wasmtime_environ/fact/
trampoline.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
//! Low-level compilation of an fused adapter function.
//!
//! This module is tasked with the top-level `compile` function which creates a
//! single WebAssembly function which will perform the steps of the fused
//! adapter for an `AdapterData` provided. This is the "meat" of compilation
//! where the validation of the canonical ABI or similar all happens to
//! translate arguments from one module to another.
//!
//! ## Traps and their ordering
//!
//! Currently this compiler is pretty "loose" about the ordering of precisely
//! what trap happens where. The main reason for this is that to core wasm all
//! traps are the same and for fused adapters if a trap happens no intermediate
//! side effects are visible (as designed by the canonical ABI itself). For this
//! it's important to note that some of the precise choices of control flow here
//! can be somewhat arbitrary, an intentional decision.

use crate::component::{
    CanonicalAbiInfo, ComponentTypesBuilder, FixedEncoding as FE, FlatType, InterfaceType,
    StringEncoding, Transcode, TypeEnumIndex, TypeFlagsIndex, TypeListIndex, TypeOptionIndex,
    TypeRecordIndex, TypeResourceTableIndex, TypeResultIndex, TypeTupleIndex, TypeVariantIndex,
    VariantInfo, FLAG_MAY_ENTER, FLAG_MAY_LEAVE, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS,
};
use crate::fact::signature::Signature;
use crate::fact::transcode::Transcoder;
use crate::fact::traps::Trap;
use crate::fact::{
    AdapterData, Body, Context, Function, FunctionId, Helper, HelperLocation, HelperType, Module,
    Options,
};
use crate::prelude::*;
use crate::{FuncIndex, GlobalIndex};
use std::collections::HashMap;
use std::mem;
use std::ops::Range;
use wasm_encoder::{BlockType, Encode, Instruction, Instruction::*, MemArg, ValType};
use wasmtime_component_util::{DiscriminantSize, FlagsSize};

const MAX_STRING_BYTE_LENGTH: u32 = 1 << 31;
const UTF16_TAG: u32 = 1 << 31;

/// This value is arbitrarily chosen and should be fine to change at any time,
/// it just seemed like a halfway reasonable starting point.
const INITIAL_FUEL: usize = 1_000;

struct Compiler<'a, 'b> {
    types: &'a ComponentTypesBuilder,
    module: &'b mut Module<'a>,
    result: FunctionId,

    /// The encoded WebAssembly function body so far, not including locals.
    code: Vec<u8>,

    /// Total number of locals generated so far.
    nlocals: u32,

    /// Locals partitioned by type which are not currently in use.
    free_locals: HashMap<ValType, Vec<u32>>,

    /// Metadata about all `unreachable` trap instructions in this function and
    /// what the trap represents. The offset within `self.code` is recorded as
    /// well.
    traps: Vec<(usize, Trap)>,

    /// A heuristic which is intended to limit the size of a generated function
    /// to a certain maximum to avoid generating arbitrarily large functions.
    ///
    /// This fuel counter is decremented each time `translate` is called and
    /// when fuel is entirely consumed further translations, if necessary, will
    /// be done through calls to other functions in the module. This is intended
    /// to be a heuristic to split up the main function into theoretically
    /// reusable portions.
    fuel: usize,

    /// Indicates whether an "enter call" should be emitted in the generated
    /// function with a call to `Resource{Enter,Exit}Call` at the beginning and
    /// end of the function for tracking of information related to borrowed
    /// resources.
    emit_resource_call: bool,
}

pub(super) fn compile(module: &mut Module<'_>, adapter: &AdapterData) {
    let lower_sig = module.types.signature(&adapter.lower, Context::Lower);
    let lift_sig = module.types.signature(&adapter.lift, Context::Lift);
    let ty = module
        .core_types
        .function(&lower_sig.params, &lower_sig.results);
    let result = module
        .funcs
        .push(Function::new(Some(adapter.name.clone()), ty));

    // If this type signature contains any borrowed resources then invocations
    // of enter/exit call for resource-related metadata tracking must be used.
    // It shouldn't matter whether the lower/lift signature is used here as both
    // should return the same answer.
    let emit_resource_call = module.types.contains_borrow_resource(&adapter.lower);
    assert_eq!(
        emit_resource_call,
        module.types.contains_borrow_resource(&adapter.lift)
    );

    Compiler {
        types: module.types,
        module,
        code: Vec::new(),
        nlocals: lower_sig.params.len() as u32,
        free_locals: HashMap::new(),
        traps: Vec::new(),
        result,
        fuel: INITIAL_FUEL,
        emit_resource_call,
    }
    .compile_adapter(adapter, &lower_sig, &lift_sig)
}

/// Compiles a helper function as specified by the `Helper` configuration.
///
/// This function is invoked when the translation process runs out of fuel for
/// some prior function which enqueues a helper to get translated later. This
/// translation function will perform one type translation as specified by
/// `Helper` which can either be in the stack or memory for each side.
pub(super) fn compile_helper(module: &mut Module<'_>, result: FunctionId, helper: Helper) {
    let mut nlocals = 0;
    let src_flat;
    let src = match helper.src.loc {
        // If the source is on the stack then it's specified in the parameters
        // to the function, so this creates the flattened representation and
        // then lists those as the locals with appropriate types for the source
        // values.
        HelperLocation::Stack => {
            src_flat = module
                .types
                .flatten_types(&helper.src.opts, usize::MAX, [helper.src.ty])
                .unwrap()
                .iter()
                .enumerate()
                .map(|(i, ty)| (i as u32, *ty))
                .collect::<Vec<_>>();
            nlocals += src_flat.len() as u32;
            Source::Stack(Stack {
                locals: &src_flat,
                opts: &helper.src.opts,
            })
        }
        // If the source is in memory then that's just propagated here as the
        // first local is the pointer to the source.
        HelperLocation::Memory => {
            nlocals += 1;
            Source::Memory(Memory {
                opts: &helper.src.opts,
                addr: TempLocal::new(0, helper.src.opts.ptr()),
                offset: 0,
            })
        }
    };
    let dst_flat;
    let dst = match helper.dst.loc {
        // This is the same as the stack-based source although `Destination` is
        // configured slightly differently.
        HelperLocation::Stack => {
            dst_flat = module
                .types
                .flatten_types(&helper.dst.opts, usize::MAX, [helper.dst.ty])
                .unwrap();
            Destination::Stack(&dst_flat, &helper.dst.opts)
        }
        // This is the same as a memory-based source but note that the address
        // of the destination is passed as the final parameter to the function.
        HelperLocation::Memory => {
            nlocals += 1;
            Destination::Memory(Memory {
                opts: &helper.dst.opts,
                addr: TempLocal::new(nlocals - 1, helper.dst.opts.ptr()),
                offset: 0,
            })
        }
    };
    let mut compiler = Compiler {
        types: module.types,
        module,
        code: Vec::new(),
        nlocals,
        free_locals: HashMap::new(),
        traps: Vec::new(),
        result,
        fuel: INITIAL_FUEL,
        // This is a helper function and only the top-level function is
        // responsible for emitting these intrinsic calls.
        emit_resource_call: false,
    };
    compiler.translate(&helper.src.ty, &src, &helper.dst.ty, &dst);
    compiler.finish();
}

/// Possible ways that a interface value is represented in the core wasm
/// canonical ABI.
enum Source<'a> {
    /// This value is stored on the "stack" in wasm locals.
    ///
    /// This could mean that it's inline from the parameters to the function or
    /// that after a function call the results were stored in locals and the
    /// locals are the inline results.
    Stack(Stack<'a>),

    /// This value is stored in linear memory described by the `Memory`
    /// structure.
    Memory(Memory<'a>),
}

/// Same as `Source` but for where values are translated into.
enum Destination<'a> {
    /// This value is destined for the WebAssembly stack which means that
    /// results are simply pushed as we go along.
    ///
    /// The types listed are the types that are expected to be on the stack at
    /// the end of translation.
    Stack(&'a [ValType], &'a Options),

    /// This value is to be placed in linear memory described by `Memory`.
    Memory(Memory<'a>),
}

struct Stack<'a> {
    /// The locals that comprise a particular value.
    ///
    /// The length of this list represents the flattened list of types that make
    /// up the component value. Each list has the index of the local being
    /// accessed as well as the type of the local itself.
    locals: &'a [(u32, ValType)],
    /// The lifting/lowering options for where this stack of values comes from
    opts: &'a Options,
}

/// Representation of where a value is going to be stored in linear memory.
struct Memory<'a> {
    /// The lifting/lowering options with memory configuration
    opts: &'a Options,
    /// The index of the local that contains the base address of where the
    /// storage is happening.
    addr: TempLocal,
    /// A "static" offset that will be baked into wasm instructions for where
    /// memory loads/stores happen.
    offset: u32,
}

impl Compiler<'_, '_> {
    fn compile_adapter(
        mut self,
        adapter: &AdapterData,
        lower_sig: &Signature,
        lift_sig: &Signature,
    ) {
        // Check the instance flags required for this trampoline.
        //
        // This inserts the initial check required by `canon_lower` that the
        // caller instance can be left and additionally checks the
        // flags on the callee if necessary whether it can be entered.
        self.trap_if_not_flag(adapter.lower.flags, FLAG_MAY_LEAVE, Trap::CannotLeave);
        if adapter.called_as_export {
            self.trap_if_not_flag(adapter.lift.flags, FLAG_MAY_ENTER, Trap::CannotEnter);
            self.set_flag(adapter.lift.flags, FLAG_MAY_ENTER, false);
        } else if self.module.debug {
            self.assert_not_flag(
                adapter.lift.flags,
                FLAG_MAY_ENTER,
                "may_enter should be unset",
            );
        }

        if self.emit_resource_call {
            let enter = self.module.import_resource_enter_call();
            self.instruction(Call(enter.as_u32()));
        }

        // Perform the translation of arguments. Note that `FLAG_MAY_LEAVE` is
        // cleared around this invocation for the callee as per the
        // `canon_lift` definition in the spec. Additionally note that the
        // precise ordering of traps here is not required since internal state
        // is not visible to either instance and a trap will "lock down" both
        // instances to no longer be visible. This means that we're free to
        // reorder lifts/lowers and flags and such as is necessary and
        // convenient here.
        //
        // TODO: if translation doesn't actually call any functions in either
        // instance then there's no need to set/clear the flag here and that can
        // be optimized away.
        self.set_flag(adapter.lift.flags, FLAG_MAY_LEAVE, false);
        let param_locals = lower_sig
            .params
            .iter()
            .enumerate()
            .map(|(i, ty)| (i as u32, *ty))
            .collect::<Vec<_>>();
        self.translate_params(adapter, &param_locals);
        self.set_flag(adapter.lift.flags, FLAG_MAY_LEAVE, true);

        // With all the arguments on the stack the actual target function is
        // now invoked. The core wasm results of the function are then placed
        // into locals for result translation afterwards.
        self.instruction(Call(adapter.callee.as_u32()));
        let mut result_locals = Vec::with_capacity(lift_sig.results.len());
        let mut temps = Vec::new();
        for ty in lift_sig.results.iter().rev() {
            let local = self.local_set_new_tmp(*ty);
            result_locals.push((local.idx, *ty));
            temps.push(local);
        }
        result_locals.reverse();

        // Like above during the translation of results the caller cannot be
        // left (as we might invoke things like `realloc`). Again the precise
        // order of everything doesn't matter since intermediate states cannot
        // be witnessed, hence the setting of flags here to encapsulate both
        // liftings and lowerings.
        //
        // TODO: like above the management of the `MAY_LEAVE` flag can probably
        // be elided here for "simple" results.
        self.set_flag(adapter.lower.flags, FLAG_MAY_LEAVE, false);
        self.translate_results(adapter, &param_locals, &result_locals);
        self.set_flag(adapter.lower.flags, FLAG_MAY_LEAVE, true);

        // And finally post-return state is handled here once all results/etc
        // are all translated.
        if let Some(func) = adapter.lift.post_return {
            for (result, _) in result_locals.iter() {
                self.instruction(LocalGet(*result));
            }
            self.instruction(Call(func.as_u32()));
        }
        if adapter.called_as_export {
            self.set_flag(adapter.lift.flags, FLAG_MAY_ENTER, true);
        }

        for tmp in temps {
            self.free_temp_local(tmp);
        }

        if self.emit_resource_call {
            let exit = self.module.import_resource_exit_call();
            self.instruction(Call(exit.as_u32()));
        }

        self.finish()
    }

    fn translate_params(&mut self, adapter: &AdapterData, param_locals: &[(u32, ValType)]) {
        let src_tys = self.types[adapter.lower.ty].params;
        let src_tys = self.types[src_tys]
            .types
            .iter()
            .copied()
            .collect::<Vec<_>>();
        let dst_tys = self.types[adapter.lift.ty].params;
        let dst_tys = self.types[dst_tys]
            .types
            .iter()
            .copied()
            .collect::<Vec<_>>();
        let lift_opts = &adapter.lift.options;
        let lower_opts = &adapter.lower.options;

