wasmtime_cranelift/obj.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
//! Object file builder.
//!
//! Creates ELF image based on `Compilation` information. The ELF contains
//! functions and trampolines in the ".text" section. It also contains all
//! relocation records for the linking stage. If DWARF sections exist, their
//! content will be written as well.
//!
//! The object file has symbols for each function and trampoline, as well as
//! symbols that refer to libcalls.
//!
//! The function symbol names have format "_wasm_function_N", where N is
//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
//! function body, the imported wasm function do not. The trampolines symbol
//! names have format "_trampoline_N", where N is `SignatureIndex`.
use crate::{CompiledFunction, RelocationTarget};
use anyhow::Result;
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::isa::unwind::{systemv, UnwindInfo};
use cranelift_codegen::TextSectionBuilder;
use cranelift_control::ControlPlane;
use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
use gimli::RunTimeEndian;
use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
use object::{Architecture, SectionFlags, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
use std::collections::HashMap;
use std::ops::Range;
use wasmtime_environ::obj::{self, LibCall};
use wasmtime_environ::{Compiler, TripleExt, Unsigned};
const TEXT_SECTION_NAME: &[u8] = b".text";
/// A helper structure used to assemble the final text section of an executable,
/// plus unwinding information and other related details.
///
/// This builder relies on Cranelift-specific internals but assembles into a
/// generic `Object` which will get further appended to in a compiler-agnostic
/// fashion later.
pub struct ModuleTextBuilder<'a> {
/// The target that we're compiling for, used to query target-specific
/// information as necessary.
compiler: &'a dyn Compiler,
/// The object file that we're generating code into.
obj: &'a mut Object<'static>,
/// The WebAssembly module we're generating code for.
text_section: SectionId,
unwind_info: UnwindInfoBuilder<'a>,
/// In-progress text section that we're using cranelift's `MachBuffer` to
/// build to resolve relocations (calls) between functions.
text: Box<dyn TextSectionBuilder>,
/// Symbols defined in the object for libcalls that relocations are applied
/// against.
///
/// Note that this isn't typically used. It's only used for SSE-disabled
/// builds without SIMD on x86_64 right now.
libcall_symbols: HashMap<LibCall, SymbolId>,
ctrl_plane: ControlPlane,
}
impl<'a> ModuleTextBuilder<'a> {
/// Creates a new builder for the text section of an executable.
///
/// The `.text` section will be appended to the specified `obj` along with
/// any unwinding or such information as necessary. The `num_funcs`
/// parameter indicates the number of times the `append_func` function will
/// be called. The `finish` function will panic if this contract is not met.
pub fn new(
obj: &'a mut Object<'static>,
compiler: &'a dyn Compiler,
text: Box<dyn TextSectionBuilder>,
) -> Self {
// Entire code (functions and trampolines) will be placed
// in the ".text" section.
let text_section = obj.add_section(
obj.segment_name(StandardSegment::Text).to_vec(),
TEXT_SECTION_NAME.to_vec(),
SectionKind::Text,
);
// If this target is Pulley then flag the text section as not needing the
// executable bit in virtual memory which means that the runtime won't
// try to call `Mmap::make_executable`, which makes Pulley more
// portable.
if compiler.triple().is_pulley() {
let section = obj.section_mut(text_section);
assert!(matches!(section.flags, SectionFlags::None));
section.flags = SectionFlags::Elf {
sh_flags: obj::SH_WASMTIME_NOT_EXECUTED,
};
}
Self {
compiler,
obj,
text_section,
unwind_info: Default::default(),
text,
libcall_symbols: HashMap::default(),
ctrl_plane: ControlPlane::default(),
}
}
/// Appends the `func` specified named `name` to this object.
///
/// The `resolve_reloc_target` closure is used to resolve a relocation
/// target to an adjacent function which has already been added or will be
/// added to this object. The argument is the relocation target specified
/// within `CompiledFunction` and the return value must be an index where
/// the target will be defined by the `n`th call to `append_func`.
