1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
//! Data structures for representing decoded wasm modules.
use crate::{ModuleTranslation, PrimaryMap, Tunables, WasmHeapType, WASM_PAGE_SIZE};
use cranelift_entity::{packed_option::ReservedValue, EntityRef};
use indexmap::IndexMap;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::convert::TryFrom;
use std::mem;
use std::ops::Range;
use wasmtime_types::*;
/// Implementation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum MemoryStyle {
/// The actual memory can be resized and moved.
Dynamic {
/// Extra space to reserve when a memory must be moved due to growth.
reserve: u64,
},
/// Address space is allocated up front.
Static {
/// The number of mapped and unmapped pages.
bound: u64,
},
}
impl MemoryStyle {
/// Decide on an implementation style for the given `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
// A heap with a maximum that doesn't exceed the static memory bound specified by the
// tunables make it static.
//
// If the module doesn't declare an explicit maximum treat it as 4GiB when not
// requested to use the static memory bound itself as the maximum.
let absolute_max_pages = if memory.memory64 {
crate::WASM64_MAX_PAGES
} else {
crate::WASM32_MAX_PAGES
};
let maximum = std::cmp::min(
memory.maximum.unwrap_or(absolute_max_pages),
if tunables.static_memory_bound_is_maximum {
std::cmp::min(tunables.static_memory_bound, absolute_max_pages)
} else {
absolute_max_pages
},
);
// Ensure the minimum is less than the maximum; the minimum might exceed the maximum
// when the memory is artificially bounded via `static_memory_bound_is_maximum` above
if memory.minimum <= maximum && maximum <= tunables.static_memory_bound {
return (
Self::Static {
bound: tunables.static_memory_bound,
},
tunables.static_memory_offset_guard_size,
);
}
// Otherwise, make it dynamic.
(
Self::Dynamic {
reserve: tunables.dynamic_memory_growth_reserve,
},
tunables.dynamic_memory_offset_guard_size,
)
}
}
/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct MemoryPlan {
/// The WebAssembly linear memory description.
pub memory: Memory,
/// Our chosen implementation style.
pub style: MemoryStyle,
/// Chosen size of a guard page before the linear memory allocation.
pub pre_guard_size: u64,
/// Our chosen offset-guard size.
pub offset_guard_size: u64,
}
impl MemoryPlan {
/// Draw up a plan for implementing a `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
Self {
memory,
style,
offset_guard_size,
pre_guard_size: if tunables.guard_before_linear_memory {
offset_guard_size
} else {
0
},
}
}
}
/// A WebAssembly linear memory initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MemoryInitializer {
/// The index of a linear memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: u64,
/// The range of the data to write within the linear memory.
///
/// This range indexes into a separately stored data section which will be
/// provided with the compiled module's code as well.
pub data: Range<u32>,
}
/// Similar to the above `MemoryInitializer` but only used when memory
/// initializers are statically known to be valid.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct StaticMemoryInitializer {
/// The 64-bit offset, in bytes, of where this initializer starts.
pub offset: u64,
/// The range of data to write at `offset`, where these indices are indexes
/// into the compiled wasm module's data section.
pub data: Range<u32>,
}
/// The type of WebAssembly linear memory initialization to use for a module.
#[derive(Debug, Serialize, Deserialize)]
pub enum MemoryInitialization {
/// Memory initialization is segmented.
///
/// Segmented initialization can be used for any module, but it is required
/// if:
///
/// * A data segment referenced an imported memory.
/// * A data segment uses a global base.
///
/// Segmented initialization is performed by processing the complete set of
/// data segments when the module is instantiated.
///
/// This is the default memory initialization type.
Segmented(Vec<MemoryInitializer>),
/// Memory initialization is statically known and involves a single `memcpy`
/// or otherwise simply making the defined data visible.
///
/// To be statically initialized everything must reference a defined memory
/// and all data segments have a statically known in-bounds base (no
/// globals).
