1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
use anyhow::Error;
use std::any::Any;
use std::cell::Cell;
use std::io;
use std::marker::PhantomData;
use std::ops::Range;
use std::panic::{self, AssertUnwindSafe};
cfg_if::cfg_if! {
if #[cfg(windows)] {
mod windows;
use windows as imp;
} else if #[cfg(unix)] {
mod unix;
use unix as imp;
} else {
compile_error!("fibers are not supported on this platform");
}
}
/// Represents an execution stack to use for a fiber.
pub struct FiberStack(imp::FiberStack);
impl FiberStack {
/// Creates a new fiber stack of the given size.
pub fn new(size: usize) -> io::Result<Self> {
Ok(Self(imp::FiberStack::new(size)?))
}
/// Creates a new fiber stack of the given size.
pub fn from_custom(custom: Box<dyn RuntimeFiberStack>) -> io::Result<Self> {
Ok(Self(imp::FiberStack::from_custom(custom)?))
}
/// Creates a new fiber stack with the given pointer to the bottom of the
/// stack plus the byte length of the stack.
///
/// The `bottom` pointer should be addressable for `len` bytes. The page
/// beneath `bottom` should be unmapped as a guard page.
///
/// # Safety
///
/// This is unsafe because there is no validation of the given pointer.
///
/// The caller must properly allocate the stack space with a guard page and
/// make the pages accessible for correct behavior.
pub unsafe fn from_raw_parts(bottom: *mut u8, len: usize) -> io::Result<Self> {
Ok(Self(imp::FiberStack::from_raw_parts(bottom, len)?))
}
/// Gets the top of the stack.
///
/// Returns `None` if the platform does not support getting the top of the
/// stack.
pub fn top(&self) -> Option<*mut u8> {
self.0.top()
}
/// Returns the range of where this stack resides in memory if the platform
/// supports it.
pub fn range(&self) -> Option<Range<usize>> {
self.0.range()
}
}
/// A creator of RuntimeFiberStacks.
pub unsafe trait RuntimeFiberStackCreator: Send + Sync {
/// Creates a new RuntimeFiberStack with the specified size, guard pages should be included,
/// memory should be zeroed.
///
/// This is useful to plugin previously allocated memory instead of mmap'ing a new stack for
/// every instance.
fn new_stack(&self, size: usize) -> Result<Box<dyn RuntimeFiberStack>, Error>;
}
/// A fiber stack backed by custom memory.
pub unsafe trait RuntimeFiberStack: Send + Sync {
/// The top of the allocated stack.
fn top(&self) -> *mut u8;
/// The valid range of the stack without guard pages.
fn range(&self) -> Range<usize>;
}
pub struct Fiber<'a, Resume, Yield, Return> {
stack: FiberStack,
inner: imp::Fiber,
done: Cell<bool>,
_phantom: PhantomData<&'a (Resume, Yield, Return)>,
}
pub struct Suspend<Resume, Yield, Return> {
inner: imp::Suspend,
_phantom: PhantomData<(Resume, Yield, Return)>,
}
enum RunResult<Resume, Yield, Return> {
Executing,
Resuming(Resume),
Yield(Yield),
Returned(Return),
Panicked(Box<dyn Any + Send>),
}
impl<'a, Resume, Yield, Return> Fiber<'a, Resume, Yield, Return> {
/// Creates a new fiber which will execute `func` on the given stack.
///
/// This function returns a `Fiber` which, when resumed, will execute `func`
/// to completion. When desired the `func` can suspend itself via
/// `Fiber::suspend`.
pub fn new(
stack: FiberStack,
func: impl FnOnce(Resume, &mut Suspend<Resume, Yield, Return>) -> Return + 'a,
) -> io::Result<Self> {
let inner = imp::Fiber::new(&stack.0, func)?;
Ok(Self {
stack,
inner,
done: Cell::new(false),
_phantom: PhantomData,
})
}
/// Resumes execution of this fiber.
///
/// This function will transfer execution to the fiber and resume from where
/// it last left off.
///
/// Returns `true` if the fiber finished or `false` if the fiber was
/// suspended in the middle of execution.
///
/// # Panics
///
/// Panics if the current thread is already executing a fiber or if this
/// fiber has already finished.
///
/// Note that if the fiber itself panics during execution then the panic
/// will be propagated to this caller.
pub fn resume(&self, val: Resume) -> Result<Return, Yield> {
assert!(!self.done.replace(true), "cannot resume a finished fiber");
let result = Cell::new(RunResult::Resuming(val));
self.inner.resume(&self.stack.0, &result);
match result.into_inner() {
RunResult::Resuming(_) | RunResult::Executing => unreachable!(),
RunResult::Yield(y) => {
self.done.set(false);
Err(y)
}
RunResult::Returned(r) => Ok(r),
RunResult::Panicked(payload) => std::panic::resume_unwind(payload),
}
}
/// Returns whether this fiber has finished executing.
pub fn done(&self) -> bool {
self.done.get()
}
/// Gets the stack associated with this fiber.
pub fn stack(&self) -> &FiberStack {
&self.stack
}
}
impl<Resume, Yield, Return> Suspend<Resume, Yield, Return> {
/// Suspend execution of a currently running fiber.
