wasmtime_cranelift/
obj.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! Object file builder.
//!
//! Creates ELF image based on `Compilation` information. The ELF contains
//! functions and trampolines in the ".text" section. It also contains all
//! relocation records for the linking stage. If DWARF sections exist, their
//! content will be written as well.
//!
//! The object file has symbols for each function and trampoline, as well as
//! symbols that refer to libcalls.
//!
//! The function symbol names have format "_wasm_function_N", where N is
//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
//! function body, the imported wasm function do not. The trampolines symbol
//! names have format "_trampoline_N", where N is `SignatureIndex`.

use crate::{CompiledFunction, RelocationTarget};
use anyhow::Result;
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::isa::unwind::{systemv, UnwindInfo};
use cranelift_codegen::TextSectionBuilder;
use cranelift_control::ControlPlane;
use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
use gimli::RunTimeEndian;
use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
use object::{Architecture, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
use std::collections::HashMap;
use std::ops::Range;
use wasmtime_environ::obj::LibCall;
use wasmtime_environ::{Compiler, Unsigned};

const TEXT_SECTION_NAME: &[u8] = b".text";

/// A helper structure used to assemble the final text section of an executable,
/// plus unwinding information and other related details.
///
/// This builder relies on Cranelift-specific internals but assembles into a
/// generic `Object` which will get further appended to in a compiler-agnostic
/// fashion later.
pub struct ModuleTextBuilder<'a> {
    /// The target that we're compiling for, used to query target-specific
    /// information as necessary.
    compiler: &'a dyn Compiler,

    /// The object file that we're generating code into.
    obj: &'a mut Object<'static>,

    /// The WebAssembly module we're generating code for.
    text_section: SectionId,

    unwind_info: UnwindInfoBuilder<'a>,

    /// In-progress text section that we're using cranelift's `MachBuffer` to
    /// build to resolve relocations (calls) between functions.
    text: Box<dyn TextSectionBuilder>,

    /// Symbols defined in the object for libcalls that relocations are applied
    /// against.
    ///
    /// Note that this isn't typically used. It's only used for SSE-disabled
    /// builds without SIMD on x86_64 right now.
    libcall_symbols: HashMap<LibCall, SymbolId>,

    ctrl_plane: ControlPlane,
}

impl<'a> ModuleTextBuilder<'a> {
    /// Creates a new builder for the text section of an executable.
    ///
    /// The `.text` section will be appended to the specified `obj` along with
    /// any unwinding or such information as necessary. The `num_funcs`
    /// parameter indicates the number of times the `append_func` function will
    /// be called. The `finish` function will panic if this contract is not met.
    pub fn new(
        obj: &'a mut Object<'static>,
        compiler: &'a dyn Compiler,
        text: Box<dyn TextSectionBuilder>,
    ) -> Self {
        // Entire code (functions and trampolines) will be placed
        // in the ".text" section.
        let text_section = obj.add_section(
            obj.segment_name(StandardSegment::Text).to_vec(),
            TEXT_SECTION_NAME.to_vec(),
            SectionKind::Text,
        );

        Self {
            compiler,
            obj,
            text_section,
            unwind_info: Default::default(),
            text,
            libcall_symbols: HashMap::default(),
            ctrl_plane: ControlPlane::default(),
        }
    }

    /// Appends the `func` specified named `name` to this object.
    ///
    /// The `resolve_reloc_target` closure is used to resolve a relocation
    /// target to an adjacent function which has already been added or will be
    /// added to this object. The argument is the relocation target specified
    /// within `CompiledFunction` and the return value must be an index where
    /// the target will be defined by the `n`th call to `append_func`.
    ///
    /// Returns the symbol associated with the function as well as the range
    /// that the function resides within the text section.
    pub fn append_func(
        &mut self,
        name: &str,
        compiled_func: &'a CompiledFunction,
        resolve_reloc_target: impl Fn(wasmtime_environ::RelocationTarget) -> usize,
    ) -> (SymbolId, Range<u64>) {
        let body = compiled_func.buffer.data();
        let alignment = compiled_func.alignment;
        let body_len = body.len() as u64;
        let off = self
            .text
            .append(true, &body, alignment, &mut self.ctrl_plane);

        let symbol_id = self.obj.add_symbol(Symbol {
            name: name.as_bytes().to_vec(),
            value: off,
            size: body_len,
            kind: SymbolKind::Text,
            scope: SymbolScope::Compilation,
            weak: false,
            section: SymbolSection::Section(self.text_section),
            flags: SymbolFlags::None,
        });