///
/// This form of memory initialization is a more optimized version of
/// `Segmented` where memory can be initialized with one of a few methods:
///
/// * First it could be initialized with a single `memcpy` of data from the
/// module to the linear memory.
/// * Otherwise techniques like `mmap` are also possible to make this data,
/// which might reside in a compiled module on disk, available immediately
/// in a linear memory's address space.
///
/// To facilitate the latter of these techniques the `try_static_init`
/// function below, which creates this variant, takes a host page size
/// argument which can page-align everything to make mmap-ing possible.
Static {
/// The initialization contents for each linear memory.
///
/// This array has, for each module's own linear memory, the contents
/// necessary to initialize it. If the memory has a `None` value then no
/// initialization is necessary (it's zero-filled). Otherwise with
/// `Some` the first element of the tuple is the offset in memory to
/// start the initialization and the `Range` is the range within the
/// final data section of the compiled module of bytes to copy into the
/// memory.
///
/// The offset, range base, and range end are all guaranteed to be page
/// aligned to the page size passed in to `try_static_init`.
map: PrimaryMap<MemoryIndex, Option<StaticMemoryInitializer>>,
},
}
impl ModuleTranslation<'_> {
/// Attempts to convert segmented memory initialization into static
/// initialization for the module that this translation represents.
///
/// If this module's memory initialization is not compatible with paged
/// initialization then this won't change anything. Otherwise if it is
/// compatible then the `memory_initialization` field will be updated.
///
/// Takes a `page_size` argument in order to ensure that all
/// initialization is page-aligned for mmap-ability, and
/// `max_image_size_always_allowed` to control how we decide
/// whether to use static init.
///
/// We will try to avoid generating very sparse images, which are
/// possible if e.g. a module has an initializer at offset 0 and a
/// very high offset (say, 1 GiB). To avoid this, we use a dual
/// condition: we always allow images less than
/// `max_image_size_always_allowed`, and the embedder of Wasmtime
/// can set this if desired to ensure that static init should
/// always be done if the size of the module or its heaps is
/// otherwise bounded by the system. We also allow images with
/// static init data bigger than that, but only if it is "dense",
/// defined as having at least half (50%) of its pages with some
/// data.
///
/// We could do something slightly better by building a dense part
/// and keeping a sparse list of outlier/leftover segments (see
/// issue #3820). This would also allow mostly-static init of
/// modules that have some dynamically-placed data segments. But,
/// for now, this is sufficient to allow a system that "knows what
/// it's doing" to always get static init.
pub fn try_static_init(&mut self, page_size: u64, max_image_size_always_allowed: u64) {
// This method only attempts to transform a `Segmented` memory init
// into a `Static` one, no other state.
if !self.module.memory_initialization.is_segmented() {
return;
}
// First a dry run of memory initialization is performed. This
// collects information about the extent of memory initialized for each
// memory as well as the size of all data segments being copied in.
struct Memory {
data_size: u64,
min_addr: u64,
max_addr: u64,
// The `usize` here is a pointer into `self.data` which is the list
// of data segments corresponding to what was found in the original
// wasm module.
segments: Vec<(usize, StaticMemoryInitializer)>,
}
let mut info = PrimaryMap::with_capacity(self.module.memory_plans.len());
for _ in 0..self.module.memory_plans.len() {
info.push(Memory {
data_size: 0,
min_addr: u64::MAX,
max_addr: 0,
segments: Vec::new(),
});
}
let mut idx = 0;
let ok = self.module.memory_initialization.init_memory(
&mut (),
InitMemory::CompileTime(&self.module),
|(), memory, init| {
// Currently `Static` only applies to locally-defined memories,
// so if a data segment references an imported memory then
// transitioning to a `Static` memory initializer is not
// possible.