        // TODO: handle subtyping
        assert_eq!(src_tys.len(), dst_tys.len());

        let src_flat =
            self.types
                .flatten_types(lower_opts, MAX_FLAT_PARAMS, src_tys.iter().copied());
        let dst_flat =
            self.types
                .flatten_types(lift_opts, MAX_FLAT_PARAMS, dst_tys.iter().copied());

        let src = if let Some(flat) = &src_flat {
            Source::Stack(Stack {
                locals: &param_locals[..flat.len()],
                opts: lower_opts,
            })
        } else {
            // If there are too many parameters then that means the parameters
            // are actually a tuple stored in linear memory addressed by the
            // first parameter local.
            let (addr, ty) = param_locals[0];
            assert_eq!(ty, lower_opts.ptr());
            let align = src_tys
                .iter()
                .map(|t| self.types.align(lower_opts, t))
                .max()
                .unwrap_or(1);
            Source::Memory(self.memory_operand(lower_opts, TempLocal::new(addr, ty), align))
        };

        let dst = if let Some(flat) = &dst_flat {
            Destination::Stack(flat, lift_opts)
        } else {
            // If there are too many parameters then space is allocated in the
            // destination module for the parameters via its `realloc` function.
            let abi = CanonicalAbiInfo::record(dst_tys.iter().map(|t| self.types.canonical_abi(t)));
            let (size, align) = if lift_opts.memory64 {
                (abi.size64, abi.align64)
            } else {
                (abi.size32, abi.align32)
            };
            let size = MallocSize::Const(size);
            Destination::Memory(self.malloc(lift_opts, size, align))
        };

        let srcs = src
            .record_field_srcs(self.types, src_tys.iter().copied())
            .zip(src_tys.iter());
        let dsts = dst
            .record_field_dsts(self.types, dst_tys.iter().copied())
            .zip(dst_tys.iter());
        for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
            self.translate(&src_ty, &src, &dst_ty, &dst);
        }

        // If the destination was linear memory instead of the stack then the
        // actual parameter that we're passing is the address of the values
        // stored, so ensure that's happening in the wasm body here.
        if let Destination::Memory(mem) = dst {
            self.instruction(LocalGet(mem.addr.idx));
            self.free_temp_local(mem.addr);
        }
    }

    fn translate_results(
        &mut self,
        adapter: &AdapterData,
        param_locals: &[(u32, ValType)],
        result_locals: &[(u32, ValType)],
    ) {
        let src_tys = self.types[adapter.lift.ty].results;
        let src_tys = self.types[src_tys]
            .types
            .iter()
            .copied()
            .collect::<Vec<_>>();
        let dst_tys = self.types[adapter.lower.ty].results;
        let dst_tys = self.types[dst_tys]
            .types
            .iter()
            .copied()
            .collect::<Vec<_>>();
        let lift_opts = &adapter.lift.options;
        let lower_opts = &adapter.lower.options;

        let src_flat =
            self.types
                .flatten_types(lift_opts, MAX_FLAT_RESULTS, src_tys.iter().copied());
        let dst_flat =
            self.types
                .flatten_types(lower_opts, MAX_FLAT_RESULTS, dst_tys.iter().copied());

        let src = if src_flat.is_some() {
            Source::Stack(Stack {
                locals: result_locals,
                opts: lift_opts,
            })
        } else {
            // The original results to read from in this case come from the
            // return value of the function itself. The imported function will
            // return a linear memory address at which the values can be read
            // from.
            let align = src_tys
                .iter()
                .map(|t| self.types.align(lift_opts, t))
                .max()
                .unwrap_or(1);
            assert_eq!(result_locals.len(), 1);
            let (addr, ty) = result_locals[0];
            assert_eq!(ty, lift_opts.ptr());
            Source::Memory(self.memory_operand(lift_opts, TempLocal::new(addr, ty), align))
        };

        let dst = if let Some(flat) = &dst_flat {
            Destination::Stack(flat, lower_opts)
        } else {
            // This is slightly different than `translate_params` where the
            // return pointer was provided by the caller of this function
            // meaning the last parameter local is a pointer into linear memory.
            let align = dst_tys
                .iter()
                .map(|t| self.types.align(lower_opts, t))
                .max()
                .unwrap_or(1);
            let (addr, ty) = *param_locals.last().expect("no retptr");
            assert_eq!(ty, lower_opts.ptr());
            Destination::Memory(self.memory_operand(lower_opts, TempLocal::new(addr, ty), align))
        };

        let srcs = src
            .record_field_srcs(self.types, src_tys.iter().copied())
            .zip(src_tys.iter());
        let dsts = dst
            .record_field_dsts(self.types, dst_tys.iter().copied())
            .zip(dst_tys.iter());
        for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
            self.translate(&src_ty, &src, &dst_ty, &dst);
        }
    }

    fn translate(
        &mut self,
        src_ty: &InterfaceType,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        if let Source::Memory(mem) = src {
            self.assert_aligned(src_ty, mem);
        }
        if let Destination::Memory(mem) = dst {
            self.assert_aligned(dst_ty, mem);
        }

        // Calculate a cost heuristic for what the translation of this specific
        // layer of the type is going to incur. The purpose of this cost is that
        // we'll deduct it from `self.fuel` and if no fuel is remaining then
        // translation is outlined into a separate function rather than being
        // translated into this function.
        //
        // The general goal is to avoid creating an exponentially sized function
        // for a linearly sized input (the type section). By outlining helper
        // functions there will ideally be a constant set of helper functions
        // per type (to accommodate in-memory or on-stack transfers as well as
        // src/dst options) which means that each function is at most a certain
        // size and we have a linear number of functions which should guarantee
        // an overall linear size of the output.
        //
        // To implement this the current heuristic is that each layer of
        // translating a type has a cost associated with it and this cost is
        // accounted for in `self.fuel`. Some conversions are considered free as
        // they generate basically as much code as the `call` to the translation
        // function while other are considered proportionally expensive to the
        // size of the type. The hope is that some upper layers are of a type's
        // translation are all inlined into one function but bottom layers end
        // up getting outlined to separate functions. Theoretically, again this
        // is built on hopes and dreams, the outlining can be shared amongst
        // tightly-intertwined type hierarchies which will reduce the size of
        // the output module due to the helpers being used.
        //
        // This heuristic of how to split functions has changed a few times in
        // the past and this isn't necessarily guaranteed to be the final
        // iteration.
        let cost = match src_ty {
            // These types are all quite simple to load/store and equate to
            // basically the same cost of the `call` instruction to call an
            // out-of-line translation function, so give them 0 cost.
            InterfaceType::Bool
            | InterfaceType::U8
            | InterfaceType::S8
            | InterfaceType::U16
            | InterfaceType::S16
            | InterfaceType::U32
            | InterfaceType::S32
            | InterfaceType::U64
            | InterfaceType::S64
            | InterfaceType::Float32
            | InterfaceType::Float64 => 0,

            // This has a small amount of validation associated with it, so
            // give it a cost of 1.
            InterfaceType::Char => 1,

            // This has a fair bit of code behind it depending on the
            // strings/encodings in play, so arbitrarily assign it this cost.
            InterfaceType::String => 40,

            // Iteration of a loop is along the lines of the cost of a string
            // so give it the same cost
            InterfaceType::List(_) => 40,

            InterfaceType::Flags(i) => {
                let count = self.module.types[*i].names.len();
                match FlagsSize::from_count(count) {
                    FlagsSize::Size0 => 0,
                    FlagsSize::Size1 | FlagsSize::Size2 => 1,
                    FlagsSize::Size4Plus(n) => n.into(),
                }
            }

            InterfaceType::Record(i) => self.types[*i].fields.len(),
            InterfaceType::Tuple(i) => self.types[*i].types.len(),
            InterfaceType::Variant(i) => self.types[*i].cases.len(),
            InterfaceType::Enum(i) => self.types[*i].names.len(),

            // 2 cases to consider for each of these variants.
            InterfaceType::Option(_) | InterfaceType::Result(_) => 2,

            // TODO(#6696) - something nonzero, is 1 right?
            InterfaceType::Own(_) | InterfaceType::Borrow(_) => 1,
        };

        match self.fuel.checked_sub(cost) {
            // This function has enough fuel to perform the layer of translation
            // necessary for this type, so the fuel is updated in-place and
            // translation continues. Note that the recursion here is bounded by
            // the static recursion limit for all interface types as imposed
            // during the translation phase.
            Some(n) => {
                self.fuel = n;
                match src_ty {
                    InterfaceType::Bool => self.translate_bool(src, dst_ty, dst),
                    InterfaceType::U8 => self.translate_u8(src, dst_ty, dst),
                    InterfaceType::S8 => self.translate_s8(src, dst_ty, dst),
                    InterfaceType::U16 => self.translate_u16(src, dst_ty, dst),
                    InterfaceType::S16 => self.translate_s16(src, dst_ty, dst),
                    InterfaceType::U32 => self.translate_u32(src, dst_ty, dst),
                    InterfaceType::S32 => self.translate_s32(src, dst_ty, dst),
                    InterfaceType::U64 => self.translate_u64(src, dst_ty, dst),
                    InterfaceType::S64 => self.translate_s64(src, dst_ty, dst),
                    InterfaceType::Float32 => self.translate_f32(src, dst_ty, dst),
                    InterfaceType::Float64 => self.translate_f64(src, dst_ty, dst),
                    InterfaceType::Char => self.translate_char(src, dst_ty, dst),
                    InterfaceType::String => self.translate_string(src, dst_ty, dst),
                    InterfaceType::List(t) => self.translate_list(*t, src, dst_ty, dst),
                    InterfaceType::Record(t) => self.translate_record(*t, src, dst_ty, dst),
                    InterfaceType::Flags(f) => self.translate_flags(*f, src, dst_ty, dst),
                    InterfaceType::Tuple(t) => self.translate_tuple(*t, src, dst_ty, dst),
                    InterfaceType::Variant(v) => self.translate_variant(*v, src, dst_ty, dst),
                    InterfaceType::Enum(t) => self.translate_enum(*t, src, dst_ty, dst),
                    InterfaceType::Option(t) => self.translate_option(*t, src, dst_ty, dst),
                    InterfaceType::Result(t) => self.translate_result(*t, src, dst_ty, dst),
                    InterfaceType::Own(t) => self.translate_own(*t, src, dst_ty, dst),
                    InterfaceType::Borrow(t) => self.translate_borrow(*t, src, dst_ty, dst),
                }
            }

            // This function does not have enough fuel left to perform this
            // layer of translation so the translation is deferred to a helper
            // function. The actual translation here is then done by marshalling
            // the src/dst into the function we're calling and then processing
            // the results.
            None => {
                let src_loc = match src {
                    // If the source is on the stack then `stack_get` is used to
                    // convert everything to the appropriate flat representation
                    // for the source type.
                    Source::Stack(stack) => {
                        for (i, ty) in stack
                            .opts
                            .flat_types(src_ty, self.types)
                            .unwrap()
                            .iter()
                            .enumerate()
                        {
                            let stack = stack.slice(i..i + 1);
                            self.stack_get(&stack, (*ty).into());
                        }
                        HelperLocation::Stack
                    }
                    // If the source is in memory then the pointer is passed
                    // through, but note that the offset must be factored in
                    // here since the translation function will start from
                    // offset 0.
                    Source::Memory(mem) => {
                        self.push_mem_addr(mem);
                        HelperLocation::Memory
                    }
                };
                let dst_loc = match dst {
                    Destination::Stack(..) => HelperLocation::Stack,
                    Destination::Memory(mem) => {
                        self.push_mem_addr(mem);
                        HelperLocation::Memory
                    }
                };
                // Generate a `FunctionId` corresponding to the `Helper`
                // configuration that is necessary here. This will ideally be a
                // "cache hit" and use a preexisting helper which represents
                // outlining what would otherwise be duplicate code within a
                // function to one function.
                let helper = self.module.translate_helper(Helper {
                    src: HelperType {
                        ty: *src_ty,
                        opts: *src.opts(),
                        loc: src_loc,
                    },
                    dst: HelperType {
                        ty: *dst_ty,
                        opts: *dst.opts(),
                        loc: dst_loc,
                    },
                });
                // Emit a `call` instruction which will get "relocated" to a
                // function index once translation has completely finished.
                self.flush_code();
                self.module.funcs[self.result].body.push(Body::Call(helper));