///
/// Returns the symbol associated with the function as well as the range
/// that the function resides within the text section.
pub fn append_func(
&mut self,
name: &str,
compiled_func: &'a CompiledFunction,
resolve_reloc_target: impl Fn(wasmtime_environ::RelocationTarget) -> usize,
) -> (SymbolId, Range<u64>) {
let body = compiled_func.buffer.data();
let alignment = compiled_func.alignment;
let body_len = body.len() as u64;
let off = self
.text
.append(true, &body, alignment, &mut self.ctrl_plane);
let symbol_id = self.obj.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: off,
size: body_len,
kind: SymbolKind::Text,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(self.text_section),
flags: SymbolFlags::None,
});
if let Some(info) = compiled_func.unwind_info() {
self.unwind_info.push(off, body_len, info);
}
for r in compiled_func.relocations() {
let reloc_offset = off + u64::from(r.offset);
match r.reloc_target {
// Relocations against user-defined functions means that this is
// a relocation against a module-local function, typically a
// call between functions. The `text` field is given priority to
// resolve this relocation before we actually emit an object
// file, but if it can't handle it then we pass through the
// relocation.
RelocationTarget::Wasm(_) | RelocationTarget::Builtin(_) => {
let target = resolve_reloc_target(r.reloc_target);
if self
.text
.resolve_reloc(reloc_offset, r.reloc, r.addend, target)
{
continue;
}
// At this time it's expected that all relocations are
// handled by `text.resolve_reloc`, and anything that isn't
// handled is a bug in `text.resolve_reloc` or something
// transitively there. If truly necessary, though, then this
// loop could also be updated to forward the relocation to
// the final object file as well.
panic!(
"unresolved relocation could not be processed against \
{:?}: {r:?}",
r.reloc_target,
);
}
// Relocations against libcalls are not common at this time and
// are only used in non-default configurations that disable wasm
// SIMD, disable SSE features, and for wasm modules that still
// use floating point operations.
//
// Currently these relocations are all expected to be absolute
// 8-byte relocations so that's asserted here and then encoded
// directly into the object as a normal object relocation. This
// is processed at module load time to resolve the relocations.
RelocationTarget::HostLibcall(call) => {
let symbol = *self.libcall_symbols.entry(call).or_insert_with(|| {
self.obj.add_symbol(Symbol {
name: call.symbol().as_bytes().to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope: SymbolScope::Linkage,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
})
});
let flags = match r.reloc {
Reloc::Abs8 => object::RelocationFlags::Generic {
encoding: object::RelocationEncoding::Generic,
kind: object::RelocationKind::Absolute,
size: 64,
},
other => unimplemented!("unimplemented relocation kind {other:?}"),
};
self.obj
.add_relocation(
self.text_section,
object::write::Relocation {
symbol,
flags,
offset: reloc_offset,
addend: r.addend,
},
)
.unwrap();
}
// This relocation is used to fill in which hostcall id is
// desired within the `call_indirect_host` opcode of Pulley
// itself. The relocation target is the start of the instruction
// and the goal is to insert the static signature number, `n`,
// into the instruction.
//
// At this time the instruction looks like:
//
// +------+------+------+------+
// | OP | OP_EXTENDED | N |
// +------+------+------+------+
//
// This 4-byte encoding has `OP` indicating this is an "extended
// opcode" where `OP_EXTENDED` is a 16-bit extended opcode.
// The `N` byte is the index of the signature being called and
// is what's b eing filled in.
//
// See the `test_call_indirect_host_width` in
// `pulley/tests/all.rs` for this guarantee as well.
#[cfg(feature = "pulley")]
RelocationTarget::PulleyHostcall(n) => {
use pulley_interpreter::encode::Encode;
assert_eq!(pulley_interpreter::CallIndirectHost::WIDTH, 4);
let byte = u8::try_from(n).unwrap();
self.text.write(reloc_offset + 3, &[byte]);
}
#[cfg(not(feature = "pulley"))]
RelocationTarget::PulleyHostcall(_) => unreachable!(),
};
}
(symbol_id, off..off + body_len)
}
/// Forces "veneers" to be used for inter-function calls in the text
/// section which means that in-bounds optimized addresses are never used.
///
/// This is only useful for debugging cranelift itself and typically this
/// option is disabled.
pub fn force_veneers(&mut self) {
self.text.force_veneers();
}
/// Appends the specified amount of bytes of padding into the text section.