if self.module.defined_memory_index(memory).is_none() {
return false;
};
let info = &mut info[memory];
let data_len = u64::from(init.data.end - init.data.start);
if data_len > 0 {
info.data_size += data_len;
info.min_addr = info.min_addr.min(init.offset);
info.max_addr = info.max_addr.max(init.offset + data_len);
info.segments.push((idx, init.clone()));
}
idx += 1;
true
},
);
if !ok {
return;
}
// Validate that the memory information collected is indeed valid for
// static memory initialization.
for info in info.values().filter(|i| i.data_size > 0) {
let image_size = info.max_addr - info.min_addr;
// If the range of memory being initialized is less than twice the
// total size of the data itself then it's assumed that static
// initialization is ok. This means we'll at most double memory
// consumption during the memory image creation process, which is
// currently assumed to "probably be ok" but this will likely need
// tweaks over time.
if image_size < info.data_size.saturating_mul(2) {
continue;
}
// If the memory initialization image is larger than the size of all
// data, then we still allow memory initialization if the image will
// be of a relatively modest size, such as 1MB here.
if image_size < max_image_size_always_allowed {
continue;
}
// At this point memory initialization is concluded to be too
// expensive to do at compile time so it's entirely deferred to
// happen at runtime.
return;
}
// Here's where we've now committed to changing to static memory. The
// memory initialization image is built here from the page data and then
// it's converted to a single initializer.
let data = mem::replace(&mut self.data, Vec::new());
let mut map = PrimaryMap::with_capacity(info.len());
let mut module_data_size = 0u32;
for (memory, info) in info.iter() {
// Create the in-memory `image` which is the initialized contents of
// this linear memory.
let extent = if info.segments.len() > 0 {
(info.max_addr - info.min_addr) as usize
} else {
0
};
let mut image = Vec::with_capacity(extent);
for (idx, init) in info.segments.iter() {
let data = &data[*idx];
assert_eq!(data.len(), init.data.len());
let offset = usize::try_from(init.offset - info.min_addr).unwrap();
if image.len() < offset {
image.resize(offset, 0u8);
image.extend_from_slice(data);
} else {
image.splice(
offset..(offset + data.len()).min(image.len()),
data.iter().copied(),
);
}
}
assert_eq!(image.len(), extent);
assert_eq!(image.capacity(), extent);
let mut offset = if info.segments.len() > 0 {
info.min_addr
} else {
0
};
// Chop off trailing zeros from the image as memory is already
// zero-initialized. Note that `i` is the position of a nonzero
// entry here, so to not lose it we truncate to `i + 1`.
if let Some(i) = image.iter().rposition(|i| *i != 0) {
image.truncate(i + 1);
}
// Also chop off leading zeros, if any.
if let Some(i) = image.iter().position(|i| *i != 0) {
offset += i as u64;
image.drain(..i);
}
let mut len = u64::try_from(image.len()).unwrap();
// The goal is to enable mapping this image directly into memory, so
// the offset into linear memory must be a multiple of the page
// size. If that's not already the case then the image is padded at
// the front and back with extra zeros as necessary
if offset % page_size != 0 {
let zero_padding = offset % page_size;
self.data.push(vec![0; zero_padding as usize].into());
offset -= zero_padding;
len += zero_padding;
}
self.data.push(image.into());
if len % page_size != 0 {
let zero_padding = page_size - (len % page_size);
self.data.push(vec![0; zero_padding as usize].into());
len += zero_padding;
}
// Offset/length should now always be page-aligned.
assert!(offset % page_size == 0);
assert!(len % page_size == 0);
// Create the `StaticMemoryInitializer` which describes this image,
// only needed if the image is actually present and has a nonzero
// length. The `offset` has been calculates above, originally
// sourced from `info.min_addr`. The `data` field is the extent
// within the final data segment we'll emit to an ELF image, which
// is the concatenation of `self.data`, so here it's the size of
// the section-so-far plus the current segment we're appending.