                // If the destination of the translation was on the stack then
                // the types on the stack need to be optionally converted to
                // different types (e.g. if the result here is part of a variant
                // somewhere else).
                //
                // This translation happens inline here by popping the results
                // into new locals and then using those locals to do a
                // `stack_set`.
                if let Destination::Stack(tys, opts) = dst {
                    let flat = self
                        .types
                        .flatten_types(opts, usize::MAX, [*dst_ty])
                        .unwrap();
                    assert_eq!(flat.len(), tys.len());
                    let locals = flat
                        .iter()
                        .rev()
                        .map(|ty| self.local_set_new_tmp(*ty))
                        .collect::<Vec<_>>();
                    for (ty, local) in tys.iter().zip(locals.into_iter().rev()) {
                        self.instruction(LocalGet(local.idx));
                        self.stack_set(std::slice::from_ref(ty), local.ty);
                        self.free_temp_local(local);
                    }
                }
            }
        }
    }

    fn push_mem_addr(&mut self, mem: &Memory<'_>) {
        self.instruction(LocalGet(mem.addr.idx));
        if mem.offset != 0 {
            self.ptr_uconst(mem.opts, mem.offset);
            self.ptr_add(mem.opts);
        }
    }

    fn translate_bool(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::Bool));
        self.push_dst_addr(dst);

        // Booleans are canonicalized to 0 or 1 as they pass through the
        // component boundary, so use a `select` instruction to do so.
        self.instruction(I32Const(1));
        self.instruction(I32Const(0));
        match src {
            Source::Memory(mem) => self.i32_load8u(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I32),
        }
        self.instruction(Select);

        match dst {
            Destination::Memory(mem) => self.i32_store8(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_u8(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::U8));
        self.convert_u8_mask(src, dst, 0xff);
    }

    fn convert_u8_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u8) {
        self.push_dst_addr(dst);
        let mut needs_mask = true;
        match src {
            Source::Memory(mem) => {
                self.i32_load8u(mem);
                needs_mask = mask != 0xff;
            }
            Source::Stack(stack) => {
                self.stack_get(stack, ValType::I32);
            }
        }
        if needs_mask {
            self.instruction(I32Const(i32::from(mask)));
            self.instruction(I32And);
        }
        match dst {
            Destination::Memory(mem) => self.i32_store8(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_s8(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::S8));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i32_load8s(mem),
            Source::Stack(stack) => {
                self.stack_get(stack, ValType::I32);
                self.instruction(I32Extend8S);
            }
        }
        match dst {
            Destination::Memory(mem) => self.i32_store8(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_u16(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::U16));
        self.convert_u16_mask(src, dst, 0xffff);
    }

    fn convert_u16_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u16) {
        self.push_dst_addr(dst);
        let mut needs_mask = true;
        match src {
            Source::Memory(mem) => {
                self.i32_load16u(mem);
                needs_mask = mask != 0xffff;
            }
            Source::Stack(stack) => {
                self.stack_get(stack, ValType::I32);
            }
        }
        if needs_mask {
            self.instruction(I32Const(i32::from(mask)));
            self.instruction(I32And);
        }
        match dst {
            Destination::Memory(mem) => self.i32_store16(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_s16(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::S16));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i32_load16s(mem),
            Source::Stack(stack) => {
                self.stack_get(stack, ValType::I32);
                self.instruction(I32Extend16S);
            }
        }
        match dst {
            Destination::Memory(mem) => self.i32_store16(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_u32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::U32));
        self.convert_u32_mask(src, dst, 0xffffffff)
    }

    fn convert_u32_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u32) {
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i32_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I32),
        }
        if mask != 0xffffffff {
            self.instruction(I32Const(mask as i32));
            self.instruction(I32And);
        }
        match dst {
            Destination::Memory(mem) => self.i32_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_s32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::S32));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i32_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I32),
        }
        match dst {
            Destination::Memory(mem) => self.i32_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn translate_u64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::U64));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i64_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I64),
        }
        match dst {
            Destination::Memory(mem) => self.i64_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I64),
        }
    }

    fn translate_s64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::S64));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i64_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I64),
        }
        match dst {
            Destination::Memory(mem) => self.i64_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I64),
        }
    }

    fn translate_f32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::Float32));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.f32_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::F32),
        }
        match dst {
            Destination::Memory(mem) => self.f32_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::F32),
        }
    }

    fn translate_f64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        // TODO: subtyping
        assert!(matches!(dst_ty, InterfaceType::Float64));
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.f64_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::F64),
        }
        match dst {
            Destination::Memory(mem) => self.f64_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::F64),
        }
    }

    fn translate_char(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        assert!(matches!(dst_ty, InterfaceType::Char));
        match src {
            Source::Memory(mem) => self.i32_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I32),
        }
        let local = self.local_set_new_tmp(ValType::I32);

        // This sequence is copied from the output of LLVM for:
        //
        //      pub extern "C" fn foo(x: u32) -> char {
        //          char::try_from(x)
        //              .unwrap_or_else(|_| std::arch::wasm32::unreachable())
        //      }
        //
        // Apparently this does what's required by the canonical ABI:
        //
        //    def i32_to_char(opts, i):
        //      trap_if(i >= 0x110000)
        //      trap_if(0xD800 <= i <= 0xDFFF)
        //      return chr(i)
        //
        // ... but I don't know how it works other than "well I trust LLVM"
        self.instruction(Block(BlockType::Empty));
        self.instruction(Block(BlockType::Empty));
        self.instruction(LocalGet(local.idx));
        self.instruction(I32Const(0xd800));
        self.instruction(I32Xor);
        self.instruction(I32Const(-0x110000));
        self.instruction(I32Add);
        self.instruction(I32Const(-0x10f800));
        self.instruction(I32LtU);
        self.instruction(BrIf(0));
        self.instruction(LocalGet(local.idx));
        self.instruction(I32Const(0x110000));
        self.instruction(I32Ne);
        self.instruction(BrIf(1));
        self.instruction(End);
        self.trap(Trap::InvalidChar);
        self.instruction(End);

        self.push_dst_addr(dst);
        self.instruction(LocalGet(local.idx));
        match dst {
            Destination::Memory(mem) => {
                self.i32_store(mem);
            }
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }

        self.free_temp_local(local);
    }

    fn translate_string(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
        assert!(matches!(dst_ty, InterfaceType::String));
        let src_opts = src.opts();
        let dst_opts = dst.opts();

        // Load the pointer/length of this string into temporary locals. These
        // will be referenced a good deal so this just makes it easier to deal
        // with them consistently below rather than trying to reload from memory
        // for example.
        match src {
            Source::Stack(s) => {
                assert_eq!(s.locals.len(), 2);
                self.stack_get(&s.slice(0..1), src_opts.ptr());
                self.stack_get(&s.slice(1..2), src_opts.ptr());
            }
            Source::Memory(mem) => {
                self.ptr_load(mem);
                self.ptr_load(&mem.bump(src_opts.ptr_size().into()));
            }
        }
        let src_len = self.local_set_new_tmp(src_opts.ptr());
        let src_ptr = self.local_set_new_tmp(src_opts.ptr());
        let src_str = WasmString {
            ptr: src_ptr,
            len: src_len,
            opts: src_opts,
        };

        let dst_str = match src_opts.string_encoding {
            StringEncoding::Utf8 => match dst_opts.string_encoding {
                StringEncoding::Utf8 => self.string_copy(&src_str, FE::Utf8, dst_opts, FE::Utf8),
                StringEncoding::Utf16 => self.string_utf8_to_utf16(&src_str, dst_opts),
                StringEncoding::CompactUtf16 => {
                    self.string_to_compact(&src_str, FE::Utf8, dst_opts)
                }
            },

            StringEncoding::Utf16 => {
                self.verify_aligned(src_opts, src_str.ptr.idx, 2);
                match dst_opts.string_encoding {
                    StringEncoding::Utf8 => {
                        self.string_deflate_to_utf8(&src_str, FE::Utf16, dst_opts)
                    }
                    StringEncoding::Utf16 => {
                        self.string_copy(&src_str, FE::Utf16, dst_opts, FE::Utf16)
                    }
                    StringEncoding::CompactUtf16 => {
                        self.string_to_compact(&src_str, FE::Utf16, dst_opts)
                    }
                }
            }

            StringEncoding::CompactUtf16 => {
                self.verify_aligned(src_opts, src_str.ptr.idx, 2);

                // Test the tag big to see if this is a utf16 or a latin1 string
                // at runtime...
                self.instruction(LocalGet(src_str.len.idx));
                self.ptr_uconst(src_opts, UTF16_TAG);
                self.ptr_and(src_opts);
                self.ptr_if(src_opts, BlockType::Empty);

                // In the utf16 block unset the upper bit from the length local
                // so further calculations have the right value. Afterwards the
                // string transcode proceeds assuming utf16.
                self.instruction(LocalGet(src_str.len.idx));
                self.ptr_uconst(src_opts, UTF16_TAG);
                self.ptr_xor(src_opts);
                self.instruction(LocalSet(src_str.len.idx));
                let s1 = match dst_opts.string_encoding {
                    StringEncoding::Utf8 => {
                        self.string_deflate_to_utf8(&src_str, FE::Utf16, dst_opts)
                    }
                    StringEncoding::Utf16 => {
                        self.string_copy(&src_str, FE::Utf16, dst_opts, FE::Utf16)
                    }
                    StringEncoding::CompactUtf16 => {
                        self.string_compact_utf16_to_compact(&src_str, dst_opts)
                    }
                };

                self.instruction(Else);

                // In the latin1 block the `src_len` local is already the number
                // of code units, so the string transcoding is all that needs to
                // happen.
                let s2 = match dst_opts.string_encoding {
                    StringEncoding::Utf16 => {
                        self.string_copy(&src_str, FE::Latin1, dst_opts, FE::Utf16)
                    }
                    StringEncoding::Utf8 => {
                        self.string_deflate_to_utf8(&src_str, FE::Latin1, dst_opts)
                    }
                    StringEncoding::CompactUtf16 => {
                        self.string_copy(&src_str, FE::Latin1, dst_opts, FE::Latin1)
                    }
                };
                // Set our `s2` generated locals to the `s2` generated locals
                // as the resulting pointer of this transcode.
                self.instruction(LocalGet(s2.ptr.idx));
                self.instruction(LocalSet(s1.ptr.idx));
                self.instruction(LocalGet(s2.len.idx));
                self.instruction(LocalSet(s1.len.idx));
                self.instruction(End);
                self.free_temp_local(s2.ptr);
                self.free_temp_local(s2.len);
                s1
            }
        };

        // Store the ptr/length in the desired destination
        match dst {
            Destination::Stack(s, _) => {
                self.instruction(LocalGet(dst_str.ptr.idx));
                self.stack_set(&s[..1], dst_opts.ptr());
                self.instruction(LocalGet(dst_str.len.idx));
                self.stack_set(&s[1..], dst_opts.ptr());
            }
            Destination::Memory(mem) => {
                self.instruction(LocalGet(mem.addr.idx));
                self.instruction(LocalGet(dst_str.ptr.idx));
                self.ptr_store(mem);
                self.instruction(LocalGet(mem.addr.idx));
                self.instruction(LocalGet(dst_str.len.idx));
                self.ptr_store(&mem.bump(dst_opts.ptr_size().into()));
            }
        }

        self.free_temp_local(src_str.ptr);
        self.free_temp_local(src_str.len);
        self.free_temp_local(dst_str.ptr);
        self.free_temp_local(dst_str.len);
    }

    // Corresponding function for `store_string_copy` in the spec.
    //
    // This performs a transcoding of the string with a one-pass copy from
    // the `src` encoding to the `dst` encoding. This is only possible for
    // fixed encodings where the first allocation is guaranteed to be an
    // appropriate fit so it's not suitable for all encodings.
    //
    // Imported host transcoding functions here take the src/dst pointers as
    // well as the number of code units in the source (which always matches
    // the number of code units in the destination). There is no return
    // value from the transcode function since the encoding should always
    // work on the first pass.
    fn string_copy<'a>(
        &mut self,
        src: &WasmString<'_>,
        src_enc: FE,
        dst_opts: &'a Options,
        dst_enc: FE,
    ) -> WasmString<'a> {
        assert!(dst_enc.width() >= src_enc.width());
        self.validate_string_length(src, dst_enc);

        // Calculate the source byte length given the size of each code
        // unit. Note that this shouldn't overflow given
        // `validate_string_length` above.
        let mut src_byte_len_tmp = None;
        let src_byte_len = if src_enc.width() == 1 {
            src.len.idx
        } else {
            assert_eq!(src_enc.width(), 2);
            self.instruction(LocalGet(src.len.idx));
            self.ptr_uconst(src.opts, 1);
            self.ptr_shl(src.opts);
            let tmp = self.local_set_new_tmp(src.opts.ptr());
            let ret = tmp.idx;
            src_byte_len_tmp = Some(tmp);
            ret
        };

        // Convert the source code units length to the destination byte
        // length type.
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
        if dst_enc.width() > 1 {
            assert_eq!(dst_enc.width(), 2);
            self.ptr_uconst(dst_opts, 1);
            self.ptr_shl(dst_opts);
        }
        let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());