///
/// This is only useful when fuzzing and/or debugging cranelift itself and
/// for production scenarios `padding` is 0 and this function does nothing.
pub fn append_padding(&mut self, padding: usize) {
if padding == 0 {
return;
}
self.text
.append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
}
/// Indicates that the text section has been written completely and this
/// will finish appending it to the original object.
///
/// Note that this will also write out the unwind information sections if
/// necessary.
pub fn finish(mut self) {
// Finish up the text section now that we're done adding functions.
let text = self.text.finish(&mut self.ctrl_plane);
self.obj
.section_mut(self.text_section)
.set_data(text, self.compiler.page_size_align());
// Append the unwind information for all our functions, if necessary.
self.unwind_info
.append_section(self.compiler, self.obj, self.text_section);
}
}
/// Builder used to create unwind information for a set of functions added to a
/// text section.
#[derive(Default)]
struct UnwindInfoBuilder<'a> {
windows_xdata: Vec<u8>,
windows_pdata: Vec<RUNTIME_FUNCTION>,
systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
}
// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
// to ensure everything is always `u32` and to have it available on all
// platforms. Note that all of these specifiers here are relative to a "base
// address" which we define as the base of where the text section is eventually
// loaded.
#[expect(non_camel_case_types, reason = "matching Windows style, not Rust")]
struct RUNTIME_FUNCTION {
begin: u32,
end: u32,
unwind_address: u32,
}
impl<'a> UnwindInfoBuilder<'a> {
/// Pushes the unwind information for a function into this builder.
///
/// The function being described must be located at `function_offset` within
/// the text section itself, and the function's size is specified by
/// `function_len`.
///
/// The `info` should come from Cranelift. and is handled here depending on
/// its flavor.
fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
match info {
// Windows unwind information is stored in two locations:
//
// * First is the actual unwinding information which is stored
// in the `.xdata` section. This is where `info`'s emitted
// information will go into.
// * Second are pointers to connect all this unwind information,
// stored in the `.pdata` section. The `.pdata` section is an
// array of `RUNTIME_FUNCTION` structures.
//
// Due to how these will be loaded at runtime the `.pdata` isn't
// actually assembled byte-wise here. Instead that's deferred to
// happen later during `write_windows_unwind_info` which will apply
// a further offset to `unwind_address`.
//
// FIXME: in theory we could "intern" the `unwind_info` value
// here within the `.xdata` section. Most of our unwind
// information for functions is probably pretty similar in which
// case the `.xdata` could be quite small and `.pdata` could
// have multiple functions point to the same unwinding
// information.
UnwindInfo::WindowsX64(info) => {
let unwind_size = info.emit_size();
let mut unwind_info = vec![0; unwind_size];
info.emit(&mut unwind_info);
// `.xdata` entries are always 4-byte aligned
while self.windows_xdata.len() % 4 != 0 {
self.windows_xdata.push(0x00);
}
let unwind_address = self.windows_xdata.len();
self.windows_xdata.extend_from_slice(&unwind_info);
// Record a `RUNTIME_FUNCTION` which this will point to.
self.windows_pdata.push(RUNTIME_FUNCTION {
begin: u32::try_from(function_offset).unwrap(),
end: u32::try_from(function_offset + function_len).unwrap(),
unwind_address: u32::try_from(unwind_address).unwrap(),
});
}
// See https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling
UnwindInfo::WindowsArm64(info) => {
let code_words = info.code_words();
let mut unwind_codes = vec![0; (code_words * 4) as usize];
info.emit(&mut unwind_codes);
// `.xdata` entries are always 4-byte aligned
while self.windows_xdata.len() % 4 != 0 {
self.windows_xdata.push(0x00);
}
// First word:
// 0-17: Function Length
// 18-19: Version (must be 0)
// 20: X bit (is exception data present?)
// 21: E bit (has single packed epilogue?)
