1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
//! Data structures for representing decoded wasm modules.
use crate::{EntityRef, ModuleTranslation, PrimaryMap, Tunables, WASM_PAGE_SIZE};
use indexmap::IndexMap;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::convert::TryFrom;
use std::ops::Range;
use wasmtime_types::*;
/// Implemenation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum MemoryStyle {
/// The actual memory can be resized and moved.
Dynamic {
/// Extra space to reserve when a memory must be moved due to growth.
reserve: u64,
},
/// Addresss space is allocated up front.
Static {
/// The number of mapped and unmapped pages.
bound: u64,
},
}
impl MemoryStyle {
/// Decide on an implementation style for the given `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
// A heap with a maximum that doesn't exceed the static memory bound specified by the
// tunables make it static.
//
// If the module doesn't declare an explicit maximum treat it as 4GiB when not
// requested to use the static memory bound itself as the maximum.
let absolute_max_pages = if memory.memory64 {
crate::WASM64_MAX_PAGES
} else {
crate::WASM32_MAX_PAGES
};
let maximum = std::cmp::min(
memory.maximum.unwrap_or(absolute_max_pages),
if tunables.static_memory_bound_is_maximum {
std::cmp::min(tunables.static_memory_bound, absolute_max_pages)
} else {
absolute_max_pages
},
);
// Ensure the minimum is less than the maximum; the minimum might exceed the maximum
// when the memory is artificially bounded via `static_memory_bound_is_maximum` above
if memory.minimum <= maximum && maximum <= tunables.static_memory_bound {
return (
Self::Static {
bound: tunables.static_memory_bound,
},
tunables.static_memory_offset_guard_size,
);
}
// Otherwise, make it dynamic.
(
Self::Dynamic {
reserve: tunables.dynamic_memory_growth_reserve,
},
tunables.dynamic_memory_offset_guard_size,
)
}
}
/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct MemoryPlan {
/// The WebAssembly linear memory description.
pub memory: Memory,
/// Our chosen implementation style.
pub style: MemoryStyle,
/// Chosen size of a guard page before the linear memory allocation.
pub pre_guard_size: u64,
/// Our chosen offset-guard size.
pub offset_guard_size: u64,
}
impl MemoryPlan {
/// Draw up a plan for implementing a `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
Self {
memory,
style,
offset_guard_size,
pre_guard_size: if tunables.guard_before_linear_memory {
offset_guard_size
} else {
0
},
}
}
}
/// A WebAssembly linear memory initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MemoryInitializer {
/// The index of a linear memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: u64,
/// The range of the data to write within the linear memory.
///
/// This range indexes into a separately stored data section which will be
/// provided with the compiled module's code as well.
pub data: Range<u32>,
}
/// The type of WebAssembly linear memory initialization to use for a module.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum MemoryInitialization {
/// Memory initialization is segmented.
///
/// Segmented initialization can be used for any module, but it is required
/// if:
///
/// * A data segment referenced an imported memory.
/// * A data segment uses a global base.
///
/// Segmented initialization is performed by processing the complete set of
/// data segments when the module is instantiated.
///
/// This is the default memory initialization type.
Segmented(Vec<MemoryInitializer>),
/// Memory initialization is paged.
///
/// To be paged, the following requirements must be met:
///
/// * All data segments must reference defined memories.
/// * All data segments must not use a global base.
///
/// Paged initialization is performed by copying (or mapping) entire
/// WebAssembly pages to each linear memory.
///
/// The `uffd` feature makes use of this type of memory initialization
/// because it can instruct the kernel to back an entire WebAssembly page
/// from an existing set of in-memory pages.
///
/// By processing the data segments at module compilation time, the uffd
/// fault handler doesn't have to do any work to point the kernel at the
/// right linear memory page to use.
Paged {
/// The map of defined memory index to a list of initialization pages.
///
/// The list of page data is sparse, with each element starting with
/// the offset in memory where it will be placed (specified here, as
/// a page index, with a `u64`). Each page of initialization data is
/// WebAssembly page-sized (64 KiB). Pages whose offset are not
/// specified in this array start with 0s in memory. The `Range`
/// indices, like those in `MemoryInitializer`, point within a data
/// segment that will come as an auxiliary descriptor with other data
/// such as the compiled code for the wasm module.
map: PrimaryMap<MemoryIndex, Vec<(u64, Range<u32>)>>,
},
}
impl ModuleTranslation<'_> {
/// Attempts to convert segmented memory initialization into paged
/// initialization for the module that this translation represents.