        // Allocate space in the destination using the calculated byte
        // length.
        let dst = {
            let dst_mem = self.malloc(
                dst_opts,
                MallocSize::Local(dst_byte_len.idx),
                dst_enc.width().into(),
            );
            WasmString {
                ptr: dst_mem.addr,
                len: dst_len,
                opts: dst_opts,
            }
        };

        // Validate that `src_len + src_ptr` and
        // `dst_mem.addr_local + dst_byte_len` are both in-bounds. This
        // is done by loading the last byte of the string and if that
        // doesn't trap then it's known valid.
        self.validate_string_inbounds(src, src_byte_len);
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        // If the validations pass then the host `transcode` intrinsic
        // is invoked. This will either raise a trap or otherwise succeed
        // in which case we're done.
        let op = if src_enc == dst_enc {
            Transcode::Copy(src_enc)
        } else {
            assert_eq!(src_enc, FE::Latin1);
            assert_eq!(dst_enc, FE::Utf16);
            Transcode::Latin1ToUtf16
        };
        let transcode = self.transcoder(src, &dst, op);
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(Call(transcode.as_u32()));

        self.free_temp_local(dst_byte_len);
        if let Some(tmp) = src_byte_len_tmp {
            self.free_temp_local(tmp);
        }

        dst
    }
    // Corresponding function for `store_string_to_utf8` in the spec.
    //
    // This translation works by possibly performing a number of
    // reallocations. First a buffer of size input-code-units is used to try
    // to get the transcoding correct on the first try. If that fails the
    // maximum worst-case size is used and then that is resized down if it's
    // too large.
    //
    // The host transcoding function imported here will receive src ptr/len
    // and dst ptr/len and return how many code units were consumed on both
    // sides. The amount of code units consumed in the source dictates which
    // branches are taken in this conversion.
    fn string_deflate_to_utf8<'a>(
        &mut self,
        src: &WasmString<'_>,
        src_enc: FE,
        dst_opts: &'a Options,
    ) -> WasmString<'a> {
        self.validate_string_length(src, src_enc);

        // Optimistically assume that the code unit length of the source is
        // all that's needed in the destination. Perform that allocation
        // here and proceed to transcoding below.
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
        let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());

        let dst = {
            let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 1);
            WasmString {
                ptr: dst_mem.addr,
                len: dst_len,
                opts: dst_opts,
            }
        };

        // Ensure buffers are all in-bounds
        let mut src_byte_len_tmp = None;
        let src_byte_len = match src_enc {
            FE::Latin1 => src.len.idx,
            FE::Utf16 => {
                self.instruction(LocalGet(src.len.idx));
                self.ptr_uconst(src.opts, 1);
                self.ptr_shl(src.opts);
                let tmp = self.local_set_new_tmp(src.opts.ptr());
                let ret = tmp.idx;
                src_byte_len_tmp = Some(tmp);
                ret
            }
            FE::Utf8 => unreachable!(),
        };
        self.validate_string_inbounds(src, src_byte_len);
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        // Perform the initial transcode
        let op = match src_enc {
            FE::Latin1 => Transcode::Latin1ToUtf8,
            FE::Utf16 => Transcode::Utf16ToUtf8,
            FE::Utf8 => unreachable!(),
        };
        let transcode = self.transcoder(src, &dst, op);
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(LocalGet(dst_byte_len.idx));
        self.instruction(Call(transcode.as_u32()));
        self.instruction(LocalSet(dst.len.idx));
        let src_len_tmp = self.local_set_new_tmp(src.opts.ptr());

        // Test if the source was entirely transcoded by comparing
        // `src_len_tmp`, the number of code units transcoded from the
        // source, with `src_len`, the original number of code units.
        self.instruction(LocalGet(src_len_tmp.idx));
        self.instruction(LocalGet(src.len.idx));
        self.ptr_ne(src.opts);
        self.instruction(If(BlockType::Empty));

        // Here a worst-case reallocation is performed to grow `dst_mem`.
        // In-line a check is also performed that the worst-case byte size
        // fits within the maximum size of strings.
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 1); // align
        let factor = match src_enc {
            FE::Latin1 => 2,
            FE::Utf16 => 3,
            _ => unreachable!(),
        };
        self.validate_string_length_u8(src, factor);
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        self.ptr_uconst(dst_opts, factor.into());
        self.ptr_mul(dst_opts);
        self.instruction(LocalTee(dst_byte_len.idx));
        self.instruction(Call(dst_opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));

        // Verify that the destination is still in-bounds
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        // Perform another round of transcoding that should be guaranteed
        // to succeed. Note that all the parameters here are offset by the
        // results of the first transcoding to only perform the remaining
        // transcode on the final units.
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src_len_tmp.idx));
        if let FE::Utf16 = src_enc {
            self.ptr_uconst(src.opts, 1);
            self.ptr_shl(src.opts);
        }
        self.ptr_add(src.opts);
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(src_len_tmp.idx));
        self.ptr_sub(src.opts);
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_add(dst.opts);
        self.instruction(LocalGet(dst_byte_len.idx));
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_sub(dst.opts);
        self.instruction(Call(transcode.as_u32()));

        // Add the second result, the amount of destination units encoded,
        // to `dst_len` so it's an accurate reflection of the final size of
        // the destination buffer.
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_add(dst.opts);
        self.instruction(LocalSet(dst.len.idx));

        // In debug mode verify the first result consumed the entire string,
        // otherwise simply discard it.
        if self.module.debug {
            self.instruction(LocalGet(src.len.idx));
            self.instruction(LocalGet(src_len_tmp.idx));
            self.ptr_sub(src.opts);
            self.ptr_ne(src.opts);
            self.instruction(If(BlockType::Empty));
            self.trap(Trap::AssertFailed("should have finished encoding"));
            self.instruction(End);
        } else {
            self.instruction(Drop);
        }

        // Perform a downsizing if the worst-case size was too large
        self.instruction(LocalGet(dst.len.idx));
        self.instruction(LocalGet(dst_byte_len.idx));
        self.ptr_ne(dst.opts);
        self.instruction(If(BlockType::Empty));
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 1); // align
        self.instruction(LocalGet(dst.len.idx)); // new_size
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));
        self.instruction(End);

        // If the first transcode was enough then assert that the returned
        // amount of destination items written equals the byte size.
        if self.module.debug {
            self.instruction(Else);

            self.instruction(LocalGet(dst.len.idx));
            self.instruction(LocalGet(dst_byte_len.idx));
            self.ptr_ne(dst_opts);
            self.instruction(If(BlockType::Empty));
            self.trap(Trap::AssertFailed("should have finished encoding"));
            self.instruction(End);
        }

        self.instruction(End); // end of "first transcode not enough"

        self.free_temp_local(src_len_tmp);
        self.free_temp_local(dst_byte_len);
        if let Some(tmp) = src_byte_len_tmp {
            self.free_temp_local(tmp);
        }

        dst
    }

    // Corresponds to the `store_utf8_to_utf16` function in the spec.
    //
    // When converting utf-8 to utf-16 a pessimistic allocation is
    // done which is twice the byte length of the utf-8 string.
    // The host then transcodes and returns how many code units were
    // actually used during the transcoding and if it's beneath the
    // pessimistic maximum then the buffer is reallocated down to
    // a smaller amount.
    //
    // The host-imported transcoding function takes the src/dst pointer as
    // well as the code unit size of both the source and destination. The
    // destination should always be big enough to hold the result of the
    // transcode and so the result of the host function is how many code
    // units were written to the destination.
    fn string_utf8_to_utf16<'a>(
        &mut self,
        src: &WasmString<'_>,
        dst_opts: &'a Options,
    ) -> WasmString<'a> {
        self.validate_string_length(src, FE::Utf16);
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
        self.ptr_uconst(dst_opts, 1);
        self.ptr_shl(dst_opts);
        let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
        let dst = {
            let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
            WasmString {
                ptr: dst_mem.addr,
                len: dst_len,
                opts: dst_opts,
            }
        };

        self.validate_string_inbounds(src, src.len.idx);
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        let transcode = self.transcoder(src, &dst, Transcode::Utf8ToUtf16);
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(Call(transcode.as_u32()));
        self.instruction(LocalSet(dst.len.idx));

        // If the number of code units returned by transcode is not
        // equal to the original number of code units then
        // the buffer must be shrunk.
        //
        // Note that the byte length of the final allocation we
        // want is twice the code unit length returned by the
        // transcoding function.
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_ne(dst_opts);
        self.instruction(If(BlockType::Empty));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(LocalGet(dst_byte_len.idx));
        self.ptr_uconst(dst.opts, 2);
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_uconst(dst.opts, 1);
        self.ptr_shl(dst.opts);
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));
        self.instruction(End); // end of shrink-to-fit

        self.free_temp_local(dst_byte_len);

        dst
    }

    // Corresponds to `store_probably_utf16_to_latin1_or_utf16` in the spec.
    //
    // This will try to transcode the input utf16 string to utf16 in the
    // destination. If utf16 isn't needed though and latin1 could be used
    // then that's used instead and a reallocation to downsize occurs
    // afterwards.
    //
    // The host transcode function here will take the src/dst pointers as
    // well as src length. The destination byte length is twice the src code
    // unit length. The return value is the tagged length of the returned
    // string. If the upper bit is set then utf16 was used and the
    // conversion is done. If the upper bit is not set then latin1 was used
    // and a downsizing needs to happen.
    fn string_compact_utf16_to_compact<'a>(
        &mut self,
        src: &WasmString<'_>,
        dst_opts: &'a Options,
    ) -> WasmString<'a> {
        self.validate_string_length(src, FE::Utf16);
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
        self.ptr_uconst(dst_opts, 1);
        self.ptr_shl(dst_opts);
        let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
        let dst = {
            let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
            WasmString {
                ptr: dst_mem.addr,
                len: dst_len,
                opts: dst_opts,
            }
        };

        self.convert_src_len_to_dst(dst_byte_len.idx, dst.opts.ptr(), src.opts.ptr());
        let src_byte_len = self.local_set_new_tmp(src.opts.ptr());

        self.validate_string_inbounds(src, src_byte_len.idx);
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        let transcode = self.transcoder(src, &dst, Transcode::Utf16ToCompactProbablyUtf16);
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(Call(transcode.as_u32()));
        self.instruction(LocalSet(dst.len.idx));

        // Assert that the untagged code unit length is the same as the
        // source code unit length.
        if self.module.debug {
            self.instruction(LocalGet(dst.len.idx));
            self.ptr_uconst(dst.opts, !UTF16_TAG);
            self.ptr_and(dst.opts);
            self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
            self.ptr_ne(dst.opts);
            self.instruction(If(BlockType::Empty));
            self.trap(Trap::AssertFailed("expected equal code units"));
            self.instruction(End);
        }

        // If the UTF16_TAG is set then utf16 was used and the destination
        // should be appropriately sized. Bail out of the "is this string
        // empty" block and fall through otherwise to resizing.
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_uconst(dst.opts, UTF16_TAG);
        self.ptr_and(dst.opts);
        self.ptr_br_if(dst.opts, 0);

        // Here `realloc` is used to downsize the string
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 2); // align
        self.instruction(LocalGet(dst.len.idx)); // new_size
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));

        self.free_temp_local(dst_byte_len);
        self.free_temp_local(src_byte_len);

        dst
    }

    // Corresponds to `store_string_to_latin1_or_utf16` in the spec.
    //
    // This will attempt a first pass of transcoding to latin1 and on
    // failure a larger buffer is allocated for utf16 and then utf16 is
    // encoded in-place into the buffer. After either latin1 or utf16 the
    // buffer is then resized to fit the final string allocation.
    fn string_to_compact<'a>(
        &mut self,
        src: &WasmString<'_>,
        src_enc: FE,
        dst_opts: &'a Options,
    ) -> WasmString<'a> {
        self.validate_string_length(src, src_enc);
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
        let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
        let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
        let dst = {
            let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
            WasmString {
                ptr: dst_mem.addr,
                len: dst_len,
                opts: dst_opts,
            }
        };

        self.validate_string_inbounds(src, src.len.idx);
        self.validate_string_inbounds(&dst, dst_byte_len.idx);

        // Perform the initial latin1 transcode. This returns the number of
        // source code units consumed and the number of destination code
        // units (bytes) written.
        let (latin1, utf16) = match src_enc {
            FE::Utf8 => (Transcode::Utf8ToLatin1, Transcode::Utf8ToCompactUtf16),
            FE::Utf16 => (Transcode::Utf16ToLatin1, Transcode::Utf16ToCompactUtf16),
            FE::Latin1 => unreachable!(),
        };
        let transcode_latin1 = self.transcoder(src, &dst, latin1);
        let transcode_utf16 = self.transcoder(src, &dst, utf16);
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(dst.ptr.idx));
        self.instruction(Call(transcode_latin1.as_u32()));
        self.instruction(LocalSet(dst.len.idx));
        let src_len_tmp = self.local_set_new_tmp(src.opts.ptr());

