityType::Value(ty) => self.free_variables_valtype(ty, set),
}
}
/// Same as `free_variables_type_id`, but for `ComponentValType`.
fn free_variables_valtype(&self, ty: &ComponentValType, set: &mut IndexSet<ResourceId>) {
match ty {
ComponentValType::Primitive(_) => {}
ComponentValType::Type(id) => self.free_variables_component_defined_type_id(*id, set),
}
}
/// Returns whether the type `id` is "named" where named types are presented
/// via the provided `set`.
///
/// This requires that `id` is a `Defined` type.
pub(crate) fn type_named_type_id(
&self,
id: ComponentDefinedTypeId,
set: &Set<ComponentAnyTypeId>,
) -> bool {
let ty = &self[id];
match ty {
// Primitives are always considered named
ComponentDefinedType::Primitive(_) => true,
// These structures are never allowed to be anonymous, so they
// themselves must be named.
ComponentDefinedType::Flags(_)
| ComponentDefinedType::Enum(_)
| ComponentDefinedType::Record(_)
| ComponentDefinedType::Variant(_) => set.contains(&ComponentAnyTypeId::from(id)),
// All types below here are allowed to be anonymous, but their
// own components must be appropriately named.
ComponentDefinedType::Tuple(r) => {
r.types.iter().all(|t| self.type_named_valtype(t, set))
}
ComponentDefinedType::Result { ok, err } => {
ok.as_ref()
.map(|t| self.type_named_valtype(t, set))
.unwrap_or(true)
&& err
.as_ref()
.map(|t| self.type_named_valtype(t, set))
.unwrap_or(true)
}
ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
self.type_named_valtype(ty, set)
}
// own/borrow themselves don't have to be named, but the resource
// they refer to must be named.
ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
set.contains(&ComponentAnyTypeId::from(*id))
}
}
}
pub(crate) fn type_named_valtype(
&self,
ty: &ComponentValType,
set: &Set<ComponentAnyTypeId>,
) -> bool {
match ty {
ComponentValType::Primitive(_) => true,
ComponentValType::Type(id) => self.type_named_type_id(*id, set),
}
}
}
/// A helper trait to provide the functionality necessary to resources within a
/// type.
///
/// This currently exists to abstract over `TypeAlloc` and `SubtypeArena` which
/// both need to perform remapping operations.
pub trait Remap
where
Self: Index<ComponentTypeId, Output = ComponentType>,
Self: Index<ComponentDefinedTypeId, Output = ComponentDefinedType>,
Self: Index<ComponentInstanceTypeId, Output = ComponentInstanceType>,
Self: Index<ComponentFuncTypeId, Output = ComponentFuncType>,
{
/// Pushes a new anonymous type within this object, returning an identifier
/// which can be used to refer to it.
fn push_ty<T>(&mut self, ty: T) -> T::Id
where
T: TypeData;
/// Apply `map` to the keys of `tmp`, setting `*any_changed = true` if any
/// keys were remapped.
fn map_map(
tmp: &mut IndexMap<ResourceId, Vec<usize>>,
any_changed: &mut bool,
map: &Remapping,
) {
for (id, path) in mem::take(tmp) {
let id = match map.resources.get(&id) {
Some(id) => {
*any_changed = true;
*id
}
None => id,
};
tmp.insert(id, path);
}
}
/// If `any_changed` is true, push `ty`, update `map` to point `id` to the
/// new type ID, set `id` equal to the new type ID, and return `true`.
/// Otherwise, update `map` to point `id` to itself and return `false`.
fn insert_if_any_changed<T>(
&mut self,
map: &mut Remapping,
any_changed: bool,
id: &mut T::Id,
ty: T,
) -> bool
where
T: TypeData,
T::Id: Into<ComponentAnyTypeId>,
{
let new = if any_changed { self.push_ty(ty) } else { *id };
map.types.insert((*id).into(), new.into());
let changed = *id != new;
*id = new;
changed
}
/// Recursively search for any resource types reachable from `id`, updating
/// it and `map` if any are found and remapped, returning `true` iff at last
/// one is remapped.
fn remap_component_any_type_id(
&mut self,
id: &mut ComponentAnyTypeId,
map: &mut Remapping,
) -> bool {
match id {
ComponentAnyTypeId::Resource(id) => self.remap_resource_id(id, map),
ComponentAnyTypeId::Defined(id) => self.remap_component_defined_type_id(id, map),
ComponentAnyTypeId::Func(id) => self.remap_component_func_type_id(id, map),
ComponentAnyTypeId::Instance(id) => self.remap_component_instance_type_id(id, map),
ComponentAnyTypeId::Component(id) => self.remap_component_type_id(id, map),
}
}
/// If `map` indicates `id` should be remapped, update it and return `true`.