        if let Some(info) = compiled_func.unwind_info() {
            self.unwind_info.push(off, body_len, info);
        }

        for r in compiled_func.relocations() {
            let reloc_offset = off + u64::from(r.offset);
            match r.reloc_target {
                // Relocations against user-defined functions means that this is
                // a relocation against a module-local function, typically a
                // call between functions. The `text` field is given priority to
                // resolve this relocation before we actually emit an object
                // file, but if it can't handle it then we pass through the
                // relocation.
                RelocationTarget::Wasm(_) | RelocationTarget::Builtin(_) => {
                    let target = resolve_reloc_target(r.reloc_target);
                    if self
                        .text
                        .resolve_reloc(reloc_offset, r.reloc, r.addend, target)
                    {
                        continue;
                    }

                    // At this time it's expected that all relocations are
                    // handled by `text.resolve_reloc`, and anything that isn't
                    // handled is a bug in `text.resolve_reloc` or something
                    // transitively there. If truly necessary, though, then this
                    // loop could also be updated to forward the relocation to
                    // the final object file as well.
                    panic!(
                        "unresolved relocation could not be processed against \
                         {:?}: {r:?}",
                        r.reloc_target,
                    );
                }

                // Relocations against libcalls are not common at this time and
                // are only used in non-default configurations that disable wasm
                // SIMD, disable SSE features, and for wasm modules that still
                // use floating point operations.
                //
                // Currently these relocations are all expected to be absolute
                // 8-byte relocations so that's asserted here and then encoded
                // directly into the object as a normal object relocation. This
                // is processed at module load time to resolve the relocations.
                RelocationTarget::HostLibcall(call) => {
                    let symbol = *self.libcall_symbols.entry(call).or_insert_with(|| {
                        self.obj.add_symbol(Symbol {
                            name: call.symbol().as_bytes().to_vec(),
                            value: 0,
                            size: 0,
                            kind: SymbolKind::Text,
                            scope: SymbolScope::Linkage,
                            weak: false,
                            section: SymbolSection::Undefined,
                            flags: SymbolFlags::None,
                        })
                    });
                    let flags = match r.reloc {
                        Reloc::Abs8 => object::RelocationFlags::Generic {
                            encoding: object::RelocationEncoding::Generic,
                            kind: object::RelocationKind::Absolute,
                            size: 64,
                        },
                        other => unimplemented!("unimplemented relocation kind {other:?}"),
                    };
                    self.obj
                        .add_relocation(
                            self.text_section,
                            object::write::Relocation {
                                symbol,
                                flags,
                                offset: reloc_offset,
                                addend: r.addend,
                            },
                        )
                        .unwrap();
                }

                // This relocation is used to fill in which hostcall signature
                // is desired within the `call_indirect_host` opcode of Pulley
                // itself. The relocation target is the start of the instruction
                // and the goal is to insert the static signature number, `n`,
                // into the instruction.
                //
                // At this time the instruction looks like:
                //
                //      +------+------+------+------+
                //      | OP   | OP_EXTENDED |  N   |
                //      +------+------+------+------+
                //
                // This 4-byte encoding has `OP` indicating this is an "extended
                // opcode" where `OP_EXTENDED` is a 16-bit extended opcode.
                // The `N` byte is the index of the signature being called and
                // is what's b eing filled in.
                //
                // See the `test_call_indirect_host_width` in
                // `pulley/tests/all.rs` for this guarantee as well.
                RelocationTarget::PulleyHostcall(n) => {
                    let byte = u8::try_from(n).unwrap();
                    self.text.write(reloc_offset + 3, &[byte]);
                }
            };
        }
        (symbol_id, off..off + body_len)
    }

    /// Forces "veneers" to be used for inter-function calls in the text
    /// section which means that in-bounds optimized addresses are never used.
    ///
    /// This is only useful for debugging cranelift itself and typically this
    /// option is disabled.
    pub fn force_veneers(&mut self) {
        self.text.force_veneers();
    }

    /// Appends the specified amount of bytes of padding into the text section.
    ///
    /// This is only useful when fuzzing and/or debugging cranelift itself and
    /// for production scenarios `padding` is 0 and this function does nothing.
    pub fn append_padding(&mut self, padding: usize) {
        if padding == 0 {
            return;
        }
        self.text
            .append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
    }