        // If the source was entirely consumed then the transcode completed
        // and all that's necessary is to optionally shrink the buffer.
        self.instruction(LocalGet(src_len_tmp.idx));
        self.instruction(LocalGet(src.len.idx));
        self.ptr_eq(src.opts);
        self.instruction(If(BlockType::Empty)); // if latin1-or-utf16 block

        // Test if the original byte length of the allocation is the same as
        // the number of written bytes, and if not then shrink the buffer
        // with a call to `realloc`.
        self.instruction(LocalGet(dst_byte_len.idx));
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_ne(dst.opts);
        self.instruction(If(BlockType::Empty));
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 2); // align
        self.instruction(LocalGet(dst.len.idx)); // new_size
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));
        self.instruction(End);

        // In this block the latin1 encoding failed. The host transcode
        // returned how many units were consumed from the source and how
        // many bytes were written to the destination. Here the buffer is
        // inflated and sized and the second utf16 intrinsic is invoked to
        // perform the final inflation.
        self.instruction(Else); // else latin1-or-utf16 block

        // For utf8 validate that the inflated size is still within bounds.
        if src_enc.width() == 1 {
            self.validate_string_length_u8(src, 2);
        }

        // Reallocate the buffer with twice the source code units in byte
        // size.
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 2); // align
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
        self.ptr_uconst(dst.opts, 1);
        self.ptr_shl(dst.opts);
        self.instruction(LocalTee(dst_byte_len.idx));
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));

        // Call the host utf16 transcoding function. This will inflate the
        // prior latin1 bytes and then encode the rest of the source string
        // as utf16 into the remaining space in the destination buffer.
        self.instruction(LocalGet(src.ptr.idx));
        self.instruction(LocalGet(src_len_tmp.idx));
        if let FE::Utf16 = src_enc {
            self.ptr_uconst(src.opts, 1);
            self.ptr_shl(src.opts);
        }
        self.ptr_add(src.opts);
        self.instruction(LocalGet(src.len.idx));
        self.instruction(LocalGet(src_len_tmp.idx));
        self.ptr_sub(src.opts);
        self.instruction(LocalGet(dst.ptr.idx));
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
        self.instruction(LocalGet(dst.len.idx));
        self.instruction(Call(transcode_utf16.as_u32()));
        self.instruction(LocalSet(dst.len.idx));

        // If the returned number of code units written to the destination
        // is not equal to the size of the allocation then the allocation is
        // resized down to the appropriate size.
        //
        // Note that the byte size desired is `2*dst_len` and the current
        // byte buffer size is `2*src_len` so the `2` factor isn't checked
        // here, just the lengths.
        self.instruction(LocalGet(dst.len.idx));
        self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
        self.ptr_ne(dst.opts);
        self.instruction(If(BlockType::Empty));
        self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
        self.instruction(LocalGet(dst_byte_len.idx)); // old_size
        self.ptr_uconst(dst.opts, 2); // align
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_uconst(dst.opts, 1);
        self.ptr_shl(dst.opts);
        self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
        self.instruction(LocalSet(dst.ptr.idx));
        self.instruction(End);

        // Tag the returned pointer as utf16
        self.instruction(LocalGet(dst.len.idx));
        self.ptr_uconst(dst.opts, UTF16_TAG);
        self.ptr_or(dst.opts);
        self.instruction(LocalSet(dst.len.idx));

        self.instruction(End); // end latin1-or-utf16 block

        self.free_temp_local(src_len_tmp);
        self.free_temp_local(dst_byte_len);

        dst
    }

    fn validate_string_length(&mut self, src: &WasmString<'_>, dst: FE) {
        self.validate_string_length_u8(src, dst.width())
    }

    fn validate_string_length_u8(&mut self, s: &WasmString<'_>, dst: u8) {
        // Check to see if the source byte length is out of bounds in
        // which case a trap is generated.
        self.instruction(LocalGet(s.len.idx));
        let max = MAX_STRING_BYTE_LENGTH / u32::from(dst);
        self.ptr_uconst(s.opts, max);
        self.ptr_ge_u(s.opts);
        self.instruction(If(BlockType::Empty));
        self.trap(Trap::StringLengthTooBig);
        self.instruction(End);
    }

    fn transcoder(
        &mut self,
        src: &WasmString<'_>,
        dst: &WasmString<'_>,
        op: Transcode,
    ) -> FuncIndex {
        self.module.import_transcoder(Transcoder {
            from_memory: src.opts.memory.unwrap(),
            from_memory64: src.opts.memory64,
            to_memory: dst.opts.memory.unwrap(),
            to_memory64: dst.opts.memory64,
            op,
        })
    }

    fn validate_string_inbounds(&mut self, s: &WasmString<'_>, byte_len: u32) {
        self.validate_memory_inbounds(s.opts, s.ptr.idx, byte_len, Trap::StringLengthOverflow)
    }

    fn validate_memory_inbounds(
        &mut self,
        opts: &Options,
        ptr_local: u32,
        byte_len_local: u32,
        trap: Trap,
    ) {
        let extend_to_64 = |me: &mut Self| {
            if !opts.memory64 {
                me.instruction(I64ExtendI32U);
            }
        };

        self.instruction(Block(BlockType::Empty));
        self.instruction(Block(BlockType::Empty));

        // Calculate the full byte size of memory with `memory.size`. Note that
        // arithmetic here is done always in 64-bits to accommodate 4G memories.
        // Additionally it's assumed that 64-bit memories never fill up
        // entirely.
        self.instruction(MemorySize(opts.memory.unwrap().as_u32()));
        extend_to_64(self);
        self.instruction(I64Const(16));
        self.instruction(I64Shl);

        // Calculate the end address of the string. This is done by adding the
        // base pointer to the byte length. For 32-bit memories there's no need
        // to check for overflow since everything is extended to 64-bit, but for
        // 64-bit memories overflow is checked.
        self.instruction(LocalGet(ptr_local));
        extend_to_64(self);
        self.instruction(LocalGet(byte_len_local));
        extend_to_64(self);
        self.instruction(I64Add);
        if opts.memory64 {
            let tmp = self.local_tee_new_tmp(ValType::I64);
            self.instruction(LocalGet(ptr_local));
            self.ptr_lt_u(opts);
            self.instruction(BrIf(0));
            self.instruction(LocalGet(tmp.idx));
            self.free_temp_local(tmp);
        }

        // If the byte size of memory is greater than the final address of the
        // string then the string is invalid. Note that if it's precisely equal
        // then that's ok.
        self.instruction(I64GeU);
        self.instruction(BrIf(1));

        self.instruction(End);
        self.trap(trap);
        self.instruction(End);
    }

    fn translate_list(
        &mut self,
        src_ty: TypeListIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_element_ty = &self.types[src_ty].element;
        let dst_element_ty = match dst_ty {
            InterfaceType::List(r) => &self.types[*r].element,
            _ => panic!("expected a list"),
        };
        let src_opts = src.opts();
        let dst_opts = dst.opts();
        let (src_size, src_align) = self.types.size_align(src_opts, src_element_ty);
        let (dst_size, dst_align) = self.types.size_align(dst_opts, dst_element_ty);

        // Load the pointer/length of this list into temporary locals. These
        // will be referenced a good deal so this just makes it easier to deal
        // with them consistently below rather than trying to reload from memory
        // for example.
        match src {
            Source::Stack(s) => {
                assert_eq!(s.locals.len(), 2);
                self.stack_get(&s.slice(0..1), src_opts.ptr());
                self.stack_get(&s.slice(1..2), src_opts.ptr());
            }
            Source::Memory(mem) => {
                self.ptr_load(mem);
                self.ptr_load(&mem.bump(src_opts.ptr_size().into()));
            }
        }
        let src_len = self.local_set_new_tmp(src_opts.ptr());
        let src_ptr = self.local_set_new_tmp(src_opts.ptr());

        // Create a `Memory` operand which will internally assert that the
        // `src_ptr` value is properly aligned.
        let src_mem = self.memory_operand(src_opts, src_ptr, src_align);

        // Calculate the source/destination byte lengths into unique locals.
        let src_byte_len = self.calculate_list_byte_len(src_opts, src_len.idx, src_size);
        let dst_byte_len = if src_size == dst_size {
            self.convert_src_len_to_dst(src_byte_len.idx, src_opts.ptr(), dst_opts.ptr());
            self.local_set_new_tmp(dst_opts.ptr())
        } else if src_opts.ptr() == dst_opts.ptr() {
            self.calculate_list_byte_len(dst_opts, src_len.idx, dst_size)
        } else {
            self.convert_src_len_to_dst(src_byte_len.idx, src_opts.ptr(), dst_opts.ptr());
            let tmp = self.local_set_new_tmp(dst_opts.ptr());
            let ret = self.calculate_list_byte_len(dst_opts, tmp.idx, dst_size);
            self.free_temp_local(tmp);
            ret
        };

        // Here `realloc` is invoked (in a `malloc`-like fashion) to allocate
        // space for the list in the destination memory. This will also
        // internally insert checks that the returned pointer is aligned
        // correctly for the destination.
        let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), dst_align);

        // With all the pointers and byte lengths verity that both the source
        // and the destination buffers are in-bounds.
        self.validate_memory_inbounds(
            src_opts,
            src_mem.addr.idx,
            src_byte_len.idx,
            Trap::ListByteLengthOverflow,
        );
        self.validate_memory_inbounds(
            dst_opts,
            dst_mem.addr.idx,
            dst_byte_len.idx,
            Trap::ListByteLengthOverflow,
        );

        self.free_temp_local(src_byte_len);
        self.free_temp_local(dst_byte_len);

        // This is the main body of the loop to actually translate list types.
        // Note that if both element sizes are 0 then this won't actually do
        // anything so the loop is removed entirely.
        if src_size > 0 || dst_size > 0 {
            // This block encompasses the entire loop and is use to exit before even
            // entering the loop if the list size is zero.
            self.instruction(Block(BlockType::Empty));

            // Set the `remaining` local and only continue if it's > 0
            self.instruction(LocalGet(src_len.idx));
            let remaining = self.local_tee_new_tmp(src_opts.ptr());
            self.ptr_eqz(src_opts);
            self.instruction(BrIf(0));

            // Initialize the two destination pointers to their initial values
            self.instruction(LocalGet(src_mem.addr.idx));
            let cur_src_ptr = self.local_set_new_tmp(src_opts.ptr());
            self.instruction(LocalGet(dst_mem.addr.idx));
            let cur_dst_ptr = self.local_set_new_tmp(dst_opts.ptr());

            self.instruction(Loop(BlockType::Empty));

            // Translate the next element in the list
            let element_src = Source::Memory(Memory {
                opts: src_opts,
                offset: 0,
                addr: TempLocal::new(cur_src_ptr.idx, cur_src_ptr.ty),
            });
            let element_dst = Destination::Memory(Memory {
                opts: dst_opts,
                offset: 0,
                addr: TempLocal::new(cur_dst_ptr.idx, cur_dst_ptr.ty),
            });
            self.translate(src_element_ty, &element_src, dst_element_ty, &element_dst);

            // Update the two loop pointers
            if src_size > 0 {
                self.instruction(LocalGet(cur_src_ptr.idx));
                self.ptr_uconst(src_opts, src_size);
                self.ptr_add(src_opts);
                self.instruction(LocalSet(cur_src_ptr.idx));
            }
            if dst_size > 0 {
                self.instruction(LocalGet(cur_dst_ptr.idx));
                self.ptr_uconst(dst_opts, dst_size);
                self.ptr_add(dst_opts);
                self.instruction(LocalSet(cur_dst_ptr.idx));
            }

            // Update the remaining count, falling through to break out if it's zero
            // now.
            self.instruction(LocalGet(remaining.idx));
            self.ptr_iconst(src_opts, -1);
            self.ptr_add(src_opts);
            self.instruction(LocalTee(remaining.idx));
            self.ptr_br_if(src_opts, 0);
            self.instruction(End); // end of loop
            self.instruction(End); // end of block

            self.free_temp_local(cur_dst_ptr);
            self.free_temp_local(cur_src_ptr);
            self.free_temp_local(remaining);
        }