/// Otherwise, do nothing and return `false`.
fn remap_resource_id(&mut self, id: &mut AliasableResourceId, map: &Remapping) -> bool {
if let Some(changed) = map.remap_id(id) {
return changed;
}
match map.resources.get(&id.resource()) {
None => false,
Some(new_id) => {
*id.resource_mut() = *new_id;
true
}
}
}
/// Recursively search for any resource types reachable from `id`, updating
/// it and `map` if any are found and remapped, returning `true` iff at last
/// one is remapped.
fn remap_component_type_id(&mut self, id: &mut ComponentTypeId, map: &mut Remapping) -> bool {
if let Some(changed) = map.remap_id(id) {
return changed;
}
let mut any_changed = false;
let mut ty = self[*id].clone();
for ty in ty.imports.values_mut().chain(ty.exports.values_mut()) {
any_changed |= self.remap_component_entity(ty, map);
}
for (id, _) in ty
.imported_resources
.iter_mut()
.chain(&mut ty.defined_resources)
{
if let Some(new) = map.resources.get(id) {
*id = *new;
any_changed = true;
}
}
Self::map_map(&mut ty.explicit_resources, &mut any_changed, map);
self.insert_if_any_changed(map, any_changed, id, ty)
}
/// Recursively search for any resource types reachable from `id`, updating
/// it and `map` if any are found and remapped, returning `true` iff at last
/// one is remapped.
fn remap_component_defined_type_id(
&mut self,
id: &mut ComponentDefinedTypeId,
map: &mut Remapping,
) -> bool {
if let Some(changed) = map.remap_id(id) {
return changed;
}
let mut any_changed = false;
let mut tmp = self[*id].clone();
match &mut tmp {
ComponentDefinedType::Primitive(_)
| ComponentDefinedType::Flags(_)
| ComponentDefinedType::Enum(_) => {}
ComponentDefinedType::Record(r) => {
for ty in r.fields.values_mut() {
any_changed |= self.remap_valtype(ty, map);
}
}
ComponentDefinedType::Tuple(r) => {
for ty in r.types.iter_mut() {
any_changed |= self.remap_valtype(ty, map);
}
}
ComponentDefinedType::Variant(r) => {
for ty in r.cases.values_mut() {
if let Some(ty) = &mut ty.ty {
any_changed |= self.remap_valtype(ty, map);
}
}
}
ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
any_changed |= self.remap_valtype(ty, map);
}
ComponentDefinedType::Result { ok, err } => {
if let Some(ok) = ok {
any_changed |= self.remap_valtype(ok, map);
}
if let Some(err) = err {
any_changed |= self.remap_valtype(err, map);
}
}
ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
any_changed |= self.remap_resource_id(id, map);
}
}
self.insert_if_any_changed(map, any_changed, id, tmp)
}
/// Recursively search for any resource types reachable from `id`, updating
/// it and `map` if any are found and remapped, returning `true` iff at last
/// one is remapped.
fn remap_component_instance_type_id(
&mut self,
id: &mut ComponentInstanceTypeId,
map: &mut Remapping,
) -> bool {
if let Some(changed) = map.remap_id(id) {
return changed;
}
let mut any_changed = false;
let mut tmp = self[*id].clone();
for ty in tmp.exports.values_mut() {
any_changed |= self.remap_component_entity(ty, map);
}
for id in tmp.defined_resources.iter_mut() {
if let Some(new) = map.resources.get(id) {
*id = *new;
any_changed = true;
}
}
Self::map_map(&mut tmp.explicit_resources, &mut any_changed, map);
self.insert_if_any_changed(map, any_changed, id, tmp)
}
/// Recursively search for any resource types reachable from `id`, updating
/// it and `map` if any are found and remapped, returning `true` iff at last
/// one is remapped.
fn remap_component_func_type_id(
&mut self,
id: &mut ComponentFuncTypeId,
map: &mut Remapping,
) -> bool {
if let Some(changed) = map.remap_id(id) {
return changed;
}
let mut any_changed = false;
let mut tmp = self[*id].clone();
for ty in tmp
.params
.iter_mut()
.map(|(_, ty)| ty)
.chain(tmp.results.iter_mut().map(|(_, ty)| ty))
{
any_changed |= self.remap_valtype(ty, map);
}
self.insert_if_any_changed(map, any_changed, id, tmp)
}
/// Same as `remap_type_id`, but works with `ComponentEntityType`.
fn remap_component_entity(
&mut self,
ty: &mut ComponentEntityType,
map: &mut Remapping,
) -> bool {
match ty {
ComponentEntityType::Module(_) => {
// Can't reference resources.
false
}
ComponentEntityType::Func(id) => self.remap_component_func_type_id(id, map),
ComponentEntityType::Instance(id) => self.remap_component_instance_type_id(id, map),
ComponentEntityType::Component(id) => self.remap_component_type_id(id, map),
ComponentEntityType::Type {
referenced,
created,
} => {
let mut changed = self.remap_component_any_type_id(referenced, map);
if *referenced == *created {
*created = *referenced;
} else {
changed |= self.remap_component_any_type_id(created, map);
}
changed
}
ComponentEntityType::Value(ty) => self.remap_valtype(ty, map),
}
}
/// Same as `remap_type_id`, but works with `ComponentValType`.
fn remap_valtype(&mut self, ty: &mut ComponentValType, map: &mut Remapping) -> bool {
match ty {
ComponentValType::Primitive(_) => false,
ComponentValType::Type(id) => self.remap_component_defined_type_id(id, map),
}
}
}
/// Utility for mapping equivalent `ResourceId`s to each other and (when paired with the `Remap` trait)
/// non-destructively edit type lists to reflect those mappings.