let len = u32::try_from(len).unwrap();
let init = if len > 0 {
Some(StaticMemoryInitializer {
offset,
data: module_data_size..module_data_size + len,
})
} else {
None
};
let idx = map.push(init);
assert_eq!(idx, memory);
module_data_size += len;
}
self.data_align = Some(page_size);
self.module.memory_initialization = MemoryInitialization::Static { map };
}
/// Attempts to convert the module's table initializers to
/// FuncTable form where possible. This enables lazy table
/// initialization later by providing a one-to-one map of initial
/// table values, without having to parse all segments.
pub fn try_func_table_init(&mut self) {
// This should be large enough to support very large Wasm
// modules with huge funcref tables, but small enough to avoid
// OOMs or DoS on truly sparse tables.
const MAX_FUNC_TABLE_SIZE: u32 = 1024 * 1024;
// First convert any element-initialized tables to images of just that
// single function if the minimum size of the table allows doing so.
for ((_, init), (_, plan)) in self
.module
.table_initialization
.initial_values
.iter_mut()
.zip(
self.module
.table_plans
.iter()
.skip(self.module.num_imported_tables),
)
{
let table_size = plan.table.minimum;
if table_size > MAX_FUNC_TABLE_SIZE {
continue;
}
if let TableInitialValue::FuncRef(val) = *init {
*init = TableInitialValue::Null {
precomputed: vec![val; table_size as usize],
};
}
}
let mut segments = mem::take(&mut self.module.table_initialization.segments)
.into_iter()
.peekable();
// The goal of this loop is to interpret a table segment and apply it
// "statically" to a local table. This will iterate over segments and
// apply them one-by-one to each table.
//
// If any segment can't be applied, however, then this loop exits and
// all remaining segments are placed back into the segment list. This is
// because segments are supposed to be initialized one-at-a-time which
// means that intermediate state is visible with respect to traps. If
// anything isn't statically known to not trap it's pessimistically
// assumed to trap meaning all further segment initializers must be
// applied manually at instantiation time.
while let Some(segment) = segments.peek() {
let defined_index = match self.module.defined_table_index(segment.table_index) {
Some(index) => index,
// Skip imported tables: we can't provide a preconstructed
// table for them, because their values depend on the
// imported table overlaid with whatever segments we have.
None => break,
};
// If the base of this segment is dynamic, then we can't
// include it in the statically-built array of initial
// contents.
if segment.base.is_some() {
break;
}
// Get the end of this segment. If out-of-bounds, or too
// large for our dense table representation, then skip the
// segment.
let top = match segment.offset.checked_add(segment.elements.len() as u32) {
Some(top) => top,
None => break,
};
let table_size = self.module.table_plans[segment.table_index].table.minimum;
if top > table_size || top > MAX_FUNC_TABLE_SIZE {
break;
}
match self.module.table_plans[segment.table_index]
.table
.wasm_ty
.heap_type
{
WasmHeapType::Func | WasmHeapType::TypedFunc(_) => {}
// If this is not a funcref table, then we can't support a
// pre-computed table of function indices. Technically this
// initializer won't trap so we could continue processing
// segments, but that's left as a future optimization if
// necessary.
WasmHeapType::Extern => break,
}
let precomputed =
match &mut self.module.table_initialization.initial_values[defined_index] {
TableInitialValue::Null { precomputed } => precomputed,
// If this table is still listed as an initial value here
// then that means the initial size of the table doesn't
// support a precomputed function list, so skip this.
// Technically this won't trap so it's possible to process
// further initializers, but that's left as a future
// optimization.