        // Store the ptr/length in the desired destination
        match dst {
            Destination::Stack(s, _) => {
                self.instruction(LocalGet(dst_mem.addr.idx));
                self.stack_set(&s[..1], dst_opts.ptr());
                self.convert_src_len_to_dst(src_len.idx, src_opts.ptr(), dst_opts.ptr());
                self.stack_set(&s[1..], dst_opts.ptr());
            }
            Destination::Memory(mem) => {
                self.instruction(LocalGet(mem.addr.idx));
                self.instruction(LocalGet(dst_mem.addr.idx));
                self.ptr_store(mem);
                self.instruction(LocalGet(mem.addr.idx));
                self.convert_src_len_to_dst(src_len.idx, src_opts.ptr(), dst_opts.ptr());
                self.ptr_store(&mem.bump(dst_opts.ptr_size().into()));
            }
        }

        self.free_temp_local(src_len);
        self.free_temp_local(src_mem.addr);
        self.free_temp_local(dst_mem.addr);
    }

    fn calculate_list_byte_len(
        &mut self,
        opts: &Options,
        len_local: u32,
        elt_size: u32,
    ) -> TempLocal {
        // Zero-size types are easy to handle here because the byte size of the
        // destination is always zero.
        if elt_size == 0 {
            self.ptr_uconst(opts, 0);
            return self.local_set_new_tmp(opts.ptr());
        }

        // For one-byte elements in the destination the check here can be a bit
        // more optimal than the general case below. In these situations if the
        // source pointer type is 32-bit then we're guaranteed to not overflow,
        // so the source length is simply casted to the destination's type.
        //
        // If the source is 64-bit then all that needs to be checked is to
        // ensure that it does not have the upper 32-bits set.
        if elt_size == 1 {
            if let ValType::I64 = opts.ptr() {
                self.instruction(LocalGet(len_local));
                self.instruction(I64Const(32));
                self.instruction(I64ShrU);
                self.instruction(I32WrapI64);
                self.instruction(If(BlockType::Empty));
                self.trap(Trap::ListByteLengthOverflow);
                self.instruction(End);
            }
            self.instruction(LocalGet(len_local));
            return self.local_set_new_tmp(opts.ptr());
        }

        // The main check implemented by this function is to verify that
        // `src_len_local` does not exceed the 32-bit range. Byte sizes for
        // lists must always fit in 32-bits to get transferred to 32-bit
        // memories.
        self.instruction(Block(BlockType::Empty));
        self.instruction(Block(BlockType::Empty));
        self.instruction(LocalGet(len_local));
        match opts.ptr() {
            // The source's list length is guaranteed to be less than 32-bits
            // so simply extend it up to a 64-bit type for the multiplication
            // below.
            ValType::I32 => self.instruction(I64ExtendI32U),

            // If the source is a 64-bit memory then if the item length doesn't
            // fit in 32-bits the byte length definitely won't, so generate a
            // branch to our overflow trap here if any of the upper 32-bits are set.
            ValType::I64 => {
                self.instruction(I64Const(32));
                self.instruction(I64ShrU);
                self.instruction(I32WrapI64);
                self.instruction(BrIf(0));
                self.instruction(LocalGet(len_local));
            }

            _ => unreachable!(),
        }

        // Next perform a 64-bit multiplication with the element byte size that
        // is itself guaranteed to fit in 32-bits. The result is then checked
        // to see if we overflowed the 32-bit space. The two input operands to
        // the multiplication are guaranteed to be 32-bits at most which means
        // that this multiplication shouldn't overflow.
        //
        // The result of the multiplication is saved into a local as well to
        // get the result afterwards.
        self.instruction(I64Const(elt_size.into()));
        self.instruction(I64Mul);
        let tmp = self.local_tee_new_tmp(ValType::I64);
        // Branch to success if the upper 32-bits are zero, otherwise
        // fall-through to the trap.
        self.instruction(I64Const(32));
        self.instruction(I64ShrU);
        self.instruction(I64Eqz);
        self.instruction(BrIf(1));
        self.instruction(End);
        self.trap(Trap::ListByteLengthOverflow);
        self.instruction(End);

        // If a fresh local was used to store the result of the multiplication
        // then convert it down to 32-bits which should be guaranteed to not
        // lose information at this point.
        if opts.ptr() == ValType::I64 {
            tmp
        } else {
            self.instruction(LocalGet(tmp.idx));
            self.instruction(I32WrapI64);
            self.free_temp_local(tmp);
            self.local_set_new_tmp(ValType::I32)
        }
    }

    fn convert_src_len_to_dst(
        &mut self,
        src_len_local: u32,
        src_ptr_ty: ValType,
        dst_ptr_ty: ValType,
    ) {
        self.instruction(LocalGet(src_len_local));
        match (src_ptr_ty, dst_ptr_ty) {
            (ValType::I32, ValType::I64) => self.instruction(I64ExtendI32U),
            (ValType::I64, ValType::I32) => self.instruction(I32WrapI64),
            (src, dst) => assert_eq!(src, dst),
        }
    }

    fn translate_record(
        &mut self,
        src_ty: TypeRecordIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Record(r) => &self.types[*r],
            _ => panic!("expected a record"),
        };

        // TODO: subtyping
        assert_eq!(src_ty.fields.len(), dst_ty.fields.len());

        // First a map is made of the source fields to where they're coming
        // from (e.g. which offset or which locals). This map is keyed by the
        // fields' names
        let mut src_fields = HashMap::new();
        for (i, src) in src
            .record_field_srcs(self.types, src_ty.fields.iter().map(|f| f.ty))
            .enumerate()
        {
            let field = &src_ty.fields[i];
            src_fields.insert(&field.name, (src, &field.ty));
        }

        // .. and next translation is performed in the order of the destination
        // fields in case the destination is the stack to ensure that the stack
        // has the fields all in the right order.
        //
        // Note that the lookup in `src_fields` is an infallible lookup which
        // will panic if the field isn't found.
        //
        // TODO: should that lookup be fallible with subtyping?
        for (i, dst) in dst
            .record_field_dsts(self.types, dst_ty.fields.iter().map(|f| f.ty))
            .enumerate()
        {
            let field = &dst_ty.fields[i];
            let (src, src_ty) = &src_fields[&field.name];
            self.translate(src_ty, src, &field.ty, &dst);
        }
    }

    fn translate_flags(
        &mut self,
        src_ty: TypeFlagsIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Flags(r) => &self.types[*r],
            _ => panic!("expected a record"),
        };

        // TODO: subtyping
        //
        // Notably this implementation does not support reordering flags from
        // the source to the destination nor having more flags in the
        // destination. Currently this is a copy from source to destination
        // in-bulk. Otherwise reordering indices would have to have some sort of
        // fancy bit twiddling tricks or something like that.
        assert_eq!(src_ty.names, dst_ty.names);
        let cnt = src_ty.names.len();
        match FlagsSize::from_count(cnt) {
            FlagsSize::Size0 => {}
            FlagsSize::Size1 => {
                let mask = if cnt == 8 { 0xff } else { (1 << cnt) - 1 };
                self.convert_u8_mask(src, dst, mask);
            }
            FlagsSize::Size2 => {
                let mask = if cnt == 16 { 0xffff } else { (1 << cnt) - 1 };
                self.convert_u16_mask(src, dst, mask);
            }
            FlagsSize::Size4Plus(n) => {
                let srcs = src.record_field_srcs(self.types, (0..n).map(|_| InterfaceType::U32));
                let dsts = dst.record_field_dsts(self.types, (0..n).map(|_| InterfaceType::U32));
                let n = usize::from(n);
                for (i, (src, dst)) in srcs.zip(dsts).enumerate() {
                    let mask = if i == n - 1 && (cnt % 32 != 0) {
                        (1 << (cnt % 32)) - 1
                    } else {
                        0xffffffff
                    };
                    self.convert_u32_mask(&src, &dst, mask);
                }
            }
        }
    }

    fn translate_tuple(
        &mut self,
        src_ty: TypeTupleIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Tuple(t) => &self.types[*t],
            _ => panic!("expected a tuple"),
        };

        // TODO: subtyping
        assert_eq!(src_ty.types.len(), dst_ty.types.len());

        let srcs = src
            .record_field_srcs(self.types, src_ty.types.iter().copied())
            .zip(src_ty.types.iter());
        let dsts = dst
            .record_field_dsts(self.types, dst_ty.types.iter().copied())
            .zip(dst_ty.types.iter());
        for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
            self.translate(src_ty, &src, dst_ty, &dst);
        }
    }

    fn translate_variant(
        &mut self,
        src_ty: TypeVariantIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Variant(t) => &self.types[*t],
            _ => panic!("expected a variant"),
        };

        let src_info = variant_info(self.types, src_ty.cases.iter().map(|(_, c)| c.as_ref()));
        let dst_info = variant_info(self.types, dst_ty.cases.iter().map(|(_, c)| c.as_ref()));

        let iter = src_ty
            .cases
            .iter()
            .enumerate()
            .map(|(src_i, (src_case, src_case_ty))| {
                let dst_i = dst_ty
                    .cases
                    .iter()
                    .position(|(c, _)| c == src_case)
                    .unwrap();
                let dst_case_ty = &dst_ty.cases[dst_i];
                let src_i = u32::try_from(src_i).unwrap();
                let dst_i = u32::try_from(dst_i).unwrap();
                VariantCase {
                    src_i,
                    src_ty: src_case_ty.as_ref(),
                    dst_i,
                    dst_ty: dst_case_ty.as_ref(),
                }
            });
        self.convert_variant(src, &src_info, dst, &dst_info, iter);
    }

    fn translate_enum(
        &mut self,
        src_ty: TypeEnumIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Enum(t) => &self.types[*t],
            _ => panic!("expected an option"),
        };
        let src_info = variant_info(self.types, src_ty.names.iter().map(|_| None));
        let dst_info = variant_info(self.types, dst_ty.names.iter().map(|_| None));

        self.convert_variant(
            src,
            &src_info,
            dst,
            &dst_info,
            src_ty.names.iter().enumerate().map(|(src_i, src_name)| {
                let dst_i = dst_ty.names.iter().position(|n| n == src_name).unwrap();
                let src_i = u32::try_from(src_i).unwrap();
                let dst_i = u32::try_from(dst_i).unwrap();
                VariantCase {
                    src_i,
                    dst_i,
                    src_ty: None,
                    dst_ty: None,
                }
            }),
        );
    }

    fn translate_option(
        &mut self,
        src_ty: TypeOptionIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty].ty;
        let dst_ty = match dst_ty {
            InterfaceType::Option(t) => &self.types[*t].ty,
            _ => panic!("expected an option"),
        };
        let src_ty = Some(src_ty);
        let dst_ty = Some(dst_ty);

        let src_info = variant_info(self.types, [None, src_ty]);
        let dst_info = variant_info(self.types, [None, dst_ty]);

        self.convert_variant(
            src,
            &src_info,
            dst,
            &dst_info,
            [
                VariantCase {
                    src_i: 0,
                    dst_i: 0,
                    src_ty: None,
                    dst_ty: None,
                },
                VariantCase {
                    src_i: 1,
                    dst_i: 1,
                    src_ty,
                    dst_ty,
                },
            ]
            .into_iter(),
        );
    }

    fn translate_result(
        &mut self,
        src_ty: TypeResultIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let src_ty = &self.types[src_ty];
        let dst_ty = match dst_ty {
            InterfaceType::Result(t) => &self.types[*t],
            _ => panic!("expected a result"),
        };

        let src_info = variant_info(self.types, [src_ty.ok.as_ref(), src_ty.err.as_ref()]);
        let dst_info = variant_info(self.types, [dst_ty.ok.as_ref(), dst_ty.err.as_ref()]);

        self.convert_variant(
            src,
            &src_info,
            dst,
            &dst_info,
            [
                VariantCase {
                    src_i: 0,
                    dst_i: 0,
                    src_ty: src_ty.ok.as_ref(),
                    dst_ty: dst_ty.ok.as_ref(),
                },
                VariantCase {
                    src_i: 1,
                    dst_i: 1,
                    src_ty: src_ty.err.as_ref(),
                    dst_ty: dst_ty.err.as_ref(),
                },
            ]
            .into_iter(),
        );
    }

    fn convert_variant<'a>(
        &mut self,
        src: &Source<'_>,
        src_info: &VariantInfo,
        dst: &Destination,
        dst_info: &VariantInfo,
        src_cases: impl ExactSizeIterator<Item = VariantCase<'a>>,
    ) {
        // The outermost block is special since it has the result type of the
        // translation here. That will depend on the `dst`.
        let outer_block_ty = match dst {
            Destination::Stack(dst_flat, _) => match dst_flat.len() {
                0 => BlockType::Empty,
                1 => BlockType::Result(dst_flat[0]),
                _ => {
                    let ty = self.module.core_types.function(&[], &dst_flat);
                    BlockType::FunctionType(ty)
                }
            },
            Destination::Memory(_) => BlockType::Empty,
        };
        self.instruction(Block(outer_block_ty));

        // After the outermost block generate a new block for each of the
        // remaining cases.
        let src_cases_len = src_cases.len();
        for _ in 0..src_cases_len - 1 {
            self.instruction(Block(BlockType::Empty));
        }

        // Generate a block for an invalid variant discriminant
        self.instruction(Block(BlockType::Empty));

        // And generate one final block that we'll be jumping out of with the
        // `br_table`
        self.instruction(Block(BlockType::Empty));