///
/// If this module's memory initialization is not compatible with paged
/// initialization then this won't change anything. Otherwise if it is
/// compatible then the `memory_initialization` field will be updated.
pub fn try_paged_init(&mut self) {
// This method only attempts to transform a a `Segmented` memory init
// into a `Paged` one, no other state.
if !self.module.memory_initialization.is_segmented() {
return;
}
// Initially all memories start out as all zeros, represented with a
// lack of entries in the `BTreeMap` here. The map indexes byte offset
// (which is always wasm-page-aligned) to the contents of the page, with
// missing entries implicitly as all zeros.
let mut page_contents = PrimaryMap::with_capacity(self.module.memory_plans.len());
for _ in 0..self.module.memory_plans.len() {
page_contents.push(BTreeMap::new());
}
// Perform a "dry run" of memory initialization which will fail if we
// can't switch to paged initialization. When data is written it's
// transformed into the representation of `page_contents`.
let mut data = self.data.iter();
let ok = self.module.memory_initialization.init_memory(
InitMemory::CompileTime(&self.module),
&mut |memory, offset, data_range| {
let data = data.next().unwrap();
assert_eq!(data.len(), data_range.len());
// If an initializer references an imported memory then
// everything will need to be processed in-order anyway to
// handle the dynamic limits of the memory specified.
if self.module.defined_memory_index(memory).is_none() {
return false;
};
let page_size = u64::from(WASM_PAGE_SIZE);
let contents = &mut page_contents[memory];
let mut page_index = offset / page_size;
let mut page_offset = (offset % page_size) as usize;
let mut data = &data[..];
while !data.is_empty() {
// If this page hasn't been seen before, then it starts out
// as all zeros.
let page = contents
.entry(page_index)
.or_insert_with(|| vec![0; page_size as usize]);
let page = &mut page[page_offset..];
let len = std::cmp::min(data.len(), page.len());
page[..len].copy_from_slice(&data[..len]);
page_index += 1;
page_offset = 0;
data = &data[len..];
}
true
},
);
// If anything failed above or hit an unknown case then bail out
// entirely since this module cannot use paged initialization.
if !ok {
return;
}
// If we've gotten this far then we're switching to paged
// initialization. The contents of the initial wasm memory are
// specified by `page_contents`, so the job now is to transform data
// representation of wasm memory back into the representation we use
// in a `Module`.
//
// This is done by clearing `self.data`, the original data segments,
// since those are now all represented in `page_contents`. Afterwards
// all the pages are subsequently pushed onto `self.data` and the
// offsets within `self.data` are recorded in each segment that's part
// of `Paged`.
self.data.clear();
let mut map = PrimaryMap::with_capacity(page_contents.len());
let mut offset = 0;
for (memory, pages) in page_contents {
let mut page_offsets = Vec::with_capacity(pages.len());
for (byte_offset, page) in pages {
let end = offset + (page.len() as u32);
page_offsets.push((byte_offset, offset..end));
offset = end;
self.data.push(page.into());
}
let index = map.push(page_offsets);
assert_eq!(index, memory);
}
self.module.memory_initialization = MemoryInitialization::Paged { map };
}
}
impl Default for MemoryInitialization {
fn default() -> Self {
Self::Segmented(Vec::new())
}
}
impl MemoryInitialization {
/// Returns whether this initialization is of the form
/// `MemoryInitialization::Segmented`.
pub fn is_segmented(&self) -> bool {
match self {
MemoryInitialization::Segmented(_) => true,
_ => false,
}
}
/// Performs the memory initialization steps for this set of initializers.
///
/// This will perform wasm initialization in compliance with the wasm spec
/// and how data segments are processed. This doesn't need to necessarily
/// only be called as part of initialization, however, as it's structured to
/// allow learning about memory ahead-of-time at compile time possibly.
///
/// The various callbacks provided here are used to drive the smaller bits
/// of initialization, such as:
///
/// * `get_cur_size_in_pages` - gets the current size, in wasm pages, of the
/// memory specified. For compile-time purposes this would be the memory
/// type's minimum size.