#[derive(Debug, Default)]
pub struct Remapping {
/// A mapping from old resource ID to new resource ID.
pub(crate) resources: Map<ResourceId, ResourceId>,
/// A mapping filled in during the remapping process which records how a
/// type was remapped, if applicable. This avoids remapping multiple
/// references to the same type and instead only processing it once.
types: Map<ComponentAnyTypeId, ComponentAnyTypeId>,
}
impl Remap for TypeAlloc {
fn push_ty<T>(&mut self, ty: T) -> T::Id
where
T: TypeData,
{
<TypeList>::push(self, ty)
}
}
impl<T> Index<T> for TypeAlloc
where
T: TypeIdentifier,
{
type Output = T::Data;
#[inline]
fn index(&self, id: T) -> &T::Data {
&self.list[id]
}
}
impl Remapping {
/// Add a mapping from the specified old resource ID to the new resource ID
pub fn add(&mut self, old: ResourceId, new: ResourceId) {
self.resources.insert(old, new);
}
/// Clear the type cache while leaving the resource mappings intact.
pub fn reset_type_cache(&mut self) {
self.types.clear()
}
fn remap_id<T>(&self, id: &mut T) -> Option<bool>
where
T: Copy + Into<ComponentAnyTypeId> + TryFrom<ComponentAnyTypeId>,
T::Error: core::fmt::Debug,
{
let old: ComponentAnyTypeId = (*id).into();
let new = self.types.get(&old)?;
if *new == old {
Some(false)
} else {
*id = T::try_from(*new).expect("should never remap across different kinds");
Some(true)
}
}
}
/// Helper structure used to perform subtyping computations.
///
/// This type is used whenever a subtype needs to be tested in one direction or
/// the other. The methods of this type are the various entry points for
/// subtyping.
///
/// Internally this contains arenas for two lists of types. The `a` arena is
/// intended to be used for lookup of the first argument to all of the methods
/// below, and the `b` arena is used for lookup of the second argument.
///
/// Arenas here are used specifically for component-based subtyping queries. In
/// these situations new types must be created based on substitution mappings,
/// but the types all have temporary lifetimes. Everything in these arenas is
/// thrown away once the subtyping computation has finished.
///
/// Note that this subtyping context also explicitly supports being created
/// from to different lists `a` and `b` originally, for testing subtyping
/// between two different components for example.
pub struct SubtypeCx<'a> {
/// Lookup arena for first type argument
pub a: SubtypeArena<'a>,
/// Lookup arena for second type argument
pub b: SubtypeArena<'a>,
}
impl<'a> SubtypeCx<'a> {
/// Create a new instance with the specified type lists
pub fn new_with_refs(a: TypesRef<'a>, b: TypesRef<'a>) -> SubtypeCx<'a> {
Self::new(a.list, b.list)
}
pub(crate) fn new(a: &'a TypeList, b: &'a TypeList) -> SubtypeCx<'a> {
SubtypeCx {
a: SubtypeArena::new(a),
b: SubtypeArena::new(b),
}
}
/// Swap the type lists
pub fn swap(&mut self) {
mem::swap(&mut self.a, &mut self.b);
}
/// Executes the closure `f`, resetting the internal arenas to their
/// original size after the closure finishes.
///
/// This enables `f` to modify the internal arenas while relying on all
/// changes being discarded after the closure finishes.
fn with_checkpoint<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
let a = self.a.list.checkpoint();
let b = self.b.list.checkpoint();
let result = f(self);
self.a.list.reset_to_checkpoint(a);
self.b.list.reset_to_checkpoint(b);
result
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn component_entity_type(
&mut self,
a: &ComponentEntityType,
b: &ComponentEntityType,
offset: usize,
) -> Result<()> {
use ComponentEntityType::*;
match (a, b) {
(Module(a), Module(b)) => self.module_type(*a, *b, offset),
(Module(_), b) => bail!(offset, "expected {}, found module", b.desc()),
(Func(a), Func(b)) => self.component_func_type(*a, *b, offset),
(Func(_), b) => bail!(offset, "expected {}, found func", b.desc()),
(Value(a), Value(b)) => self.component_val_type(a, b, offset),
(Value(_), b) => bail!(offset, "expected {}, found value", b.desc()),
(Type { referenced: a, .. }, Type { referenced: b, .. }) => {
self.component_any_type_id(*a, *b, offset)
}
(Type { .. }, b) => bail!(offset, "expected {}, found type", b.desc()),
(Instance(a), Instance(b)) => self.component_instance_type(*a, *b, offset),
(Instance(_), b) => bail!(offset, "expected {}, found instance", b.desc()),
(Component(a), Component(b)) => self.component_type(*a, *b, offset),
(Component(_), b) => bail!(offset, "expected {}, found component", b.desc()),
}
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn component_type(
&mut self,
a: ComponentTypeId,
b: ComponentTypeId,
offset: usize,
) -> Result<()> {
// Components are ... tricky. They follow the same basic
// structure as core wasm modules, but they also have extra
// logic to handle resource types. Resources are effectively
// abstract types so this is sort of where an ML module system
// in the component model becomes a reality.