///
/// This function will switch control back to the original caller of
/// `Fiber::resume`. This function will then return once the `Fiber::resume`
/// function is called again.
///
/// # Panics
///
/// Panics if the current thread is not executing a fiber from this library.
pub fn suspend(&mut self, value: Yield) -> Resume {
self.inner
.switch::<Resume, Yield, Return>(RunResult::Yield(value))
}
fn execute(
inner: imp::Suspend,
initial: Resume,
func: impl FnOnce(Resume, &mut Suspend<Resume, Yield, Return>) -> Return,
) {
let mut suspend = Suspend {
inner,
_phantom: PhantomData,
};
let result = panic::catch_unwind(AssertUnwindSafe(|| (func)(initial, &mut suspend)));
suspend.inner.switch::<Resume, Yield, Return>(match result {
Ok(result) => RunResult::Returned(result),
Err(panic) => RunResult::Panicked(panic),
});
}
}
impl<A, B, C> Drop for Fiber<'_, A, B, C> {
fn drop(&mut self) {
debug_assert!(self.done.get(), "fiber dropped without finishing");
}
}
#[cfg(test)]
mod tests {
use super::{Fiber, FiberStack};
use std::cell::Cell;
use std::panic::{self, AssertUnwindSafe};
use std::rc::Rc;
#[test]
fn small_stacks() {
Fiber::<(), (), ()>::new(FiberStack::new(0).unwrap(), |_, _| {})
.unwrap()
.resume(())
.unwrap();
Fiber::<(), (), ()>::new(FiberStack::new(1).unwrap(), |_, _| {})
.unwrap()
.resume(())
.unwrap();
}
#[test]
fn smoke() {
let hit = Rc::new(Cell::new(false));
let hit2 = hit.clone();
let fiber = Fiber::<(), (), ()>::new(FiberStack::new(1024 * 1024).unwrap(), move |_, _| {
hit2.set(true);
})
.unwrap();
assert!(!hit.get());
fiber.resume(()).unwrap();
assert!(hit.get());
}
#[test]
fn suspend_and_resume() {
let hit = Rc::new(Cell::new(false));
let hit2 = hit.clone();
let fiber = Fiber::<(), (), ()>::new(FiberStack::new(1024 * 1024).unwrap(), move |_, s| {
s.suspend(());
hit2.set(true);
s.suspend(());
})
.unwrap();
assert!(!hit.get());
assert!(fiber.resume(()).is_err());
assert!(!hit.get());
assert!(fiber.resume(()).is_err());
assert!(hit.get());
assert!(fiber.resume(()).is_ok());
assert!(hit.get());
}
#[test]
fn backtrace_traces_to_host() {
#[inline(never)] // try to get this to show up in backtraces
fn look_for_me() {
run_test();
}
fn assert_contains_host() {
let trace = backtrace::Backtrace::new();
println!("{:?}", trace);
assert!(
trace
.frames()
.iter()
.flat_map(|f| f.symbols())
.filter_map(|s| Some(s.name()?.to_string()))
.any(|s| s.contains("look_for_me"))
// TODO: apparently windows unwind routines don't unwind through fibers, so this will always fail. Is there a way we can fix that?
|| cfg!(windows)
// TODO: the system libunwind is broken (#2808)
|| cfg!(all(target_os = "macos", target_arch = "aarch64"))
);
}
fn run_test() {
let fiber =
Fiber::<(), (), ()>::new(FiberStack::new(1024 * 1024).unwrap(), move |(), s| {
assert_contains_host();
s.suspend(());
assert_contains_host();
s.suspend(());
assert_contains_host();
})
.unwrap();
assert!(fiber.resume(()).is_err());
assert!(fiber.resume(()).is_err());
assert!(fiber.resume(()).is_ok());
}
look_for_me();
}
#[test]
fn panics_propagated() {
let a = Rc::new(Cell::new(false));
let b = SetOnDrop(a.clone());
let fiber =
Fiber::<(), (), ()>::new(FiberStack::new(1024 * 1024).unwrap(), move |(), _s| {
let _ = &b;
panic!();
})
.unwrap();
assert!(panic::catch_unwind(AssertUnwindSafe(|| fiber.resume(()))).is_err());
assert!(a.get());
struct SetOnDrop(Rc<Cell<bool>>);
impl Drop for SetOnDrop {
fn drop(&mut self) {
self.0.set(true);
}
}
}
#[test]
fn suspend_and_resume_values() {
let fiber = Fiber::new(FiberStack::new(1024 * 1024).unwrap(), move |first, s| {
assert_eq!(first, 2.0);
assert_eq!(s.suspend(4), 3.0);
"hello".to_string()
})
.unwrap();
assert_eq!(fiber.resume(2.0), Err(4));
assert_eq!(fiber.resume(3.0), Ok("hello".to_string()));
}
}