///
/// * `get_global` - gets the value of the global specified. This is
/// statically, via validation, a pointer to the global of the correct
/// type (either u32 or u64 depending on the memory), but the value
/// returned here is `u64`. A `None` value can be returned to indicate
/// that the global's value isn't known yet.
///
/// * `write` - a callback used to actually write data. This indicates that
/// the specified memory must receive the specified range of data at the
/// specified offset. This can internally return an false error if it
/// wants to fail.
///
/// This function will return true if all memory initializers are processed
/// successfully. If any initializer hits an error or, for example, a
/// global value is needed but `None` is returned, then false will be
/// returned. At compile-time this typically means that the "error" in
/// question needs to be deferred to runtime, and at runtime this means
/// that an invalid initializer has been found and a trap should be
/// generated.
pub fn init_memory(
&self,
state: InitMemory<'_>,
write: &mut dyn FnMut(MemoryIndex, u64, &Range<u32>) -> bool,
) -> bool {
let initializers = match self {
// Fall through below to the segmented memory one-by-one
// initialization.
MemoryInitialization::Segmented(list) => list,
// If previously switched to paged initialization then pass through
// all those parameters here to the `write` callback.
//
// Note that existence of `Paged` already guarantees that all
// indices are in-bounds.
MemoryInitialization::Paged { map } => {
for (index, pages) in map {
for (page_index, page) in pages {
debug_assert_eq!(page.end - page.start, WASM_PAGE_SIZE);
let result = write(index, *page_index * u64::from(WASM_PAGE_SIZE), page);
if !result {
return result;
}
}
}
return true;
}
};
for initializer in initializers {
let MemoryInitializer {
memory_index,
base,
offset,
ref data,
} = *initializer;
// First up determine the start/end range and verify that they're
// in-bounds for the initial size of the memory at `memory_index`.
// Note that this can bail if we don't have access to globals yet
// (e.g. this is a task happening before instantiation at
// compile-time).
let base = match base {
Some(index) => match &state {
InitMemory::Runtime {
get_global_as_u64, ..
} => get_global_as_u64(index),
InitMemory::CompileTime(_) => return false,
},
None => 0,
};
let start = match base.checked_add(offset) {
Some(start) => start,
None => return false,
};
let len = u64::try_from(data.len()).unwrap();
let end = match start.checked_add(len) {
Some(end) => end,
None => return false,
};
let cur_size_in_pages = match &state {
InitMemory::CompileTime(module) => module.memory_plans[memory_index].memory.minimum,
InitMemory::Runtime {
memory_size_in_pages,
..
} => memory_size_in_pages(memory_index),
};
// Note that this `minimum` can overflow if `minimum` is
// `1 << 48`, the maximum number of minimum pages for 64-bit
// memories. If this overflow happens, though, then there's no need
// to check the `end` value since `end` fits in a `u64` and it is
// naturally less than the overflowed value.
//
// This is a bit esoteric though because it's impossible to actually
// create a memory of `u64::MAX + 1` bytes, so this is largely just
// here to avoid having the multiplication here overflow in debug
// mode.
if let Some(max) = cur_size_in_pages.checked_mul(u64::from(WASM_PAGE_SIZE)) {
if end > max {
return false;
}
}
// The limits of the data segment have been validated at this point
// so the `write` callback is called with the range of data being
// written. Any erroneous result is propagated upwards.
let result = write(memory_index, start, data);
if !result {
return result;
}
}
return true;
}
}
/// Argument to [`MemoryInitialization::init_memory`] indicating the current
/// status of the instance.
pub enum InitMemory<'a> {
/// This evaluation of memory initializers is happening at compile time.
/// This means that the current state of memories is whatever their initial
/// state is, and additionally globals are not available if data segments
/// have global offsets.
CompileTime(&'a Module),
/// Evaluation of memory initializers is happening at runtime when the
/// instance is available, and callbacks are provided to learn about the
/// instance's state.
Runtime {
/// Returns the size, in wasm pages, of the the memory specified.
memory_size_in_pages: &'a dyn Fn(MemoryIndex) -> u64,
/// Returns the value of the global, as a `u64`. Note that this may
/// involve zero-extending a 32-bit global to a 64-bit number.
get_global_as_u64: &'a dyn Fn(GlobalIndex) -> u64,
},
}
/// Implementation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum TableStyle {
/// Signatures are stored in the table and checked in the caller.