//
// This also leverages the `open_instance_type` method below
// heavily which internally has its own quite large suite of
// logic. More-or-less what's happening here is:
//
// 1. Pretend that the imports of B are given as values to the
// imports of A. If A didn't import anything, for example,
// that's great and the subtyping definitely passes there.
// This operation produces a mapping of all the resources of
// A's imports to resources in B's imports.
//
// 2. This mapping is applied to all of A's exports. This means
// that all exports of A referring to A's imported resources
// now instead refer to B's. Note, though that A's exports
// still refer to its own defined resources.
//
// 3. The same `open_instance_type` method used during the
// first step is used again, but this time on the exports
// in the reverse direction. This performs a similar
// operation, though, by creating a mapping from B's
// defined resources to A's defined resources. The map
// itself is discarded as it's not needed.
//
// The order that everything passed here is intentional, but
// also subtle. I personally think of it as
// `open_instance_type` takes a list of things to satisfy a
// signature and produces a mapping of resources in the
// signature to those provided in the list of things. The
// order of operations then goes:
//
// * Someone thinks they have a component of type B, but they
// actually have a component of type A (e.g. due to this
// subtype check passing).
// * This person provides the imports of B and that must be
// sufficient to satisfy the imports of A. This is the first
// `open_instance_type` check.
// * Now though the resources provided by B are substituted
// into A's exports since that's what was provided.
// * A's exports are then handed back to the original person,
// and these exports must satisfy the signature required by B
// since that's what they're expecting.
// * This is the second `open_instance_type` which, to get
// resource types to line up, will map from A's defined
// resources to B's defined resources.
//
// If all that passes then the resources should all line up
// perfectly. Any misalignment is reported as a subtyping
// error.
let b_imports = self.b[b]
.imports
.iter()
.map(|(name, ty)| (name.clone(), *ty))
.collect();
self.swap();
let mut import_mapping =
self.open_instance_type(&b_imports, a, ExternKind::Import, offset)?;
self.swap();
self.with_checkpoint(|this| {
let mut a_exports = this.a[a]
.exports
.iter()
.map(|(name, ty)| (name.clone(), *ty))
.collect::<IndexMap<_, _>>();
for ty in a_exports.values_mut() {
this.a.remap_component_entity(ty, &mut import_mapping);
}
this.open_instance_type(&a_exports, b, ExternKind::Export, offset)?;
Ok(())
})
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn component_instance_type(
&mut self,
a_id: ComponentInstanceTypeId,
b_id: ComponentInstanceTypeId,
offset: usize,
) -> Result<()> {
// For instance type subtyping, all exports in the other
// instance type must be present in this instance type's
// exports (i.e. it can export *more* than what this instance
// type needs).
let a = &self.a[a_id];
let b = &self.b[b_id];
let mut exports = Vec::with_capacity(b.exports.len());
for (k, b) in b.exports.iter() {
match a.exports.get(k) {
Some(a) => exports.push((*a, *b)),
None => bail!(offset, "missing expected export `{k}`"),
}
}
for (i, (a, b)) in exports.iter().enumerate() {
let err = match self.component_entity_type(a, b, offset) {
Ok(()) => continue,
Err(e) => e,
};
// On failure attach the name of this export as context to
// the error message to leave a breadcrumb trail.
let (name, _) = self.b[b_id].exports.get_index(i).unwrap();
return Err(err.with_context(|| format!("type mismatch in instance export `{name}`")));
}
Ok(())
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn component_func_type(
&mut self,
a: ComponentFuncTypeId,
b: ComponentFuncTypeId,
offset: usize,
) -> Result<()> {
let a = &self.a[a];
let b = &self.b[b];
// Note that this intentionally diverges from the upstream
// specification in terms of subtyping. This is a full
// type-equality check which ensures that the structure of `a`
// exactly matches the structure of `b`. The rationale for this
// is:
//
// * Primarily in Wasmtime subtyping based on function types is
// not implemented. This includes both subtyping a host
// import and additionally handling subtyping as functions
// cross component boundaries. The host import subtyping (or
// component export subtyping) is not clear how to handle at
// all at this time. The subtyping of functions between
// components can more easily be handled by extending the
// `fact` compiler, but that hasn't been done yet.
//
// * The upstream specification is currently pretty
// intentionally vague precisely what subtyping is allowed.
// Implementing a strict check here is intended to be a
// conservative starting point for the component model which
// can be extended in the future if necessary.
//
// * The interaction with subtyping on bindings generation, for
// example, is a tricky problem that doesn't have a clear
// answer at this time. Effectively this is more rationale
// for being conservative in the first pass of the component
// model.