// 22-26: Epilogue count
// 27-31: Code words count
let requires_extended_counts = code_words > (1 << 5);
let encoded_function_len = function_len / 4;
assert!(encoded_function_len < (1 << 18), "function too large");
let mut word1 = u32::try_from(encoded_function_len).unwrap();
if !requires_extended_counts {
word1 |= u32::from(code_words) << 27;
}
let unwind_address = self.windows_xdata.len();
self.windows_xdata.extend_from_slice(&word1.to_le_bytes());
if requires_extended_counts {
// Extended counts word:
// 0-15: Epilogue count
// 16-23: Code words count
let extended_counts_word = (code_words as u32) << 16;
self.windows_xdata
.extend_from_slice(&extended_counts_word.to_le_bytes());
}
// Skip epilogue information: Per comment on [`UnwindInst`], we
// do not emit information about epilogues.
// Emit the unwind codes.
self.windows_xdata.extend_from_slice(&unwind_codes);
// Record a `RUNTIME_FUNCTION` which this will point to.
// NOTE: `end` is not used, so leave it as 0.
self.windows_pdata.push(RUNTIME_FUNCTION {
begin: u32::try_from(function_offset).unwrap(),
end: 0,
unwind_address: u32::try_from(unwind_address).unwrap(),
});
}
// System-V is different enough that we just record the unwinding
// information to get processed at a later time.
UnwindInfo::SystemV(info) => {
self.systemv_unwind_info.push((function_offset, info));
}
_ => panic!("some unwind info isn't handled here"),
}
}
/// Appends the unwind information section, if any, to the `obj` specified.
///
/// This function must be called immediately after the text section was
/// added to a builder. The unwind information section must trail the text
/// section immediately.
///
/// The `text_section`'s section identifier is passed into this function.
fn append_section(
&self,
compiler: &dyn Compiler,
obj: &mut Object<'_>,
text_section: SectionId,
) {
// This write will align the text section to a page boundary and then
// return the offset at that point. This gives us the full size of the
// text section at that point, after alignment.
let text_section_size =
obj.append_section_data(text_section, &[], compiler.page_size_align());
if self.windows_xdata.len() > 0 {
assert!(self.systemv_unwind_info.len() == 0);
// The `.xdata` section must come first to be just-after the `.text`
// section for the reasons documented in `write_windows_unwind_info`
// below.
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
}
if self.systemv_unwind_info.len() > 0 {
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let section_id =
obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
}
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::publish`.
///
/// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
/// the object file itself. This way registration of unwind info can simply
/// pass this slice to the OS itself and there's no need to recalculate
/// anything on the other end of loading a module from a precompiled object.
///
/// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
fn write_windows_unwind_info(
&self,
obj: &mut Object<'_>,
xdata_id: SectionId,
pdata_id: SectionId,
text_section_size: u64,
) {
// Append the `.xdata` section, or the actual unwinding information
// codes and such which were built as we found unwind information for
// functions.
obj.append_section_data(xdata_id, &self.windows_xdata, 4);
// Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
// structures stored in the binary.
//
// This memory will be passed at runtime to `RtlAddFunctionTable` which
// takes a "base address" and the entries within `RUNTIME_FUNCTION` are
// all relative to this base address. The base address we pass is the
// address of the text section itself so all the pointers here must be
// text-section-relative. The `begin` and `end` fields for the function
// it describes are already text-section-relative, but the
// `unwind_address` field needs to be updated here since the value
// stored right now is `xdata`-section-relative. We know that the
// `xdata` section follows the `.text` section so the
// `text_section_size` is added in to calculate the final
// `.text`-section-relative address of the unwind information.
let xdata_rva = |address| {
let address = u64::from(address);
let address = address + text_section_size;
u32::try_from(address).unwrap()
};
let pdata = match obj.architecture() {
Architecture::X86_64 => {
let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
for info in self.windows_pdata.iter() {
pdata.extend_from_slice(&info.begin.to_le_bytes());
pdata.extend_from_slice(&info.end.to_le_bytes());
pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
}
pdata
}
Architecture::Aarch64 => {
// Windows Arm64 .pdata also supports packed unwind data, but
// we're not currently using that.
let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 2 * 4);
for info in self.windows_pdata.iter() {
pdata.extend_from_slice(&info.begin.to_le_bytes());
pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
}
pdata
}
_ => unimplemented!("unsupported architecture for windows unwind info"),
};
obj.append_section_data(pdata_id, &pdata, 4);
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::publish`.
