1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
//! Support for compiling with Cranelift.
//!
//! This crate provides an implementation of the `wasmtime_environ::Compiler`
//! and `wasmtime_environ::CompilerBuilder` traits.
use cranelift_codegen::{
binemit,
cursor::FuncCursor,
ir::{self, AbiParam, ArgumentPurpose, ExternalName, InstBuilder, Signature},
isa::{CallConv, TargetIsa},
settings, FinalizedMachReloc, FinalizedRelocTarget, MachTrap,
};
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{
DefinedFuncIndex, FuncIndex, WasmFuncType, WasmHeapTopType, WasmHeapType, WasmValType,
};
use target_lexicon::Architecture;
use wasmtime_environ::{
BuiltinFunctionIndex, FlagValue, RelocationTarget, Trap, TrapInformation, Tunables,
};
pub use builder::builder;
pub mod isa_builder;
mod obj;
pub use obj::*;
mod compiled_function;
pub use compiled_function::*;
mod builder;
mod compiler;
mod debug;
mod func_environ;
mod gc;
type CompiledFunctionsMetadata<'a> = PrimaryMap<DefinedFuncIndex, &'a CompiledFunctionMetadata>;
/// Trap code used for debug assertions we emit in our JIT code.
const DEBUG_ASSERT_TRAP_CODE: u16 = u16::MAX;
/// Creates a new cranelift `Signature` with no wasm params/results for the
/// given calling convention.
///
/// This will add the default vmctx/etc parameters to the signature returned.
fn blank_sig(isa: &dyn TargetIsa, call_conv: CallConv) -> ir::Signature {
let pointer_type = isa.pointer_type();
let mut sig = ir::Signature::new(call_conv);
// Add the caller/callee `vmctx` parameters.
sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
sig.params.push(ir::AbiParam::new(pointer_type));
return sig;
}
/// Emit code for the following unbarriered memory write of the given type:
///
/// ```ignore
/// *(base + offset) = value
/// ```
///
/// This is intended to be used with things like `ValRaw` and the array calling
/// convention.
fn unbarriered_store_type_at_offset(
isa: &dyn TargetIsa,
pos: &mut FuncCursor,
ty: WasmValType,
flags: ir::MemFlags,
base: ir::Value,
offset: i32,
value: ir::Value,
) {
let ir_ty = value_type(isa, ty);
if ir_ty.is_ref() {
let value = pos
.ins()
.bitcast(ir_ty.as_int(), ir::MemFlags::new(), value);
let truncated = match isa.pointer_bytes() {
4 => value,
8 => pos.ins().ireduce(ir::types::I32, value),
_ => unreachable!(),
};
pos.ins().store(flags, truncated, base, offset);
} else {
pos.ins().store(flags, value, base, offset);
}
}
/// Emit code to do the following unbarriered memory read of the given type and
/// with the given flags:
///
/// ```ignore
/// result = *(base + offset)
/// ```
///
/// This is intended to be used with things like `ValRaw` and the array calling
/// convention.
fn unbarriered_load_type_at_offset(
isa: &dyn TargetIsa,
pos: &mut FuncCursor,
ty: WasmValType,
flags: ir::MemFlags,
base: ir::Value,
offset: i32,
) -> ir::Value {
let ir_ty = value_type(isa, ty);
if ir_ty.is_ref() {
let gc_ref = pos.ins().load(ir::types::I32, flags, base, offset);
let extended = match isa.pointer_bytes() {
4 => gc_ref,
8 => pos.ins().uextend(ir::types::I64, gc_ref),
_ => unreachable!(),
};
pos.ins().bitcast(ir_ty, ir::MemFlags::new(), extended)
} else {
pos.ins().load(ir_ty, flags, base, offset)
}
}
/// Returns the corresponding cranelift type for the provided wasm type.
fn value_type(isa: &dyn TargetIsa, ty: WasmValType) -> ir::types::Type {
match ty {
WasmValType::I32 => ir::types::I32,
WasmValType::I64 => ir::types::I64,
WasmValType::F32 => ir::types::F32,
WasmValType::F64 => ir::types::F64,
WasmValType::V128 => ir::types::I8X16,
WasmValType::Ref(rt) => reference_type(rt.heap_type, isa.pointer_type()),
}
}
/// Get the Cranelift signature with the native calling convention for the given
/// Wasm function type.
///
/// This parameters will start with the callee and caller VM contexts, followed
/// by the translation of each of the Wasm parameter types to native types. The
/// results are the Wasm result types translated to native types.
///
/// The signature uses the wasmtime variant of the target's default calling
/// convention. The only difference from the default calling convention is how
/// multiple results are handled.