CallerChecksSignature,
}
impl TableStyle {
/// Decide on an implementation style for the given `Table`.
pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
Self::CallerChecksSignature
}
}
/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct TablePlan {
/// The WebAssembly table description.
pub table: Table,
/// Our chosen implementation style.
pub style: TableStyle,
}
impl TablePlan {
/// Draw up a plan for implementing a `Table`.
pub fn for_table(table: Table, tunables: &Tunables) -> Self {
let style = TableStyle::for_table(table, tunables);
Self { table, style }
}
}
/// A WebAssembly table initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TableInitializer {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: u32,
/// The values to write into the table elements.
pub elements: Box<[FuncIndex]>,
}
/// Different types that can appear in a module.
///
/// Note that each of these variants are intended to index further into a
/// separate table.
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub enum ModuleType {
Function(SignatureIndex),
Module(ModuleTypeIndex),
Instance(InstanceTypeIndex),
}
impl ModuleType {
/// Asserts this is a `ModuleType::Function`, returning the underlying
/// `SignatureIndex`.
pub fn unwrap_function(&self) -> SignatureIndex {
match self {
ModuleType::Function(f) => *f,
_ => panic!("not a function type"),
}
}
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
pub struct Module {
/// The name of this wasm module, often found in the wasm file.
pub name: Option<String>,
/// All import records, in the order they are declared in the module.
pub initializers: Vec<Initializer>,
/// Exported entities.
pub exports: IndexMap<String, EntityIndex>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initializers.
pub table_initializers: Vec<TableInitializer>,
/// WebAssembly linear memory initializer.
pub memory_initialization: MemoryInitialization,
/// WebAssembly passive elements.
pub passive_elements: Vec<Box<[FuncIndex]>>,
/// The map from passive element index (element segment index space) to index in `passive_elements`.
pub passive_elements_map: BTreeMap<ElemIndex, usize>,
/// The map from passive data index (data segment index space) to index in `passive_data`.
pub passive_data_map: BTreeMap<DataIndex, Range<u32>>,
/// WebAssembly function names.
pub func_names: BTreeMap<FuncIndex, String>,
/// Types declared in the wasm module.
pub types: PrimaryMap<TypeIndex, ModuleType>,
/// Number of imported or aliased functions in the module.
pub num_imported_funcs: usize,
/// Number of imported or aliased tables in the module.
pub num_imported_tables: usize,
/// Number of imported or aliased memories in the module.
pub num_imported_memories: usize,
/// Number of imported or aliased globals in the module.
pub num_imported_globals: usize,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, SignatureIndex>,
/// WebAssembly tables.
pub table_plans: PrimaryMap<TableIndex, TablePlan>,
/// WebAssembly linear memory plans.
pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,
/// WebAssembly global variables.
pub globals: PrimaryMap<GlobalIndex, Global>,
/// The type of each wasm instance this module defines.
pub instances: PrimaryMap<InstanceIndex, InstanceTypeIndex>,
/// The type of each nested wasm module this module contains.
pub modules: PrimaryMap<ModuleIndex, ModuleTypeIndex>,
}
/// Initialization routines for creating an instance, encompassing imports,
/// modules, instances, aliases, etc.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum Initializer {
/// An imported item is required to be provided.
Import {
/// Name of this import
name: String,
/// The field name projection of this import. When module-linking is
/// enabled this is always `None`. Otherwise this is always `Some`.
field: Option<String>,
/// Where this import will be placed, which also has type information
/// about the import.
index: EntityIndex,
},
/// An export from a previously defined instance is being inserted into our
/// index space.
///
/// Note that when the module linking proposal is enabled two-level imports
/// will implicitly desugar to this initializer.
AliasInstanceExport {
/// The instance that we're referencing.
instance: InstanceIndex,
/// Which export is being inserted into our index space.
export: String,
},
/// A module is being instantiated with previously configured initializers
/// as arguments.
Instantiate {
/// The module that this instance is instantiating.
module: ModuleIndex,
/// The arguments provided to instantiation, along with their name in
/// the instance being instantiated.
args: IndexMap<String, EntityIndex>,
},
/// A module is being created from a set of compiled artifacts.
CreateModule {
/// The index of the artifact that's being converted into a module.
artifact_index: usize,
/// The list of artifacts that this module value will be inheriting.
artifacts: Vec<usize>,
/// The list of modules that this module value will inherit.
modules: Vec<ModuleUpvar>,
},
/// A module is created from a closed-over-module value, defined when this
/// module was created.