    /// Indicates that the text section has been written completely and this
    /// will finish appending it to the original object.
    ///
    /// Note that this will also write out the unwind information sections if
    /// necessary.
    pub fn finish(mut self) {
        // Finish up the text section now that we're done adding functions.
        let text = self.text.finish(&mut self.ctrl_plane);
        self.obj
            .section_mut(self.text_section)
            .set_data(text, self.compiler.page_size_align());

        // Append the unwind information for all our functions, if necessary.
        self.unwind_info
            .append_section(self.compiler, self.obj, self.text_section);
    }
}

/// Builder used to create unwind information for a set of functions added to a
/// text section.
#[derive(Default)]
struct UnwindInfoBuilder<'a> {
    windows_xdata: Vec<u8>,
    windows_pdata: Vec<RUNTIME_FUNCTION>,
    systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
}

// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
// to ensure everything is always `u32` and to have it available on all
// platforms. Note that all of these specifiers here are relative to a "base
// address" which we define as the base of where the text section is eventually
// loaded.
#[expect(non_camel_case_types, reason = "matching Windows style, not Rust")]
struct RUNTIME_FUNCTION {
    begin: u32,
    end: u32,
    unwind_address: u32,
}

impl<'a> UnwindInfoBuilder<'a> {
    /// Pushes the unwind information for a function into this builder.
    ///
    /// The function being described must be located at `function_offset` within
    /// the text section itself, and the function's size is specified by
    /// `function_len`.
    ///
    /// The `info` should come from Cranelift. and is handled here depending on
    /// its flavor.
    fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
        match info {
            // Windows unwind information is stored in two locations:
            //
            // * First is the actual unwinding information which is stored
            //   in the `.xdata` section. This is where `info`'s emitted
            //   information will go into.
            // * Second are pointers to connect all this unwind information,
            //   stored in the `.pdata` section. The `.pdata` section is an
            //   array of `RUNTIME_FUNCTION` structures.
            //
            // Due to how these will be loaded at runtime the `.pdata` isn't
            // actually assembled byte-wise here. Instead that's deferred to
            // happen later during `write_windows_unwind_info` which will apply
            // a further offset to `unwind_address`.
            //
            // FIXME: in theory we could "intern" the `unwind_info` value
            // here within the `.xdata` section. Most of our unwind
            // information for functions is probably pretty similar in which
            // case the `.xdata` could be quite small and `.pdata` could
            // have multiple functions point to the same unwinding
            // information.
            UnwindInfo::WindowsX64(info) => {
                let unwind_size = info.emit_size();
                let mut unwind_info = vec![0; unwind_size];
                info.emit(&mut unwind_info);

                // `.xdata` entries are always 4-byte aligned
                while self.windows_xdata.len() % 4 != 0 {
                    self.windows_xdata.push(0x00);
                }
                let unwind_address = self.windows_xdata.len();
                self.windows_xdata.extend_from_slice(&unwind_info);

                // Record a `RUNTIME_FUNCTION` which this will point to.
                self.windows_pdata.push(RUNTIME_FUNCTION {
                    begin: u32::try_from(function_offset).unwrap(),
                    end: u32::try_from(function_offset + function_len).unwrap(),
                    unwind_address: u32::try_from(unwind_address).unwrap(),
                });
            }

            // See https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling
            UnwindInfo::WindowsArm64(info) => {
                let code_words = info.code_words();
                let mut unwind_codes = vec![0; (code_words * 4) as usize];
                info.emit(&mut unwind_codes);

                // `.xdata` entries are always 4-byte aligned
                while self.windows_xdata.len() % 4 != 0 {
                    self.windows_xdata.push(0x00);
                }

                // First word:
                // 0-17:    Function Length
                // 18-19:   Version (must be 0)
                // 20:      X bit (is exception data present?)
                // 21:      E bit (has single packed epilogue?)
                // 22-26:   Epilogue count
                // 27-31:   Code words count
                let requires_extended_counts = code_words > (1 << 5);
                let encoded_function_len = function_len / 4;
                assert!(encoded_function_len < (1 << 18), "function too large");
                let mut word1 = u32::try_from(encoded_function_len).unwrap();
                if !requires_extended_counts {
                    word1 |= u32::from(code_words) << 27;
                }
                let unwind_address = self.windows_xdata.len();
                self.windows_xdata.extend_from_slice(&word1.to_le_bytes());

                if requires_extended_counts {
                    // Extended counts word:
                    // 0-15:    Epilogue count
                    // 16-23:   Code words count
                    let extended_counts_word = (code_words as u32) << 16;
                    self.windows_xdata
                        .extend_from_slice(&extended_counts_word.to_le_bytes());
                }

                // Skip epilogue information: Per comment on [`UnwindInst`], we
                // do not emit information about epilogues.