///
/// When there is only a single result, or zero results, these signatures are
/// suitable for calling from the host via
///
/// ```ignore
/// unsafe extern "C" fn(
/// callee_vmctx: *mut VMOpaqueContext,
/// caller_vmctx: *mut VMOpaqueContext,
/// // ...wasm parameter types...
/// ) -> // ...wasm result type...
/// ```
///
/// When there are more than one results, these signatures are suitable for
/// calling from the host via
///
/// ```ignore
/// unsafe extern "C" fn(
/// callee_vmctx: *mut VMOpaqueContext,
/// caller_vmctx: *mut VMOpaqueContext,
/// // ...wasm parameter types...
/// retptr: *mut (),
/// ) -> // ...wasm result type 0...
/// ```
///
/// where the first result is returned directly and the rest via the return
/// pointer.
fn native_call_signature(isa: &dyn TargetIsa, wasm: &WasmFuncType) -> ir::Signature {
let mut sig = blank_sig(isa, CallConv::triple_default(isa.triple()));
let cvt = |ty: &WasmValType| ir::AbiParam::new(value_type(isa, *ty));
sig.params.extend(wasm.params().iter().map(&cvt));
if let Some(first_ret) = wasm.returns().get(0) {
sig.returns.push(cvt(first_ret));
}
if wasm.returns().len() > 1 {
sig.params.push(ir::AbiParam::new(isa.pointer_type()));
}
sig
}
/// Get the Cranelift signature for all array-call functions, that is:
///
/// ```ignore
/// unsafe extern "C" fn(
/// callee_vmctx: *mut VMOpaqueContext,
/// caller_vmctx: *mut VMOpaqueContext,
/// values_ptr: *mut ValRaw,
/// values_len: usize,
/// )
/// ```
///
/// This signature uses the target's default calling convention.
///
/// Note that regardless of the Wasm function type, the array-call calling
/// convention always uses that same signature.
fn array_call_signature(isa: &dyn TargetIsa) -> ir::Signature {
let mut sig = blank_sig(isa, CallConv::triple_default(isa.triple()));
// The array-call signature has an added parameter for the `values_vec`
// input/output buffer in addition to the size of the buffer, in units
// of `ValRaw`.
sig.params.push(ir::AbiParam::new(isa.pointer_type()));
sig.params.push(ir::AbiParam::new(isa.pointer_type()));
sig
}
/// Get the internal Wasm calling convention signature for the given type.
fn wasm_call_signature(
isa: &dyn TargetIsa,
wasm_func_ty: &WasmFuncType,
tunables: &Tunables,
) -> ir::Signature {
// NB: this calling convention in the near future is expected to be
// unconditionally switched to the "tail" calling convention once all
// platforms have support for tail calls.
//
// Also note that the calling convention for wasm functions is purely an
// internal implementation detail of cranelift and Wasmtime. Native Rust
// code does not interact with raw wasm functions and instead always
// operates through trampolines either using the `array_call_signature` or
// `native_call_signature` where the default platform ABI is used.
let call_conv = match isa.triple().architecture {
// If the tail calls proposal is enabled, we must use the tail calling
// convention. We don't use it by default yet because of
// https://github.com/bytecodealliance/wasmtime/issues/6759
arch if tunables.tail_callable => {
assert_ne!(
arch,
Architecture::S390x,
"https://github.com/bytecodealliance/wasmtime/issues/6530"
);
assert!(
!tunables.winch_callable,
"Winch doesn't support the WebAssembly tail call proposal",
);
CallConv::Tail
}
// The winch calling convention is only implemented for x64 and aarch64
arch if tunables.winch_callable => {
assert!(
matches!(arch, Architecture::X86_64 | Architecture::Aarch64(_)),
"The Winch calling convention is only implemented for x86_64 and aarch64"
);
CallConv::Winch
}
// On s390x the "wasmtime" calling convention is used to give vectors
// little-endian lane order at the ABI layer which should reduce the
// need for conversion when operating on vector function arguments. By
// default vectors on s390x are otherwise in big-endian lane order which
// would require conversions.
Architecture::S390x => CallConv::WasmtimeSystemV,
// All other platforms pick "fast" as the calling convention since it's
// presumably, well, the fastest.