//
// So, in conclusion, the test here (and other places that
// reference this comment) is for exact type equality with no
// differences.
if a.params.len() != b.params.len() {
bail!(
offset,
"expected {} parameters, found {}",
b.params.len(),
a.params.len(),
);
}
if a.results.len() != b.results.len() {
bail!(
offset,
"expected {} results, found {}",
b.results.len(),
a.results.len(),
);
}
for ((an, a), (bn, b)) in a.params.iter().zip(b.params.iter()) {
if an != bn {
bail!(offset, "expected parameter named `{bn}`, found `{an}`");
}
self.component_val_type(a, b, offset)
.with_context(|| format!("type mismatch in function parameter `{an}`"))?;
}
for ((an, a), (bn, b)) in a.results.iter().zip(b.results.iter()) {
if an != bn {
bail!(offset, "mismatched result names");
}
self.component_val_type(a, b, offset)
.with_context(|| "type mismatch with result type")?;
}
Ok(())
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn module_type(
&mut self,
a: ComponentCoreModuleTypeId,
b: ComponentCoreModuleTypeId,
offset: usize,
) -> Result<()> {
// For module type subtyping, all exports in the other module
// type must be present in this module type's exports (i.e. it
// can export *more* than what this module type needs).
// However, for imports, the check is reversed (i.e. it is okay
// to import *less* than what this module type needs).
self.swap();
let a_imports = &self.b[a].imports;
let b_imports = &self.a[b].imports;
for (k, a) in a_imports {
match b_imports.get(k) {
Some(b) => self
.entity_type(b, a, offset)
.with_context(|| format!("type mismatch in import `{}::{}`", k.0, k.1))?,
None => bail!(offset, "missing expected import `{}::{}`", k.0, k.1),
}
}
self.swap();
let a = &self.a[a];
let b = &self.b[b];
for (k, b) in b.exports.iter() {
match a.exports.get(k) {
Some(a) => self
.entity_type(a, b, offset)
.with_context(|| format!("type mismatch in export `{k}`"))?,
None => bail!(offset, "missing expected export `{k}`"),
}
}
Ok(())
}
/// Tests whether `a` is a subtype of `b`.
///
/// Errors are reported at the `offset` specified.
pub fn component_any_type_id(
&mut self,
a: ComponentAnyTypeId,
b: ComponentAnyTypeId,
offset: usize,
) -> Result<()> {
match (a, b) {
(ComponentAnyTypeId::Resource(a), ComponentAnyTypeId::Resource(b)) => {
if a.resource() == b.resource() {
Ok(())
} else {
bail!(
offset,
"resource types are not the same ({:?} vs. {:?})",
a.resource(),
b.resource()
)
}
}
(ComponentAnyTypeId::Resource(_), b) => {
bail!(offset, "expected {}, found resource", b.desc())
}
(ComponentAnyTypeId::Defined(a), ComponentAnyTypeId::Defined(b)) => {
self.component_defined_type(a, b, offset)
}
(ComponentAnyTypeId::Defined(_), b) => {
bail!(offset, "expected {}, found defined type", b.desc())
}
(ComponentAnyTypeId::Func(a), ComponentAnyTypeId::Func(b)) => {
self.component_func_type(a, b, offset)
}
(ComponentAnyTypeId::Func(_), b) => {
bail!(offset, "expected {}, found func type", b.desc())
}
(ComponentAnyTypeId::Instance(a), ComponentAnyTypeId::Instance(b)) => {
self.component_instance_type(a, b, offset)
}
(ComponentAnyTypeId::Instance(_), b) => {
bail!(offset, "expected {}, found instance type", b.desc())
}
(ComponentAnyTypeId::Component(a), ComponentAnyTypeId::Component(b)) => {
self.component_type(a, b, offset)
}
(ComponentAnyTypeId::Component(_), b) => {
bail!(offset, "expected {}, found component type", b.desc())
}
}
}
/// The building block for subtyping checks when components are
/// instantiated and when components are tested if they're subtypes of each
/// other.
///
/// This method takes a number of arguments:
///
/// * `a` - this is a list of typed items which can be thought of as
/// concrete values to test against `b`.
/// * `b` - this `TypeId` must point to `Type::Component`.
/// * `kind` - indicates whether the `imports` or `exports` of `b` are
/// being tested against for the values in `a`.
/// * `offset` - the binary offset at which to report errors if one happens.
///
/// This will attempt to determine if the items in `a` satisfy the
/// signature required by the `kind` items of `b`. For example component
/// instantiation will have `a` as the list of arguments provided to
/// instantiation, `b` is the component being instantiated, and `kind` is
/// `ExternKind::Import`.
///
/// This function, if successful, will return a mapping of the resources in
/// `b` to the resources in `a` provided. This mapping is guaranteed to
/// contain all the resources for `b` (all imported resources for
/// `ExternKind::Import` or all defined resources for `ExternKind::Export`).
pub fn open_instance_type(
&mut self,
a: &IndexMap<String, ComponentEntityType>,
b: ComponentTypeId,
kind: ExternKind,
offset: usize,
) -> Result<Remapping> {
// First, determine the mapping from resources in `b` to those supplied
// by arguments in `a`.
//
// This loop will iterate over all the appropriate resources in `b`
// and find the corresponding resource in `args`. The exact lists
// in use here depend on the `kind` provided. This necessarily requires
// a sequence of string lookups to find the corresponding items in each
// list.
//
// The path to each resource in `resources` is precomputed as a list of
// indexes. The first index is into `b`'s list of `entities`, and gives
// the name that `b` assigns to the resource. Each subsequent index,
// if present, means that this resource was present through a layer of
// an instance type, and the index is into the instance type's exports.