                // Emit the unwind codes.
                self.windows_xdata.extend_from_slice(&unwind_codes);

                // Record a `RUNTIME_FUNCTION` which this will point to.
                // NOTE: `end` is not used, so leave it as 0.
                self.windows_pdata.push(RUNTIME_FUNCTION {
                    begin: u32::try_from(function_offset).unwrap(),
                    end: 0,
                    unwind_address: u32::try_from(unwind_address).unwrap(),
                });
            }

            // System-V is different enough that we just record the unwinding
            // information to get processed at a later time.
            UnwindInfo::SystemV(info) => {
                self.systemv_unwind_info.push((function_offset, info));
            }

            _ => panic!("some unwind info isn't handled here"),
        }
    }

    /// Appends the unwind information section, if any, to the `obj` specified.
    ///
    /// This function must be called immediately after the text section was
    /// added to a builder. The unwind information section must trail the text
    /// section immediately.
    ///
    /// The `text_section`'s section identifier is passed into this function.
    fn append_section(
        &self,
        compiler: &dyn Compiler,
        obj: &mut Object<'_>,
        text_section: SectionId,
    ) {
        // This write will align the text section to a page boundary and then
        // return the offset at that point. This gives us the full size of the
        // text section at that point, after alignment.
        let text_section_size =
            obj.append_section_data(text_section, &[], compiler.page_size_align());

        if self.windows_xdata.len() > 0 {
            assert!(self.systemv_unwind_info.len() == 0);
            // The `.xdata` section must come first to be just-after the `.text`
            // section for the reasons documented in `write_windows_unwind_info`
            // below.
            let segment = obj.segment_name(StandardSegment::Data).to_vec();
            let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
            let segment = obj.segment_name(StandardSegment::Data).to_vec();
            let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
            self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
        }

        if self.systemv_unwind_info.len() > 0 {
            let segment = obj.segment_name(StandardSegment::Data).to_vec();
            let section_id =
                obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
            self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
        }
    }

    /// This function appends a nonstandard section to the object which is only
    /// used during `CodeMemory::publish`.
    ///
    /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
    /// the object file itself. This way registration of unwind info can simply
    /// pass this slice to the OS itself and there's no need to recalculate
    /// anything on the other end of loading a module from a precompiled object.
    ///
    /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
    fn write_windows_unwind_info(
        &self,
        obj: &mut Object<'_>,
        xdata_id: SectionId,
        pdata_id: SectionId,
        text_section_size: u64,
    ) {
        // Append the `.xdata` section, or the actual unwinding information
        // codes and such which were built as we found unwind information for
        // functions.
        obj.append_section_data(xdata_id, &self.windows_xdata, 4);

        // Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
        // structures stored in the binary.
        //
        // This memory will be passed at runtime to `RtlAddFunctionTable` which
        // takes a "base address" and the entries within `RUNTIME_FUNCTION` are
        // all relative to this base address. The base address we pass is the
        // address of the text section itself so all the pointers here must be
        // text-section-relative. The `begin` and `end` fields for the function
        // it describes are already text-section-relative, but the
        // `unwind_address` field needs to be updated here since the value
        // stored right now is `xdata`-section-relative. We know that the
        // `xdata` section follows the `.text` section so the
        // `text_section_size` is added in to calculate the final
        // `.text`-section-relative address of the unwind information.
        let xdata_rva = |address| {
            let address = u64::from(address);
            let address = address + text_section_size;
            u32::try_from(address).unwrap()
        };
        let pdata = match obj.architecture() {
            Architecture::X86_64 => {
                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
                for info in self.windows_pdata.iter() {
                    pdata.extend_from_slice(&info.begin.to_le_bytes());
                    pdata.extend_from_slice(&info.end.to_le_bytes());
                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
                }
                pdata
            }

            Architecture::Aarch64 => {
                // Windows Arm64 .pdata also supports packed unwind data, but
                // we're not currently using that.
                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 2 * 4);
                for info in self.windows_pdata.iter() {
                    pdata.extend_from_slice(&info.begin.to_le_bytes());
                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
                }
                pdata
            }

            _ => unimplemented!("unsupported architecture for windows unwind info"),
        };
        obj.append_section_data(pdata_id, &pdata, 4);
    }