TableInitialValue::FuncRef(_) => break,
};
// At this point we're committing to pre-initializing the table
// with the `segment` that's being iterated over. This segment is
// applied to the `precomputed` list for the table by ensuring
// it's large enough to hold the segment and then copying the
// segment into the precomputed list.
if precomputed.len() < top as usize {
precomputed.resize(top as usize, FuncIndex::reserved_value());
}
let dst = &mut precomputed[(segment.offset as usize)..(top as usize)];
dst.copy_from_slice(&segment.elements[..]);
// advance the iterator to see the next segment
let _ = segments.next();
}
self.module.table_initialization.segments = segments.collect();
}
}
impl Default for MemoryInitialization {
fn default() -> Self {
Self::Segmented(Vec::new())
}
}
impl MemoryInitialization {
/// Returns whether this initialization is of the form
/// `MemoryInitialization::Segmented`.
pub fn is_segmented(&self) -> bool {
match self {
MemoryInitialization::Segmented(_) => true,
_ => false,
}
}
/// Performs the memory initialization steps for this set of initializers.
///
/// This will perform wasm initialization in compliance with the wasm spec
/// and how data segments are processed. This doesn't need to necessarily
/// only be called as part of initialization, however, as it's structured to
/// allow learning about memory ahead-of-time at compile time possibly.
///
/// The various callbacks provided here are used to drive the smaller bits
/// of initialization, such as:
///
/// * `get_cur_size_in_pages` - gets the current size, in wasm pages, of the
/// memory specified. For compile-time purposes this would be the memory
/// type's minimum size.
///
/// * `get_global` - gets the value of the global specified. This is
/// statically, via validation, a pointer to the global of the correct
/// type (either u32 or u64 depending on the memory), but the value
/// returned here is `u64`. A `None` value can be returned to indicate
/// that the global's value isn't known yet.
///
/// * `write` - a callback used to actually write data. This indicates that
/// the specified memory must receive the specified range of data at the
/// specified offset. This can internally return an false error if it
/// wants to fail.
///
/// This function will return true if all memory initializers are processed
/// successfully. If any initializer hits an error or, for example, a
/// global value is needed but `None` is returned, then false will be
/// returned. At compile-time this typically means that the "error" in
/// question needs to be deferred to runtime, and at runtime this means
/// that an invalid initializer has been found and a trap should be
/// generated.
pub fn init_memory<T>(
&self,
state: &mut T,
init: InitMemory<'_, T>,
mut write: impl FnMut(&mut T, MemoryIndex, &StaticMemoryInitializer) -> bool,
) -> bool {
let initializers = match self {
// Fall through below to the segmented memory one-by-one
// initialization.
MemoryInitialization::Segmented(list) => list,
// If previously switched to static initialization then pass through
// all those parameters here to the `write` callback.
//
// Note that existence of `Static` already guarantees that all
// indices are in-bounds.
MemoryInitialization::Static { map } => {
for (index, init) in map {
if let Some(init) = init {
let result = write(state, index, init);
if !result {
return result;
}
}
}
return true;
}
};
for initializer in initializers {
let MemoryInitializer {
memory_index,
base,
offset,
ref data,
} = *initializer;
// First up determine the start/end range and verify that they're
// in-bounds for the initial size of the memory at `memory_index`.
// Note that this can bail if we don't have access to globals yet
// (e.g. this is a task happening before instantiation at
// compile-time).
let base = match base {
Some(index) => match &init {
InitMemory::Runtime {
get_global_as_u64, ..
} => get_global_as_u64(state, index),
InitMemory::CompileTime(_) => return false,
},
None => 0,
};
let start = match base.checked_add(offset) {
Some(start) => start,
None => return false,
};
let len = u64::try_from(data.len()).unwrap();
let end = match start.checked_add(len) {
Some(end) => end,
None => return false,
};
let cur_size_in_pages = match &init {
InitMemory::CompileTime(module) => module.memory_plans[memory_index].memory.minimum,
InitMemory::Runtime {
memory_size_in_pages,
..
} => memory_size_in_pages(state, memory_index),
};
// Note that this `minimum` can overflow if `minimum` is
// `1 << 48`, the maximum number of minimum pages for 64-bit
// memories. If this overflow happens, though, then there's no need
// to check the `end` value since `end` fits in a `u64` and it is
// naturally less than the overflowed value.