// More information about this can be found on
// `ComponentState::imported_resources`.
//
// This loop will follow the list of indices for each resource and, at
// the same time, walk through the arguments supplied to instantiating
// the `component_type`. This means that within `component_type`
// index-based lookups are performed while in `args` name-based
// lookups are performed.
//
// Note that here it's possible that `args` doesn't actually supply the
// correct type of import for each item since argument checking has
// not proceeded yet. These type errors, however, aren't handled by
// this loop and are deferred below to the main subtyping check. That
// means that `mapping` won't necessarily have a mapping for all
// imported resources into `component_type`, but that should be ok.
let component_type = &self.b[b];
let entities = match kind {
ExternKind::Import => &component_type.imports,
ExternKind::Export => &component_type.exports,
};
let resources = match kind {
ExternKind::Import => &component_type.imported_resources,
ExternKind::Export => &component_type.defined_resources,
};
let mut mapping = Remapping::default();
'outer: for (resource, path) in resources.iter() {
// Lookup the first path item in `imports` and the corresponding
// entry in `args` by name.
let (name, ty) = entities.get_index(path[0]).unwrap();
let mut ty = *ty;
let mut arg = a.get(name);
// Lookup all the subsequent `path` entries, if any, by index in
// `ty` and by name in `arg`. Type errors in `arg` are skipped over
// entirely.
for i in path.iter().skip(1).copied() {
let id = match ty {
ComponentEntityType::Instance(id) => id,
_ => unreachable!(),
};
let (name, next_ty) = self.b[id].exports.get_index(i).unwrap();
ty = *next_ty;
arg = match arg {
Some(ComponentEntityType::Instance(id)) => self.a[*id].exports.get(name),
_ => continue 'outer,
};
}
// Double-check that `ty`, the leaf type of `component_type`, is
// indeed the expected resource.
if cfg!(debug_assertions) {
let id = match ty {
ComponentEntityType::Type { created, .. } => match created {
ComponentAnyTypeId::Resource(id) => id.resource(),
_ => unreachable!(),
},
_ => unreachable!(),
};
assert_eq!(id, *resource);
}
// The leaf of `arg` should be a type which is a resource. If not
// it's skipped and this'll wind up generating an error later on in
// subtype checking below.
if let Some(ComponentEntityType::Type { created, .. }) = arg {
if let ComponentAnyTypeId::Resource(r) = created {
mapping.resources.insert(*resource, r.resource());
}
}
}
// Now that a mapping from the resources in `b` to the resources in `a`
// has been determined it's possible to perform the actual subtype
// check.
//
// This subtype check notably needs to ensure that all resource types
// line up. To achieve this the `mapping` previously calculated is used
// to perform a substitution on each component entity type.
//
// The first loop here performs a name lookup to create a list of
// values from `a` to expected items in `b`. Once the list is created
// the substitution check is performed on each element.
let mut to_typecheck = Vec::new();
for (name, expected) in entities.iter() {
match a.get(name) {
Some(arg) => to_typecheck.push((*arg, *expected)),
None => bail!(offset, "missing {} named `{name}`", kind.desc()),
}
}
let mut type_map = Map::default();
for (i, (actual, expected)) in to_typecheck.into_iter().enumerate() {
let result = self.with_checkpoint(|this| {
let mut expected = expected;
this.b.remap_component_entity(&mut expected, &mut mapping);
mapping.types.clear();
this.component_entity_type(&actual, &expected, offset)
});
let err = match result {
Ok(()) => {
// On a successful type-check record a mapping of
// type-to-type in `type_map` for any type imports that were
// satisfied. This is then used afterwards when performing
// type substitution to remap all component-local types to
// those that were provided in the imports.
self.register_type_renamings(actual, expected, &mut type_map);
continue;
}
Err(e) => e,
};
// If an error happens then attach the name of the entity to the
// error message using the `i` iteration counter.