///
/// This will generate a `.eh_frame` section, but not one that can be
/// naively loaded. The goal of this section is that we can create the
/// section once here and never again does it need to change. To describe
/// dynamically loaded functions though each individual FDE needs to talk
/// about the function's absolute address that it's referencing. Naturally
/// we don't actually know the function's absolute address when we're
/// creating an object here.
///
/// To solve this problem the FDE address encoding mode is set to
/// `DW_EH_PE_pcrel`. This means that the actual effective address that the
/// FDE describes is a relative to the address of the FDE itself. By
/// leveraging this relative-ness we can assume that the relative distance
/// between the FDE and the function it describes is constant, which should
/// allow us to generate an FDE ahead-of-time here.
///
/// For now this assumes that all the code of functions will start at a
/// page-aligned address when loaded into memory. The eh_frame encoded here
/// then assumes that the text section is itself page aligned to its size
/// and the eh_frame will follow just after the text section. This means
/// that the relative offsets we're using here is the FDE going backwards
/// into the text section itself.
///
/// Note that the library we're using to create the FDEs, `gimli`, doesn't
/// actually encode addresses relative to the FDE itself. Instead the
/// addresses are encoded relative to the start of the `.eh_frame` section.
/// This makes it much easier for us where we provide the relative offset
/// from the start of `.eh_frame` to the function in the text section, which
/// given our layout basically means the offset of the function in the text
/// section from the end of the text section.
///
/// A final note is that the reason we page-align the text section's size is
/// so the .eh_frame lives on a separate page from the text section itself.
/// This allows `.eh_frame` to have different virtual memory permissions,
/// such as being purely read-only instead of read/execute like the code
/// bits.
fn write_systemv_unwind_info(
&self,
compiler: &dyn Compiler,
obj: &mut Object<'_>,
section_id: SectionId,
text_section_size: u64,
) {
let mut cie = match compiler.create_systemv_cie() {
Some(cie) => cie,
None => return,
};
let mut table = FrameTable::default();
cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
let cie_id = table.add_cie(cie);
for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
let backwards_off = text_section_size - text_section_off;
let actual_offset = -i64::try_from(backwards_off).unwrap();
// Note that gimli wants an unsigned 64-bit integer here, but
// unwinders just use this constant for a relative addition with the
// address of the FDE, which means that the sign doesn't actually
// matter.
let fde = unwind_info.to_fde(Address::Constant(actual_offset.unsigned()));
table.add_fde(cie_id, fde);
}
let endian = match compiler.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => RunTimeEndian::Little,
target_lexicon::Endianness::Big => RunTimeEndian::Big,
};
let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
table.write_eh_frame(&mut eh_frame).unwrap();
// Some unwinding implementations expect a terminating "empty" length so
// a 0 is written at the end of the table for those implementations.
let mut endian_vec = (eh_frame.0).0;
endian_vec.write_u32(0).unwrap();
obj.append_section_data(section_id, endian_vec.slice(), 1);
use gimli::constants;
use gimli::write::Error;
struct MyVec(EndianVec<RunTimeEndian>);
impl Writer for MyVec {
type Endian = RunTimeEndian;
fn endian(&self) -> RunTimeEndian {
self.0.endian()
}
fn len(&self) -> usize {
self.0.len()
}
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
self.0.write(buf)
}
fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
self.0.write_at(pos, buf)
}
// FIXME(gimli-rs/gimli#576) this is the definition we want for
// `write_eh_pointer` but the default implementation, at the time
// of this writing, uses `offset - val` instead of `val - offset`.
// A PR has been merged to fix this but until that's published we
// can't use it.
fn write_eh_pointer(
&mut self,
address: Address,
eh_pe: constants::DwEhPe,
size: u8,
) -> Result<(), Error> {
let val = match address {
Address::Constant(val) => val,
Address::Symbol { .. } => unreachable!(),
};
assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
let offset = self.len() as u64;
let val = val.wrapping_sub(offset);
self.write_eh_pointer_data(val, eh_pe.format(), size)
}
}
}
}