DefineModule(usize),
}
/// Where module values can come from when creating a new module from a compiled
/// artifact.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum ModuleUpvar {
/// A module value is inherited from the module creating the new module.
Inherit(usize),
/// A module value comes from the instance-to-be-created module index space.
Local(ModuleIndex),
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Module::default()
}
/// Get the given passive element, if it exists.
pub fn get_passive_element(&self, index: ElemIndex) -> Option<&[FuncIndex]> {
let index = *self.passive_elements_map.get(&index)?;
Some(self.passive_elements[index].as_ref())
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
#[inline]
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.num_imported_funcs + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
#[inline]
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.num_imported_funcs {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.num_imported_funcs,
))
}
}
/// Test whether the given function index is for an imported function.
#[inline]
pub fn is_imported_function(&self, index: FuncIndex) -> bool {
index.index() < self.num_imported_funcs
}
/// Convert a `DefinedTableIndex` into a `TableIndex`.
#[inline]
pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
TableIndex::new(self.num_imported_tables + defined_table.index())
}
/// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
/// index is an imported table.
#[inline]
pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
if table.index() < self.num_imported_tables {
None
} else {
Some(DefinedTableIndex::new(
table.index() - self.num_imported_tables,
))
}
}
/// Test whether the given table index is for an imported table.
#[inline]
pub fn is_imported_table(&self, index: TableIndex) -> bool {
index.index() < self.num_imported_tables
}
/// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
#[inline]
pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
MemoryIndex::new(self.num_imported_memories + defined_memory.index())
}
/// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
/// index is an imported memory.
#[inline]
pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
if memory.index() < self.num_imported_memories {
None
} else {
Some(DefinedMemoryIndex::new(
memory.index() - self.num_imported_memories,
))
}
}
/// Test whether the given memory index is for an imported memory.
#[inline]
pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
index.index() < self.num_imported_memories
}
/// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
#[inline]
pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
GlobalIndex::new(self.num_imported_globals + defined_global.index())
}
/// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
/// index is an imported global.
#[inline]
pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
if global.index() < self.num_imported_globals {
None
} else {
Some(DefinedGlobalIndex::new(
global.index() - self.num_imported_globals,
))
}
}
/// Test whether the given global index is for an imported global.
#[inline]
pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
index.index() < self.num_imported_globals
}
/// Returns an iterator of all the imports in this module, along with their
/// module name, field name, and type that's being imported.
pub fn imports(&self) -> impl Iterator<Item = (&str, Option<&str>, EntityType)> {
self.initializers.iter().filter_map(move |i| match i {
Initializer::Import { name, field, index } => {
Some((name.as_str(), field.as_deref(), self.type_of(*index)))
}
_ => None,
})
}
/// Returns the type of an item based on its index
pub fn type_of(&self, index: EntityIndex) -> EntityType {
match index {
EntityIndex::Global(i) => EntityType::Global(self.globals[i]),
EntityIndex::Table(i) => EntityType::Table(self.table_plans[i].table),
EntityIndex::Memory(i) => EntityType::Memory(self.memory_plans[i].memory),
EntityIndex::Function(i) => EntityType::Function(self.functions[i]),
EntityIndex::Instance(i) => EntityType::Instance(self.instances[i]),
EntityIndex::Module(i) => EntityType::Module(self.modules[i]),
}
}
}
/// All types which are recorded for the entirety of a translation.
///
/// Note that this is shared amongst all modules coming out of a translation
/// in the case of nested modules and the module linking proposal.
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub struct TypeTables {
pub wasm_signatures: PrimaryMap<SignatureIndex, WasmFuncType>,
pub module_signatures: PrimaryMap<ModuleTypeIndex, ModuleSignature>,
pub instance_signatures: PrimaryMap<InstanceTypeIndex, InstanceSignature>,
}
/// The type signature of known modules.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ModuleSignature {
/// All imports in this module, listed in order with their name and
/// what type they're importing.
pub imports: IndexMap<String, EntityType>,
/// Exports are what an instance type conveys, so we go through an
/// indirection over there.
pub exports: InstanceTypeIndex,
}
/// The type signature of known instances.
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
pub struct InstanceSignature {
/// The name of what's being exported as well as its type signature.
pub exports: IndexMap<String, EntityType>,
}