//
// This is a bit esoteric though because it's impossible to actually
// create a memory of `u64::MAX + 1` bytes, so this is largely just
// here to avoid having the multiplication here overflow in debug
// mode.
if let Some(max) = cur_size_in_pages.checked_mul(u64::from(WASM_PAGE_SIZE)) {
if end > max {
return false;
}
}
// The limits of the data segment have been validated at this point
// so the `write` callback is called with the range of data being
// written. Any erroneous result is propagated upwards.
let init = StaticMemoryInitializer {
offset: start,
data: data.clone(),
};
let result = write(state, memory_index, &init);
if !result {
return result;
}
}
return true;
}
}
/// Argument to [`MemoryInitialization::init_memory`] indicating the current
/// status of the instance.
pub enum InitMemory<'a, T> {
/// This evaluation of memory initializers is happening at compile time.
/// This means that the current state of memories is whatever their initial
/// state is, and additionally globals are not available if data segments
/// have global offsets.
CompileTime(&'a Module),
/// Evaluation of memory initializers is happening at runtime when the
/// instance is available, and callbacks are provided to learn about the
/// instance's state.
Runtime {
/// Returns the size, in wasm pages, of the the memory specified.
memory_size_in_pages: &'a dyn Fn(&mut T, MemoryIndex) -> u64,
/// Returns the value of the global, as a `u64`. Note that this may
/// involve zero-extending a 32-bit global to a 64-bit number.
get_global_as_u64: &'a dyn Fn(&mut T, GlobalIndex) -> u64,
},
}
/// Implementation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum TableStyle {
/// Signatures are stored in the table and checked in the caller.
CallerChecksSignature,
}
impl TableStyle {
/// Decide on an implementation style for the given `Table`.
pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
Self::CallerChecksSignature
}
}
/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct TablePlan {
/// The WebAssembly table description.
pub table: Table,
/// Our chosen implementation style.
pub style: TableStyle,
}
impl TablePlan {
/// Draw up a plan for implementing a `Table`.
pub fn for_table(table: Table, tunables: &Tunables) -> Self {
let style = TableStyle::for_table(table, tunables);
Self { table, style }
}
}
/// Table initialization data for all tables in the module.
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct TableInitialization {
/// Initial values for tables defined within the module itself.
///
/// This contains the initial values and initializers for tables defined
/// within a wasm, so excluding imported tables. This initializer can
/// represent null-initialized tables, element-initialized tables (e.g. with
/// the function-references proposal), or precomputed images of table
/// initialization. For example table initializers to a table that are all
/// in-bounds will get removed from `segment` and moved into
/// `initial_values` here.
pub initial_values: PrimaryMap<DefinedTableIndex, TableInitialValue>,
/// Element segments present in the initial wasm module which are executed
/// at instantiation time.
///
/// These element segments are iterated over during instantiation to apply
/// any segments that weren't already moved into `initial_values` above.
pub segments: Vec<TableSegment>,
}
/// Initial value for all elements in a table.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableInitialValue {
/// Initialize each table element to null, optionally setting some elements
/// to non-null given the precomputed image.
Null {
/// A precomputed image of table initializers for this table.
///
/// This image is constructed during `try_func_table_init` and
/// null-initialized elements are represented with
/// `FuncIndex::reserved_value()`. Note that this image is empty by
/// default and may not encompass the entire span of the table in which
/// case the elements are initialized to null.
precomputed: Vec<FuncIndex>,
},
/// Initialize each table element to the function reference given
/// by the `FuncIndex`.
FuncRef(FuncIndex),
}
/// A WebAssembly table initializer segment.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TableSegment {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: u32,
/// The values to write into the table elements.
pub elements: Box<[FuncIndex]>,
}
/// Different types that can appear in a module.