        // Load the discriminant
        match src {
            Source::Stack(s) => self.stack_get(&s.slice(0..1), ValType::I32),
            Source::Memory(mem) => match src_info.size {
                DiscriminantSize::Size1 => self.i32_load8u(mem),
                DiscriminantSize::Size2 => self.i32_load16u(mem),
                DiscriminantSize::Size4 => self.i32_load(mem),
            },
        }

        // Generate the `br_table` for the discriminant. Each case has an
        // offset of 1 to skip the trapping block.
        let mut targets = Vec::new();
        for i in 0..src_cases_len {
            targets.push((i + 1) as u32);
        }
        self.instruction(BrTable(targets[..].into(), 0));
        self.instruction(End); // end the `br_table` block

        self.trap(Trap::InvalidDiscriminant);
        self.instruction(End); // end the "invalid discriminant" block

        // Translate each case individually within its own block. Note that the
        // iteration order here places the first case in the innermost block
        // and the last case in the outermost block. This matches the order
        // of the jump targets in the `br_table` instruction.
        let src_cases_len = u32::try_from(src_cases_len).unwrap();
        for case in src_cases {
            let VariantCase {
                src_i,
                src_ty,
                dst_i,
                dst_ty,
            } = case;

            // Translate the discriminant here, noting that `dst_i` may be
            // different than `src_i`.
            self.push_dst_addr(dst);
            self.instruction(I32Const(dst_i as i32));
            match dst {
                Destination::Stack(stack, _) => self.stack_set(&stack[..1], ValType::I32),
                Destination::Memory(mem) => match dst_info.size {
                    DiscriminantSize::Size1 => self.i32_store8(mem),
                    DiscriminantSize::Size2 => self.i32_store16(mem),
                    DiscriminantSize::Size4 => self.i32_store(mem),
                },
            }

            let src_payload = src.payload_src(self.types, src_info, src_ty);
            let dst_payload = dst.payload_dst(self.types, dst_info, dst_ty);

            // Translate the payload of this case using the various types from
            // the dst/src.
            match (src_ty, dst_ty) {
                (Some(src_ty), Some(dst_ty)) => {
                    self.translate(src_ty, &src_payload, dst_ty, &dst_payload);
                }
                (None, None) => {}
                _ => unimplemented!(),
            }

            // If the results of this translation were placed on the stack then
            // the stack values may need to be padded with more zeros due to
            // this particular case being possibly smaller than the entire
            // variant. That's handled here by pushing remaining zeros after
            // accounting for the discriminant pushed as well as the results of
            // this individual payload.
            if let Destination::Stack(payload_results, _) = dst_payload {
                if let Destination::Stack(dst_results, _) = dst {
                    let remaining = &dst_results[1..][payload_results.len()..];
                    for ty in remaining {
                        match ty {
                            ValType::I32 => self.instruction(I32Const(0)),
                            ValType::I64 => self.instruction(I64Const(0)),
                            ValType::F32 => self.instruction(F32Const(0.0)),
                            ValType::F64 => self.instruction(F64Const(0.0)),
                            _ => unreachable!(),
                        }
                    }
                }
            }

            // Branch to the outermost block. Note that this isn't needed for
            // the outermost case since it simply falls through.
            if src_i != src_cases_len - 1 {
                self.instruction(Br(src_cases_len - src_i - 1));
            }
            self.instruction(End); // end this case's block
        }
    }

    fn translate_own(
        &mut self,
        src_ty: TypeResourceTableIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let dst_ty = match dst_ty {
            InterfaceType::Own(t) => *t,
            _ => panic!("expected an `Own`"),
        };
        let transfer = self.module.import_resource_transfer_own();
        self.translate_resource(src_ty, src, dst_ty, dst, transfer);
    }

    fn translate_borrow(
        &mut self,
        src_ty: TypeResourceTableIndex,
        src: &Source<'_>,
        dst_ty: &InterfaceType,
        dst: &Destination,
    ) {
        let dst_ty = match dst_ty {
            InterfaceType::Borrow(t) => *t,
            _ => panic!("expected an `Borrow`"),
        };

        let transfer = self.module.import_resource_transfer_borrow();
        self.translate_resource(src_ty, src, dst_ty, dst, transfer);
    }

    /// Translates the index `src`, which resides in the table `src_ty`, into
    /// and index within `dst_ty` and is stored at `dst`.
    ///
    /// Actual translation of the index happens in a wasmtime libcall, which a
    /// cranelift-generated trampoline to satisfy this import will call. The
    /// `transfer` function is an imported function which takes the src, src_ty,
    /// and dst_ty, and returns the dst index.
    fn translate_resource(
        &mut self,
        src_ty: TypeResourceTableIndex,
        src: &Source<'_>,
        dst_ty: TypeResourceTableIndex,
        dst: &Destination,
        transfer: FuncIndex,
    ) {
        self.push_dst_addr(dst);
        match src {
            Source::Memory(mem) => self.i32_load(mem),
            Source::Stack(stack) => self.stack_get(stack, ValType::I32),
        }
        self.instruction(I32Const(src_ty.as_u32() as i32));
        self.instruction(I32Const(dst_ty.as_u32() as i32));
        self.instruction(Call(transfer.as_u32()));
        match dst {
            Destination::Memory(mem) => self.i32_store(mem),
            Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
        }
    }

    fn trap_if_not_flag(&mut self, flags_global: GlobalIndex, flag_to_test: i32, trap: Trap) {
        self.instruction(GlobalGet(flags_global.as_u32()));
        self.instruction(I32Const(flag_to_test));
        self.instruction(I32And);
        self.instruction(I32Eqz);
        self.instruction(If(BlockType::Empty));
        self.trap(trap);
        self.instruction(End);
    }

    fn assert_not_flag(&mut self, flags_global: GlobalIndex, flag_to_test: i32, msg: &'static str) {
        self.instruction(GlobalGet(flags_global.as_u32()));
        self.instruction(I32Const(flag_to_test));
        self.instruction(I32And);
        self.instruction(If(BlockType::Empty));
        self.trap(Trap::AssertFailed(msg));
        self.instruction(End);
    }

    fn set_flag(&mut self, flags_global: GlobalIndex, flag_to_set: i32, value: bool) {
        self.instruction(GlobalGet(flags_global.as_u32()));
        if value {
            self.instruction(I32Const(flag_to_set));
            self.instruction(I32Or);
        } else {
            self.instruction(I32Const(!flag_to_set));
            self.instruction(I32And);
        }
        self.instruction(GlobalSet(flags_global.as_u32()));
    }

    fn verify_aligned(&mut self, opts: &Options, addr_local: u32, align: u32) {
        // If the alignment is 1 then everything is trivially aligned and the
        // check can be omitted.
        if align == 1 {
            return;
        }
        self.instruction(LocalGet(addr_local));
        assert!(align.is_power_of_two());
        self.ptr_uconst(opts, align - 1);
        self.ptr_and(opts);
        self.ptr_if(opts, BlockType::Empty);
        self.trap(Trap::UnalignedPointer);
        self.instruction(End);
    }

    fn assert_aligned(&mut self, ty: &InterfaceType, mem: &Memory) {
        if !self.module.debug {
            return;
        }
        let align = self.types.align(mem.opts, ty);
        if align == 1 {
            return;
        }
        assert!(align.is_power_of_two());
        self.instruction(LocalGet(mem.addr.idx));
        self.ptr_uconst(mem.opts, mem.offset);
        self.ptr_add(mem.opts);
        self.ptr_uconst(mem.opts, align - 1);
        self.ptr_and(mem.opts);
        self.ptr_if(mem.opts, BlockType::Empty);
        self.trap(Trap::AssertFailed("pointer not aligned"));
        self.instruction(End);
    }

    fn malloc<'a>(&mut self, opts: &'a Options, size: MallocSize, align: u32) -> Memory<'a> {
        let realloc = opts.realloc.unwrap();
        self.ptr_uconst(opts, 0);
        self.ptr_uconst(opts, 0);
        self.ptr_uconst(opts, align);
        match size {
            MallocSize::Const(size) => self.ptr_uconst(opts, size),
            MallocSize::Local(idx) => self.instruction(LocalGet(idx)),
        }
        self.instruction(Call(realloc.as_u32()));
        let addr = self.local_set_new_tmp(opts.ptr());
        self.memory_operand(opts, addr, align)
    }

    fn memory_operand<'a>(&mut self, opts: &'a Options, addr: TempLocal, align: u32) -> Memory<'a> {
        let ret = Memory {
            addr,
            offset: 0,
            opts,
        };
        self.verify_aligned(opts, ret.addr.idx, align);
        ret
    }

    /// Generates a new local in this function of the `ty` specified,
    /// initializing it with the top value on the current wasm stack.
    ///
    /// The returned `TempLocal` must be freed after it is finished with
    /// `free_temp_local`.
    fn local_tee_new_tmp(&mut self, ty: ValType) -> TempLocal {
        self.gen_temp_local(ty, LocalTee)
    }

    /// Same as `local_tee_new_tmp` but initializes the local with `LocalSet`
    /// instead of `LocalTee`.
    fn local_set_new_tmp(&mut self, ty: ValType) -> TempLocal {
        self.gen_temp_local(ty, LocalSet)
    }

    fn gen_temp_local(&mut self, ty: ValType, insn: fn(u32) -> Instruction<'static>) -> TempLocal {
        // First check to see if any locals are available in this function which
        // were previously generated but are no longer in use.
        if let Some(idx) = self.free_locals.get_mut(&ty).and_then(|v| v.pop()) {
            self.instruction(insn(idx));
            return TempLocal {
                ty,
                idx,
                needs_free: true,
            };
        }

        // Failing that generate a fresh new local.
        let locals = &mut self.module.funcs[self.result].locals;
        match locals.last_mut() {
            Some((cnt, prev_ty)) if ty == *prev_ty => *cnt += 1,
            _ => locals.push((1, ty)),
        }
        self.nlocals += 1;
        let idx = self.nlocals - 1;
        self.instruction(insn(idx));
        TempLocal {
            ty,
            idx,
            needs_free: true,
        }
    }

    /// Used to release a `TempLocal` from a particular lexical scope to allow
    /// its possible reuse in later scopes.
    fn free_temp_local(&mut self, mut local: TempLocal) {
        assert!(local.needs_free);
        self.free_locals
            .entry(local.ty)
            .or_insert(Vec::new())
            .push(local.idx);
        local.needs_free = false;
    }

    fn instruction(&mut self, instr: Instruction) {
        instr.encode(&mut self.code);
    }

    fn trap(&mut self, trap: Trap) {
        self.traps.push((self.code.len(), trap));
        self.instruction(Unreachable);
    }

    /// Flushes out the current `code` instructions (and `traps` if there are
    /// any) into the destination function.
    ///
    /// This is a noop if no instructions have been encoded yet.
    fn flush_code(&mut self) {
        if self.code.is_empty() {
            return;
        }
        self.module.funcs[self.result].body.push(Body::Raw(
            mem::take(&mut self.code),
            mem::take(&mut self.traps),
        ));
    }

    fn finish(mut self) {
        // Append the final `end` instruction which all functions require, and
        // then empty out the temporary buffer in `Compiler`.
        self.instruction(End);
        self.flush_code();

        // Flag the function as "done" which helps with an assert later on in
        // emission that everything was eventually finished.
        self.module.funcs[self.result].filled_in = true;
    }

    /// Fetches the value contained with the local specified by `stack` and
    /// converts it to `dst_ty`.
    ///
    /// This is only intended for use in primitive operations where `stack` is
    /// guaranteed to have only one local. The type of the local on the stack is
    /// then converted to `dst_ty` appropriately. Note that the types may be
    /// different due to the "flattening" of variant types.
    fn stack_get(&mut self, stack: &Stack<'_>, dst_ty: ValType) {
        assert_eq!(stack.locals.len(), 1);
        let (idx, src_ty) = stack.locals[0];
        self.instruction(LocalGet(idx));
        match (src_ty, dst_ty) {
            (ValType::I32, ValType::I32)
            | (ValType::I64, ValType::I64)
            | (ValType::F32, ValType::F32)
            | (ValType::F64, ValType::F64) => {}

            (ValType::I32, ValType::F32) => self.instruction(F32ReinterpretI32),
            (ValType::I64, ValType::I32) => {
                self.assert_i64_upper_bits_not_set(idx);
                self.instruction(I32WrapI64);
            }
            (ValType::I64, ValType::F64) => self.instruction(F64ReinterpretI64),
            (ValType::I64, ValType::F32) => {
                self.assert_i64_upper_bits_not_set(idx);
                self.instruction(I32WrapI64);
                self.instruction(F32ReinterpretI32);
            }

            // should not be possible given the `join` function for variants
            (ValType::I32, ValType::I64)
            | (ValType::I32, ValType::F64)
            | (ValType::F32, ValType::I32)
            | (ValType::F32, ValType::I64)
            | (ValType::F32, ValType::F64)
            | (ValType::F64, ValType::I32)
            | (ValType::F64, ValType::I64)
            | (ValType::F64, ValType::F32)