let component_type = &self.b[b];
let entities = match kind {
ExternKind::Import => &component_type.imports,
ExternKind::Export => &component_type.exports,
};
let (name, _) = entities.get_index(i).unwrap();
return Err(err.with_context(|| format!("type mismatch for {} `{name}`", kind.desc())));
}
mapping.types = type_map;
Ok(mapping)
}
pub(crate) fn entity_type(&self, a: &EntityType, b: &EntityType, offset: usize) -> Result<()> {
macro_rules! limits_match {
($a:expr, $b:expr) => {{
let a = $a;
let b = $b;
a.initial >= b.initial
&& match b.maximum {
Some(b_max) => match a.maximum {
Some(a_max) => a_max <= b_max,
None => false,
},
None => true,
}
}};
}
match (a, b) {
(EntityType::Func(a), EntityType::Func(b)) => {
self.core_func_type(self.a[*a].unwrap_func(), self.b[*b].unwrap_func(), offset)
}
(EntityType::Func(_), b) => bail!(offset, "expected {}, found func", b.desc()),
(EntityType::Table(a), EntityType::Table(b)) => {
if a.element_type != b.element_type {
bail!(
offset,
"expected table element type {}, found {}",
b.element_type,
a.element_type,
)
}
if limits_match!(a, b) {
Ok(())
} else {
bail!(offset, "mismatch in table limits")
}
}
(EntityType::Table(_), b) => bail!(offset, "expected {}, found table", b.desc()),
(EntityType::Memory(a), EntityType::Memory(b)) => {
if a.shared != b.shared {
bail!(offset, "mismatch in the shared flag for memories")
}
if a.memory64 != b.memory64 {
bail!(offset, "mismatch in index type used for memories")
}
if limits_match!(a, b) {
Ok(())
} else {
bail!(offset, "mismatch in memory limits")
}
}
(EntityType::Memory(_), b) => bail!(offset, "expected {}, found memory", b.desc()),
(EntityType::Global(a), EntityType::Global(b)) => {
if a.mutable != b.mutable {
bail!(offset, "global types differ in mutability")
}
if a.content_type == b.content_type {
Ok(())
} else {
bail!(
offset,
"expected global type {}, found {}",
b.content_type,
a.content_type,
)
}
}
(EntityType::Global(_), b) => bail!(offset, "expected {}, found global", b.desc()),
(EntityType::Tag(a), EntityType::Tag(b)) => {
self.core_func_type(self.a[*a].unwrap_func(), self.b[*b].unwrap_func(), offset)
}
(EntityType::Tag(_), b) => bail!(offset, "expected {}, found tag", b.desc()),
}
}
fn core_func_type(&self, a: &FuncType, b: &FuncType, offset: usize) -> Result<()> {
if a == b {
Ok(())
} else {
bail!(
offset,
"expected: {}\n\
found: {}",
b.desc(),
a.desc(),
)
}
}
pub(crate) fn component_val_type(
&self,
a: &ComponentValType,
b: &ComponentValType,
offset: usize,
) -> Result<()> {
match (a, b) {
(ComponentValType::Primitive(a), ComponentValType::Primitive(b)) => {
self.primitive_val_type(*a, *b, offset)
}
(ComponentValType::Type(a), ComponentValType::Type(b)) => {
self.component_defined_type(*a, *b, offset)
}
(ComponentValType::Primitive(a), ComponentValType::Type(b)) => match &self.b[*b] {
ComponentDefinedType::Primitive(b) => self.primitive_val_type(*a, *b, offset),
b => bail!(offset, "expected {}, found {a}", b.desc()),
},
(ComponentValType::Type(a), ComponentValType::Primitive(b)) => match &self.a[*a] {
ComponentDefinedType::Primitive(a) => self.primitive_val_type(*a, *b, offset),
a => bail!(offset, "expected {b}, found {}", a.desc()),
},
}
}
fn component_defined_type(
&self,
a: ComponentDefinedTypeId,
b: ComponentDefinedTypeId,
offset: usize,
) -> Result<()> {
use ComponentDefinedType::*;
// Note that the implementation of subtyping here diverges from the
// upstream specification intentionally, see the documentation on
// function subtyping for more information.
match (&self.a[a], &self.b[b]) {
(Primitive(a), Primitive(b)) => self.primitive_val_type(*a, *b, offset),
(Primitive(a), b) => bail!(offset, "expected {}, found {a}", b.desc()),
(Record(a), Record(b)) => {
if a.fields.len() != b.fields.len() {
bail!(
offset,
"expected {} fields, found {}",
b.fields.len(),
a.fields.len(),
);
}
for ((aname, a), (bname, b)) in a.fields.iter().zip(b.fields.iter()) {
if aname != bname {
bail!(offset, "expected field name `{bname}`, found `{aname}`");
}
self.component_val_type(a, b, offset)
.with_context(|| format!("type mismatch in record field `{aname}`"))?;
}
Ok(())
}
(Record(_), b) => bail!(offset, "expected {}, found record", b.desc()),
(Variant(a), Variant(b)) => {
if a.cases.len() != b.cases.len() {
bail!(
offset,
"expected {} cases, found {}",
b.cases.len(),
a.cases.len(),
);
}
for ((aname, a), (bname, b)) in a.cases.iter().zip(b.cases.iter()) {
if aname != bname {
bail!(offset, "expected case named `{bname}`, found `{aname}`");
}
match (&a.ty, &b.ty) {
(Some(a), Some(b)) => self
.component_val_type(a, b, offset)
.with_context(|| format!("type mismatch in variant case `{aname}`"))?,
(None, None) => {}
(None, Some(_)) => {
bail!(offset, "expected case `{aname}` to have a type, found none")
}
(Some(_), None) => bail!(offset, "expected case `{aname}` to have no type"),
}
}
Ok(())
}
(Variant(_), b) => bail!(offset, "expected {}, found variant", b.desc()),
(List(a), List(b)) | (Option(a), Option(b)) => self.component_val_type(a, b, offset),