///
/// Note that each of these variants are intended to index further into a
/// separate table.
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub enum ModuleType {
Function(SignatureIndex),
}
impl ModuleType {
/// Asserts this is a `ModuleType::Function`, returning the underlying
/// `SignatureIndex`.
pub fn unwrap_function(&self) -> SignatureIndex {
match self {
ModuleType::Function(f) => *f,
}
}
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Default, Debug, Serialize, Deserialize)]
pub struct Module {
/// The name of this wasm module, often found in the wasm file.
pub name: Option<String>,
/// All import records, in the order they are declared in the module.
pub initializers: Vec<Initializer>,
/// Exported entities.
pub exports: IndexMap<String, EntityIndex>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initialization data, per table.
pub table_initialization: TableInitialization,
/// WebAssembly linear memory initializer.
pub memory_initialization: MemoryInitialization,
/// WebAssembly passive elements.
pub passive_elements: Vec<Box<[FuncIndex]>>,
/// The map from passive element index (element segment index space) to index in `passive_elements`.
pub passive_elements_map: BTreeMap<ElemIndex, usize>,
/// The map from passive data index (data segment index space) to index in `passive_data`.
pub passive_data_map: BTreeMap<DataIndex, Range<u32>>,
/// Types declared in the wasm module.
pub types: PrimaryMap<TypeIndex, ModuleType>,
/// Number of imported or aliased functions in the module.
pub num_imported_funcs: usize,
/// Number of imported or aliased tables in the module.
pub num_imported_tables: usize,
/// Number of imported or aliased memories in the module.
pub num_imported_memories: usize,
/// Number of imported or aliased globals in the module.
pub num_imported_globals: usize,
/// Number of functions that "escape" from this module may need to have a
/// `VMFuncRef` constructed for them.
///
/// This is also the number of functions in the `functions` array below with
/// an `func_ref` index (and is the maximum func_ref index).
pub num_escaped_funcs: usize,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, FunctionType>,
/// WebAssembly tables.
pub table_plans: PrimaryMap<TableIndex, TablePlan>,
/// WebAssembly linear memory plans.
pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,
/// WebAssembly global variables.
pub globals: PrimaryMap<GlobalIndex, Global>,
/// WebAssembly global initializers for locally-defined globals.
pub global_initializers: PrimaryMap<DefinedGlobalIndex, GlobalInit>,
}
/// Initialization routines for creating an instance, encompassing imports,
/// modules, instances, aliases, etc.
#[derive(Debug, Serialize, Deserialize)]
pub enum Initializer {
/// An imported item is required to be provided.
Import {
/// Name of this import
name: String,
/// The field name projection of this import
field: String,
/// Where this import will be placed, which also has type information
/// about the import.
index: EntityIndex,
},
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Module::default()
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
#[inline]
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.num_imported_funcs + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
#[inline]
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.num_imported_funcs {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.num_imported_funcs,
))
}
}
/// Test whether the given function index is for an imported function.
#[inline]
pub fn is_imported_function(&self, index: FuncIndex) -> bool {
index.index() < self.num_imported_funcs
}
/// Convert a `DefinedTableIndex` into a `TableIndex`.
#[inline]
pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
TableIndex::new(self.num_imported_tables + defined_table.index())
}
/// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
/// index is an imported table.
#[inline]
pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
if table.index() < self.num_imported_tables {
None
} else {
Some(DefinedTableIndex::new(
table.index() - self.num_imported_tables,
))
}
}
/// Test whether the given table index is for an imported table.
#[inline]
pub fn is_imported_table(&self, index: TableIndex) -> bool {
index.index() < self.num_imported_tables
}
/// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
#[inline]
pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
MemoryIndex::new(self.num_imported_memories + defined_memory.index())
}
/// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
/// index is an imported memory.