_ => CallConv::Fast,
};
let mut sig = blank_sig(isa, call_conv);
let cvt = |ty: &WasmValType| ir::AbiParam::new(value_type(isa, *ty));
sig.params.extend(wasm_func_ty.params().iter().map(&cvt));
sig.returns.extend(wasm_func_ty.returns().iter().map(&cvt));
sig
}
/// Returns the reference type to use for the provided wasm type.
fn reference_type(wasm_ht: WasmHeapType, pointer_type: ir::Type) -> ir::Type {
match wasm_ht.top() {
WasmHeapTopType::Func => pointer_type,
WasmHeapTopType::Any | WasmHeapTopType::Extern => match pointer_type {
ir::types::I32 => ir::types::R32,
ir::types::I64 => ir::types::R64,
_ => panic!("unsupported pointer type"),
},
}
}
// List of namespaces which are processed in `mach_reloc_to_reloc` below.
/// Namespace corresponding to wasm functions, the index is the index of the
/// defined function that's being referenced.
pub const NS_WASM_FUNC: u32 = 0;
/// Namespace for builtin function trampolines. The index is the index of the
/// builtin that's being referenced. These trampolines invoke the real host
/// function through an indirect function call loaded by the `VMContext`.
pub const NS_WASMTIME_BUILTIN: u32 = 1;
/// A record of a relocation to perform.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Relocation {
/// The relocation code.
pub reloc: binemit::Reloc,
/// Relocation target.
pub reloc_target: RelocationTarget,
/// The offset where to apply the relocation.
pub offset: binemit::CodeOffset,
/// The addend to add to the relocation value.
pub addend: binemit::Addend,
}
/// Converts cranelift_codegen settings to the wasmtime_environ equivalent.
pub fn clif_flags_to_wasmtime(
flags: impl IntoIterator<Item = settings::Value>,
) -> Vec<(&'static str, FlagValue<'static>)> {
flags
.into_iter()
.map(|val| (val.name, to_flag_value(&val)))
.collect()
}
fn to_flag_value(v: &settings::Value) -> FlagValue<'static> {
match v.kind() {
settings::SettingKind::Enum => FlagValue::Enum(v.as_enum().unwrap()),
settings::SettingKind::Num => FlagValue::Num(v.as_num().unwrap()),
settings::SettingKind::Bool => FlagValue::Bool(v.as_bool().unwrap()),
settings::SettingKind::Preset => unreachable!(),
}
}
/// A custom code with `TrapCode::User` which is used by always-trap shims which
/// indicates that, as expected, the always-trapping function indeed did trap.
/// This effectively provides a better error message as opposed to a bland
/// "unreachable code reached"
pub const ALWAYS_TRAP_CODE: u16 = 100;
/// A custom code with `TrapCode::User` corresponding to being unable to reenter
/// a component due to its reentrance limitations. This is used in component
/// adapters to provide a more useful error message in such situations.
pub const CANNOT_ENTER_CODE: u16 = 101;
/// Converts machine traps to trap information.
pub fn mach_trap_to_trap(trap: &MachTrap) -> Option<TrapInformation> {
let &MachTrap { offset, code } = trap;
Some(TrapInformation {
code_offset: offset,
trap_code: match code {
ir::TrapCode::StackOverflow => Trap::StackOverflow,
ir::TrapCode::HeapOutOfBounds => Trap::MemoryOutOfBounds,
ir::TrapCode::HeapMisaligned => Trap::HeapMisaligned,
ir::TrapCode::TableOutOfBounds => Trap::TableOutOfBounds,
ir::TrapCode::IndirectCallToNull => Trap::IndirectCallToNull,
ir::TrapCode::BadSignature => Trap::BadSignature,
ir::TrapCode::IntegerOverflow => Trap::IntegerOverflow,
ir::TrapCode::IntegerDivisionByZero => Trap::IntegerDivisionByZero,
ir::TrapCode::BadConversionToInteger => Trap::BadConversionToInteger,
ir::TrapCode::UnreachableCodeReached => Trap::UnreachableCodeReached,
ir::TrapCode::Interrupt => Trap::Interrupt,
ir::TrapCode::User(ALWAYS_TRAP_CODE) => Trap::AlwaysTrapAdapter,
ir::TrapCode::User(CANNOT_ENTER_CODE) => Trap::CannotEnterComponent,
ir::TrapCode::NullReference => Trap::NullReference,
ir::TrapCode::NullI31Ref => Trap::NullI31Ref,
// These do not get converted to wasmtime traps, since they
// shouldn't ever be hit in theory. Instead of catching and handling
// these, we let the signal crash the process.
ir::TrapCode::User(DEBUG_ASSERT_TRAP_CODE) => return None,
// these should never be emitted by wasmtime-cranelift
ir::TrapCode::User(_) => unreachable!(),
},
})
}
/// Converts machine relocations to relocation information
/// to perform.