    /// This function appends a nonstandard section to the object which is only
    /// used during `CodeMemory::publish`.
    ///
    /// This will generate a `.eh_frame` section, but not one that can be
    /// naively loaded. The goal of this section is that we can create the
    /// section once here and never again does it need to change. To describe
    /// dynamically loaded functions though each individual FDE needs to talk
    /// about the function's absolute address that it's referencing. Naturally
    /// we don't actually know the function's absolute address when we're
    /// creating an object here.
    ///
    /// To solve this problem the FDE address encoding mode is set to
    /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
    /// FDE describes is a relative to the address of the FDE itself. By
    /// leveraging this relative-ness we can assume that the relative distance
    /// between the FDE and the function it describes is constant, which should
    /// allow us to generate an FDE ahead-of-time here.
    ///
    /// For now this assumes that all the code of functions will start at a
    /// page-aligned address when loaded into memory. The eh_frame encoded here
    /// then assumes that the text section is itself page aligned to its size
    /// and the eh_frame will follow just after the text section. This means
    /// that the relative offsets we're using here is the FDE going backwards
    /// into the text section itself.
    ///
    /// Note that the library we're using to create the FDEs, `gimli`, doesn't
    /// actually encode addresses relative to the FDE itself. Instead the
    /// addresses are encoded relative to the start of the `.eh_frame` section.
    /// This makes it much easier for us where we provide the relative offset
    /// from the start of `.eh_frame` to the function in the text section, which
    /// given our layout basically means the offset of the function in the text
    /// section from the end of the text section.
    ///
    /// A final note is that the reason we page-align the text section's size is
    /// so the .eh_frame lives on a separate page from the text section itself.
    /// This allows `.eh_frame` to have different virtual memory permissions,
    /// such as being purely read-only instead of read/execute like the code
    /// bits.
    fn write_systemv_unwind_info(
        &self,
        compiler: &dyn Compiler,
        obj: &mut Object<'_>,
        section_id: SectionId,
        text_section_size: u64,
    ) {
        let mut cie = match compiler.create_systemv_cie() {
            Some(cie) => cie,
            None => return,
        };
        let mut table = FrameTable::default();
        cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
        let cie_id = table.add_cie(cie);

        for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
            let backwards_off = text_section_size - text_section_off;
            let actual_offset = -i64::try_from(backwards_off).unwrap();
            // Note that gimli wants an unsigned 64-bit integer here, but
            // unwinders just use this constant for a relative addition with the
            // address of the FDE, which means that the sign doesn't actually
            // matter.
            let fde = unwind_info.to_fde(Address::Constant(actual_offset.unsigned()));
            table.add_fde(cie_id, fde);
        }
        let endian = match compiler.triple().endianness().unwrap() {
            target_lexicon::Endianness::Little => RunTimeEndian::Little,
            target_lexicon::Endianness::Big => RunTimeEndian::Big,
        };
        let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
        table.write_eh_frame(&mut eh_frame).unwrap();

        // Some unwinding implementations expect a terminating "empty" length so
        // a 0 is written at the end of the table for those implementations.
        let mut endian_vec = (eh_frame.0).0;
        endian_vec.write_u32(0).unwrap();
        obj.append_section_data(section_id, endian_vec.slice(), 1);

        use gimli::constants;
        use gimli::write::Error;

        struct MyVec(EndianVec<RunTimeEndian>);

        impl Writer for MyVec {
            type Endian = RunTimeEndian;

            fn endian(&self) -> RunTimeEndian {
                self.0.endian()
            }

            fn len(&self) -> usize {
                self.0.len()
            }

            fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
                self.0.write(buf)
            }

            fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
                self.0.write_at(pos, buf)
            }

            // FIXME(gimli-rs/gimli#576) this is the definition we want for
            // `write_eh_pointer` but the default implementation, at the time
            // of this writing, uses `offset - val` instead of `val - offset`.
            // A PR has been merged to fix this but until that's published we
            // can't use it.
            fn write_eh_pointer(
                &mut self,
                address: Address,
                eh_pe: constants::DwEhPe,
                size: u8,
            ) -> Result<(), Error> {
                let val = match address {
                    Address::Constant(val) => val,
                    Address::Symbol { .. } => unreachable!(),
                };
                assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
                let offset = self.len() as u64;
                let val = val.wrapping_sub(offset);
                self.write_eh_pointer_data(val, eh_pe.format(), size)
            }
        }
    }
}