#[inline]
pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
if memory.index() < self.num_imported_memories {
None
} else {
Some(DefinedMemoryIndex::new(
memory.index() - self.num_imported_memories,
))
}
}
/// Convert a `DefinedMemoryIndex` into an `OwnedMemoryIndex`. Returns None
/// if the index is an imported memory.
#[inline]
pub fn owned_memory_index(&self, memory: DefinedMemoryIndex) -> OwnedMemoryIndex {
assert!(
memory.index() < self.memory_plans.len(),
"non-shared memory must have an owned index"
);
// Once we know that the memory index is not greater than the number of
// plans, we can iterate through the plans up to the memory index and
// count how many are not shared (i.e., owned).
let owned_memory_index = self
.memory_plans
.iter()
.skip(self.num_imported_memories)
.take(memory.index())
.filter(|(_, mp)| !mp.memory.shared)
.count();
OwnedMemoryIndex::new(owned_memory_index)
}
/// Test whether the given memory index is for an imported memory.
#[inline]
pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
index.index() < self.num_imported_memories
}
/// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
#[inline]
pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
GlobalIndex::new(self.num_imported_globals + defined_global.index())
}
/// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
/// index is an imported global.
#[inline]
pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
if global.index() < self.num_imported_globals {
None
} else {
Some(DefinedGlobalIndex::new(
global.index() - self.num_imported_globals,
))
}
}
/// Test whether the given global index is for an imported global.
#[inline]
pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
index.index() < self.num_imported_globals
}
/// Returns an iterator of all the imports in this module, along with their
/// module name, field name, and type that's being imported.
pub fn imports(&self) -> impl ExactSizeIterator<Item = (&str, &str, EntityType)> {
self.initializers.iter().map(move |i| match i {
Initializer::Import { name, field, index } => {
(name.as_str(), field.as_str(), self.type_of(*index))
}
})
}
/// Returns the type of an item based on its index
pub fn type_of(&self, index: EntityIndex) -> EntityType {
match index {
EntityIndex::Global(i) => EntityType::Global(self.globals[i]),
EntityIndex::Table(i) => EntityType::Table(self.table_plans[i].table),
EntityIndex::Memory(i) => EntityType::Memory(self.memory_plans[i].memory),
EntityIndex::Function(i) => EntityType::Function(self.functions[i].signature),
}
}
/// Appends a new function to this module with the given type information,
/// used for functions that either don't escape or aren't certain whether
/// they escape yet.
pub fn push_function(&mut self, signature: SignatureIndex) -> FuncIndex {
self.functions.push(FunctionType {
signature,
func_ref: FuncRefIndex::reserved_value(),
})
}
/// Appends a new function to this module with the given type information.
pub fn push_escaped_function(
&mut self,
signature: SignatureIndex,
func_ref: FuncRefIndex,
) -> FuncIndex {
self.functions.push(FunctionType {
signature,
func_ref,
})
}
}
impl TypeConvert for Module {
fn lookup_heap_type(&self, index: TypeIndex) -> WasmHeapType {
match self.types[index] {
ModuleType::Function(i) => WasmHeapType::TypedFunc(i),
}
}
}
/// Type information about functions in a wasm module.
#[derive(Debug, Serialize, Deserialize)]
pub struct FunctionType {
/// The type of this function, indexed into the module-wide type tables for
/// a module compilation.
pub signature: SignatureIndex,
/// The index into the funcref table, if present. Note that this is
/// `reserved_value()` if the function does not escape from a module.
pub func_ref: FuncRefIndex,
}
impl FunctionType {
/// Returns whether this function's type is one that "escapes" the current
/// module, meaning that the function is exported, used in `ref.func`, used
/// in a table, etc.
pub fn is_escaping(&self) -> bool {
!self.func_ref.is_reserved_value()
}
}
/// Index into the funcref table within a VMContext for a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FuncRefIndex(u32);
cranelift_entity::entity_impl!(FuncRefIndex);