fn mach_reloc_to_reloc(
reloc: &FinalizedMachReloc,
name_map: &PrimaryMap<ir::UserExternalNameRef, ir::UserExternalName>,
) -> Relocation {
let &FinalizedMachReloc {
offset,
kind,
ref target,
addend,
} = reloc;
let reloc_target = match *target {
FinalizedRelocTarget::ExternalName(ExternalName::User(user_func_ref)) => {
let name = &name_map[user_func_ref];
match name.namespace {
NS_WASM_FUNC => RelocationTarget::Wasm(FuncIndex::from_u32(name.index)),
NS_WASMTIME_BUILTIN => {
RelocationTarget::Builtin(BuiltinFunctionIndex::from_u32(name.index))
}
_ => panic!("unknown namespace {}", name.namespace),
}
}
FinalizedRelocTarget::ExternalName(ExternalName::LibCall(libcall)) => {
let libcall = libcall_cranelift_to_wasmtime(libcall);
RelocationTarget::HostLibcall(libcall)
}
_ => panic!("unrecognized external name"),
};
Relocation {
reloc: kind,
reloc_target,
offset,
addend,
}
}
fn libcall_cranelift_to_wasmtime(call: ir::LibCall) -> wasmtime_environ::obj::LibCall {
use wasmtime_environ::obj::LibCall as LC;
match call {
ir::LibCall::FloorF32 => LC::FloorF32,
ir::LibCall::FloorF64 => LC::FloorF64,
ir::LibCall::NearestF32 => LC::NearestF32,
ir::LibCall::NearestF64 => LC::NearestF64,
ir::LibCall::CeilF32 => LC::CeilF32,
ir::LibCall::CeilF64 => LC::CeilF64,
ir::LibCall::TruncF32 => LC::TruncF32,
ir::LibCall::TruncF64 => LC::TruncF64,
ir::LibCall::FmaF32 => LC::FmaF32,
ir::LibCall::FmaF64 => LC::FmaF64,
ir::LibCall::X86Pshufb => LC::X86Pshufb,
_ => panic!("cranelift emitted a libcall wasmtime does not support: {call:?}"),
}
}
/// Helper structure for creating a `Signature` for all builtins.
struct BuiltinFunctionSignatures {
pointer_type: ir::Type,
#[cfg(feature = "gc")]
reference_type: ir::Type,
call_conv: CallConv,
}
impl BuiltinFunctionSignatures {
fn new(isa: &dyn TargetIsa) -> Self {
Self {
pointer_type: isa.pointer_type(),
#[cfg(feature = "gc")]
reference_type: match isa.pointer_type() {
ir::types::I32 => ir::types::R32,
ir::types::I64 => ir::types::R64,
_ => panic!(),
},
call_conv: CallConv::triple_default(isa.triple()),
}
}
fn vmctx(&self) -> AbiParam {
AbiParam::special(self.pointer_type, ArgumentPurpose::VMContext)
}
#[cfg(feature = "gc")]
fn reference(&self) -> AbiParam {
AbiParam::new(self.reference_type)
}
fn pointer(&self) -> AbiParam {
AbiParam::new(self.pointer_type)
}
fn i32(&self) -> AbiParam {
// Some platform ABIs require i32 values to be zero- or sign-
// extended to the full register width. We need to indicate
// this here by using the appropriate .uext or .sext attribute.
// The attribute can be added unconditionally; platforms whose
// ABI does not require such extensions will simply ignore it.
// Note that currently all i32 arguments or return values used
// by builtin functions are unsigned, so we always use .uext.
// If that ever changes, we will have to add a second type
// marker here.
AbiParam::new(ir::types::I32).uext()
}
fn i64(&self) -> AbiParam {
AbiParam::new(ir::types::I64)
}
fn signature(&self, builtin: BuiltinFunctionIndex) -> Signature {
let mut _cur = 0;
macro_rules! iter {
(
$(
$( #[$attr:meta] )*
$name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
)*
) => {
$(
$( #[$attr] )*
if _cur == builtin.index() {
return Signature {
params: vec![ $( self.$param() ),* ],
returns: vec![ $( self.$result() )? ],
call_conv: self.call_conv,
};
}
_cur += 1;
)*
};
}
wasmtime_environ::foreach_builtin_function!(iter);
unreachable!();
}
}
/// If this bit is set on a GC reference, then the GC reference is actually an
/// unboxed `i31`.
///
/// Must be kept in sync with
/// `crate::runtime::vm::gc::VMGcRef::I31_REF_DISCRIMINANT`.
const I31_REF_DISCRIMINANT: u32 = 1;