            // not used in the component model
            | (ValType::Ref(_), _)
            | (_, ValType::Ref(_))
            | (ValType::V128, _)
            | (_, ValType::V128) => {
                panic!("cannot get {dst_ty:?} from {src_ty:?} local");
            }
        }
    }

    fn assert_i64_upper_bits_not_set(&mut self, local: u32) {
        if !self.module.debug {
            return;
        }
        self.instruction(LocalGet(local));
        self.instruction(I64Const(32));
        self.instruction(I64ShrU);
        self.instruction(I32WrapI64);
        self.instruction(If(BlockType::Empty));
        self.trap(Trap::AssertFailed("upper bits are unexpectedly set"));
        self.instruction(End);
    }

    /// Converts the top value on the WebAssembly stack which has type
    /// `src_ty` to `dst_tys[0]`.
    ///
    /// This is only intended for conversion of primitives where the `dst_tys`
    /// list is known to be of length 1.
    fn stack_set(&mut self, dst_tys: &[ValType], src_ty: ValType) {
        assert_eq!(dst_tys.len(), 1);
        let dst_ty = dst_tys[0];
        match (src_ty, dst_ty) {
            (ValType::I32, ValType::I32)
            | (ValType::I64, ValType::I64)
            | (ValType::F32, ValType::F32)
            | (ValType::F64, ValType::F64) => {}

            (ValType::F32, ValType::I32) => self.instruction(I32ReinterpretF32),
            (ValType::I32, ValType::I64) => self.instruction(I64ExtendI32U),
            (ValType::F64, ValType::I64) => self.instruction(I64ReinterpretF64),
            (ValType::F32, ValType::I64) => {
                self.instruction(I32ReinterpretF32);
                self.instruction(I64ExtendI32U);
            }

            // should not be possible given the `join` function for variants
            (ValType::I64, ValType::I32)
            | (ValType::F64, ValType::I32)
            | (ValType::I32, ValType::F32)
            | (ValType::I64, ValType::F32)
            | (ValType::F64, ValType::F32)
            | (ValType::I32, ValType::F64)
            | (ValType::I64, ValType::F64)
            | (ValType::F32, ValType::F64)

            // not used in the component model
            | (ValType::Ref(_), _)
            | (_, ValType::Ref(_))
            | (ValType::V128, _)
            | (_, ValType::V128) => {
                panic!("cannot get {dst_ty:?} from {src_ty:?} local");
            }
        }
    }

    fn i32_load8u(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I32Load8U(mem.memarg(0)));
    }

    fn i32_load8s(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I32Load8S(mem.memarg(0)));
    }

    fn i32_load16u(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I32Load16U(mem.memarg(1)));
    }

    fn i32_load16s(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I32Load16S(mem.memarg(1)));
    }

    fn i32_load(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I32Load(mem.memarg(2)));
    }

    fn i64_load(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(I64Load(mem.memarg(3)));
    }

    fn ptr_load(&mut self, mem: &Memory) {
        if mem.opts.memory64 {
            self.i64_load(mem);
        } else {
            self.i32_load(mem);
        }
    }

    fn ptr_add(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Add);
        } else {
            self.instruction(I32Add);
        }
    }

    fn ptr_sub(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Sub);
        } else {
            self.instruction(I32Sub);
        }
    }

    fn ptr_mul(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Mul);
        } else {
            self.instruction(I32Mul);
        }
    }

    fn ptr_ge_u(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64GeU);
        } else {
            self.instruction(I32GeU);
        }
    }

    fn ptr_lt_u(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64LtU);
        } else {
            self.instruction(I32LtU);
        }
    }

    fn ptr_shl(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Shl);
        } else {
            self.instruction(I32Shl);
        }
    }

    fn ptr_eqz(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Eqz);
        } else {
            self.instruction(I32Eqz);
        }
    }

    fn ptr_uconst(&mut self, opts: &Options, val: u32) {
        if opts.memory64 {
            self.instruction(I64Const(val.into()));
        } else {
            self.instruction(I32Const(val as i32));
        }
    }

    fn ptr_iconst(&mut self, opts: &Options, val: i32) {
        if opts.memory64 {
            self.instruction(I64Const(val.into()));
        } else {
            self.instruction(I32Const(val));
        }
    }

    fn ptr_eq(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Eq);
        } else {
            self.instruction(I32Eq);
        }
    }

    fn ptr_ne(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Ne);
        } else {
            self.instruction(I32Ne);
        }
    }

    fn ptr_and(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64And);
        } else {
            self.instruction(I32And);
        }
    }

    fn ptr_or(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Or);
        } else {
            self.instruction(I32Or);
        }
    }

    fn ptr_xor(&mut self, opts: &Options) {
        if opts.memory64 {
            self.instruction(I64Xor);
        } else {
            self.instruction(I32Xor);
        }
    }

    fn ptr_if(&mut self, opts: &Options, ty: BlockType) {
        if opts.memory64 {
            self.instruction(I64Const(0));
            self.instruction(I64Ne);
        }
        self.instruction(If(ty));
    }

    fn ptr_br_if(&mut self, opts: &Options, depth: u32) {
        if opts.memory64 {
            self.instruction(I64Const(0));
            self.instruction(I64Ne);
        }
        self.instruction(BrIf(depth));
    }

    fn f32_load(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(F32Load(mem.memarg(2)));
    }

    fn f64_load(&mut self, mem: &Memory) {
        self.instruction(LocalGet(mem.addr.idx));
        self.instruction(F64Load(mem.memarg(3)));
    }

    fn push_dst_addr(&mut self, dst: &Destination) {
        if let Destination::Memory(mem) = dst {
            self.instruction(LocalGet(mem.addr.idx));
        }
    }

    fn i32_store8(&mut self, mem: &Memory) {
        self.instruction(I32Store8(mem.memarg(0)));
    }

    fn i32_store16(&mut self, mem: &Memory) {
        self.instruction(I32Store16(mem.memarg(1)));
    }

    fn i32_store(&mut self, mem: &Memory) {
        self.instruction(I32Store(mem.memarg(2)));
    }

    fn i64_store(&mut self, mem: &Memory) {
        self.instruction(I64Store(mem.memarg(3)));
    }

    fn ptr_store(&mut self, mem: &Memory) {
        if mem.opts.memory64 {
            self.i64_store(mem);
        } else {
            self.i32_store(mem);
        }
    }

    fn f32_store(&mut self, mem: &Memory) {
        self.instruction(F32Store(mem.memarg(2)));
    }

    fn f64_store(&mut self, mem: &Memory) {
        self.instruction(F64Store(mem.memarg(3)));
    }
}

impl<'a> Source<'a> {
    /// Given this `Source` returns an iterator over the `Source` for each of
    /// the component `fields` specified.
    ///
    /// This will automatically slice stack-based locals to the appropriate
    /// width for each component type and additionally calculate the appropriate
    /// offset for each memory-based type.
    fn record_field_srcs<'b>(
        &'b self,
        types: &'b ComponentTypesBuilder,
        fields: impl IntoIterator<Item = InterfaceType> + 'b,
    ) -> impl Iterator<Item = Source<'a>> + 'b
    where
        'a: 'b,
    {
        let mut offset = 0;
        fields.into_iter().map(move |ty| match self {
            Source::Memory(mem) => {
                let mem = next_field_offset(&mut offset, types, &ty, mem);
                Source::Memory(mem)
            }
            Source::Stack(stack) => {
                let cnt = types.flat_types(&ty).unwrap().len() as u32;
                offset += cnt;
                Source::Stack(stack.slice((offset - cnt) as usize..offset as usize))
            }
        })
    }

    /// Returns the corresponding discriminant source and payload source f
    fn payload_src(
        &self,
        types: &ComponentTypesBuilder,
        info: &VariantInfo,
        case: Option<&InterfaceType>,
    ) -> Source<'a> {
        match self {
            Source::Stack(s) => {
                let flat_len = match case {
                    Some(case) => types.flat_types(case).unwrap().len(),
                    None => 0,
                };
                Source::Stack(s.slice(1..s.locals.len()).slice(0..flat_len))
            }
            Source::Memory(mem) => {
                let mem = if mem.opts.memory64 {
                    mem.bump(info.payload_offset64)
                } else {
                    mem.bump(info.payload_offset32)
                };
                Source::Memory(mem)
            }
        }
    }

    fn opts(&self) -> &'a Options {
        match self {
            Source::Stack(s) => s.opts,
            Source::Memory(mem) => mem.opts,
        }
    }
}

impl<'a> Destination<'a> {
    /// Same as `Source::record_field_srcs` but for destinations.
    fn record_field_dsts<'b>(
        &'b self,
        types: &'b ComponentTypesBuilder,
        fields: impl IntoIterator<Item = InterfaceType> + 'b,
    ) -> impl Iterator<Item = Destination> + 'b
    where
        'a: 'b,
    {
        let mut offset = 0;
        fields.into_iter().map(move |ty| match self {
            Destination::Memory(mem) => {
                let mem = next_field_offset(&mut offset, types, &ty, mem);
                Destination::Memory(mem)
            }
            Destination::Stack(s, opts) => {
                let cnt = types.flat_types(&ty).unwrap().len() as u32;
                offset += cnt;
                Destination::Stack(&s[(offset - cnt) as usize..offset as usize], opts)
            }
        })
    }

    /// Returns the corresponding discriminant source and payload source f
    fn payload_dst(
        &self,
        types: &ComponentTypesBuilder,
        info: &VariantInfo,
        case: Option<&InterfaceType>,
    ) -> Destination {
        match self {
            Destination::Stack(s, opts) => {
                let flat_len = match case {
                    Some(case) => types.flat_types(case).unwrap().len(),
                    None => 0,
                };
                Destination::Stack(&s[1..][..flat_len], opts)
            }
            Destination::Memory(mem) => {
                let mem = if mem.opts.memory64 {
                    mem.bump(info.payload_offset64)
                } else {
                    mem.bump(info.payload_offset32)
                };
                Destination::Memory(mem)
            }
        }
    }

    fn opts(&self) -> &'a Options {
        match self {
            Destination::Stack(_, opts) => opts,
            Destination::Memory(mem) => mem.opts,
        }
    }
}

fn next_field_offset<'a>(
    offset: &mut u32,
    types: &ComponentTypesBuilder,
    field: &InterfaceType,
    mem: &Memory<'a>,
) -> Memory<'a> {
    let abi = types.canonical_abi(field);
    let offset = if mem.opts.memory64 {
        abi.next_field64(offset)
    } else {
        abi.next_field32(offset)
    };
    mem.bump(offset)
}

impl<'a> Memory<'a> {
    fn memarg(&self, align: u32) -> MemArg {
        MemArg {
            offset: u64::from(self.offset),
            align,
            memory_index: self.opts.memory.unwrap().as_u32(),
        }
    }

    fn bump(&self, offset: u32) -> Memory<'a> {
        Memory {
            opts: self.opts,
            addr: TempLocal::new(self.addr.idx, self.addr.ty),
            offset: self.offset + offset,
        }
    }
}

impl<'a> Stack<'a> {
    fn slice(&self, range: Range<usize>) -> Stack<'a> {
        Stack {
            locals: &self.locals[range],
            opts: self.opts,
        }
    }
}

struct VariantCase<'a> {
    src_i: u32,
    src_ty: Option<&'a InterfaceType>,
    dst_i: u32,
    dst_ty: Option<&'a InterfaceType>,
}

fn variant_info<'a, I>(types: &ComponentTypesBuilder, cases: I) -> VariantInfo
where
    I: IntoIterator<Item = Option<&'a InterfaceType>>,
    I::IntoIter: ExactSizeIterator,
{
    VariantInfo::new(
        cases
            .into_iter()
            .map(|ty| ty.map(|ty| types.canonical_abi(ty))),
    )
    .0
}

enum MallocSize {
    Const(u32),
    Local(u32),
}

struct WasmString<'a> {
    ptr: TempLocal,
    len: TempLocal,
    opts: &'a Options,
}

struct TempLocal {
    idx: u32,
    ty: ValType,
    needs_free: bool,
}

impl TempLocal {
    fn new(idx: u32, ty: ValType) -> TempLocal {
        TempLocal {
            idx,
            ty,
            needs_free: false,
        }
    }
}

impl std::ops::Drop for TempLocal {
    fn drop(&mut self) {
        if self.needs_free {
            panic!("temporary local not free'd");
        }
    }
}

impl From<FlatType> for ValType {
    fn from(ty: FlatType) -> ValType {
        match ty {
            FlatType::I32 => ValType::I32,
            FlatType::I64 => ValType::I64,
            FlatType::F32 => ValType::F32,
            FlatType::F64 => ValType::F64,
        }
    }
}