(List(_), b) => bail!(offset, "expected {}, found list", b.desc()),
(Option(_), b) => bail!(offset, "expected {}, found option", b.desc()),
(Tuple(a), Tuple(b)) => {
if a.types.len() != b.types.len() {
bail!(
offset,
"expected {} types, found {}",
b.types.len(),
a.types.len(),
);
}
for (i, (a, b)) in a.types.iter().zip(b.types.iter()).enumerate() {
self.component_val_type(a, b, offset)
.with_context(|| format!("type mismatch in tuple field {i}"))?;
}
Ok(())
}
(Tuple(_), b) => bail!(offset, "expected {}, found tuple", b.desc()),
(at @ Flags(a), Flags(b)) | (at @ Enum(a), Enum(b)) => {
let desc = match at {
Flags(_) => "flags",
_ => "enum",
};
if a.len() == b.len() && a.iter().eq(b.iter()) {
Ok(())
} else {
bail!(offset, "mismatch in {desc} elements")
}
}
(Flags(_), b) => bail!(offset, "expected {}, found flags", b.desc()),
(Enum(_), b) => bail!(offset, "expected {}, found enum", b.desc()),
(Result { ok: ao, err: ae }, Result { ok: bo, err: be }) => {
match (ao, bo) {
(None, None) => {}
(Some(a), Some(b)) => self
.component_val_type(a, b, offset)
.with_context(|| "type mismatch in ok variant")?,
(None, Some(_)) => bail!(offset, "expected ok type, but found none"),
(Some(_), None) => bail!(offset, "expected ok type to not be present"),
}
match (ae, be) {
(None, None) => {}
(Some(a), Some(b)) => self
.component_val_type(a, b, offset)
.with_context(|| "type mismatch in err variant")?,
(None, Some(_)) => bail!(offset, "expected err type, but found none"),
(Some(_), None) => bail!(offset, "expected err type to not be present"),
}
Ok(())
}
(Result { .. }, b) => bail!(offset, "expected {}, found result", b.desc()),
(Own(a), Own(b)) | (Borrow(a), Borrow(b)) => {
if a.resource() == b.resource() {
Ok(())
} else {
bail!(offset, "resource types are not the same")
}
}
(Own(_), b) => bail!(offset, "expected {}, found own", b.desc()),
(Borrow(_), b) => bail!(offset, "expected {}, found borrow", b.desc()),
}
}
fn primitive_val_type(
&self,
a: PrimitiveValType,
b: PrimitiveValType,
offset: usize,
) -> Result<()> {
// Note that this intentionally diverges from the upstream specification
// at this time and only considers exact equality for subtyping
// relationships.
//
// More information can be found in the subtyping implementation for
// component functions.
if a == b {
Ok(())
} else {
bail!(offset, "expected primitive `{b}` found primitive `{a}`")
}
}
fn register_type_renamings(
&self,
actual: ComponentEntityType,
expected: ComponentEntityType,
type_map: &mut Map<ComponentAnyTypeId, ComponentAnyTypeId>,
) {
match (expected, actual) {
(
ComponentEntityType::Type {
created: expected, ..
},
ComponentEntityType::Type {
created: actual, ..
},
) => {
let prev = type_map.insert(expected, actual);
assert!(prev.is_none());
}
(ComponentEntityType::Instance(expected), ComponentEntityType::Instance(actual)) => {
let actual = &self.a[actual];
for (name, expected) in self.b[expected].exports.iter() {
let actual = actual.exports[name];
self.register_type_renamings(actual, *expected, type_map);
}
}
_ => {}
}
}
}
/// A helper typed used purely during subtyping as part of `SubtypeCx`.
///
/// This takes a `types` list as input which is the "base" of the ids that can
/// be indexed through this arena. All future types pushed into this, if any,
/// are stored in `self.list`.
///
/// This is intended to have arena-like behavior where everything pushed onto
/// `self.list` is thrown away after a subtyping computation is performed. All
/// new types pushed into this arena are purely temporary.
pub struct SubtypeArena<'a> {
types: &'a TypeList,
list: TypeList,
}
impl<'a> SubtypeArena<'a> {
fn new(types: &'a TypeList) -> SubtypeArena<'a> {
SubtypeArena {
types,
list: TypeList::default(),
}
}
}
impl<T> Index<T> for SubtypeArena<'_>
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, id: T) -> &T::Data {
let index = id.index();
if index < T::list(self.types).len() {
&self.types[id]
} else {
let temp_index = index - T::list(self.types).len();
let temp_index = u32::try_from(temp_index).unwrap();
let temp_id = T::from_index(temp_index);
&self.list[temp_id]
}
}
}
impl Remap for SubtypeArena<'_> {
fn push_ty<T>(&mut self, ty: T) -> T::Id
where
T: TypeData,
{
let index = T::Id::list(&self.list).len() + T::Id::list(self.types).len();
let index = u32::try_from(index).unwrap();
self.list.push(ty);
T::Id::from_index(index)
}
}
/// Helper trait for adding contextual information to an error, modeled after
/// `anyhow::Context`.
pub(crate) trait Context {
fn with_context<S>(self, context: impl FnOnce() -> S) -> Self
where
S: Into<String>;
}
impl<T> Context for Result<T> {
fn with_context<S>(self, context: impl FnOnce() -> S) -> Self
where
S: Into<String>,
{
match self {
Ok(val) => Ok(val),
Err(e) => Err(e.with_context(context)),
}
}
}
impl Context for BinaryReaderError {
fn with_context<S>(mut self, context: impl FnOnce() -> S) -> Self
where
S: Into<String>,
{
self.add_context(context().into());
self
}
}