1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
//! Memory management for executable code.
use crate::subslice_range;
use crate::unwind::UnwindRegistration;
use anyhow::{anyhow, bail, Context, Result};
use object::read::{File, Object, ObjectSection};
use object::ObjectSymbol;
use std::mem::ManuallyDrop;
use std::ops::Range;
use wasmtime_environ::obj;
use wasmtime_jit_icache_coherence as icache_coherence;
use wasmtime_runtime::libcalls;
use wasmtime_runtime::MmapVec;
/// Management of executable memory within a `MmapVec`
///
/// This type consumes ownership of a region of memory and will manage the
/// executable permissions of the contained JIT code as necessary.
pub struct CodeMemory {
// NB: these are `ManuallyDrop` because `unwind_registration` must be
// dropped first since it refers to memory owned by `mmap`.
mmap: ManuallyDrop<MmapVec>,
unwind_registration: ManuallyDrop<Option<UnwindRegistration>>,
published: bool,
enable_branch_protection: bool,
relocations: Vec<(usize, obj::LibCall)>,
// Ranges within `self.mmap` of where the particular sections lie.
text: Range<usize>,
unwind: Range<usize>,
trap_data: Range<usize>,
wasm_data: Range<usize>,
address_map_data: Range<usize>,
func_name_data: Range<usize>,
info_data: Range<usize>,
dwarf: Range<usize>,
}
impl Drop for CodeMemory {
fn drop(&mut self) {
// Drop `unwind_registration` before `self.mmap`
unsafe {
ManuallyDrop::drop(&mut self.unwind_registration);
ManuallyDrop::drop(&mut self.mmap);
}
}
}
fn _assert() {
fn _assert_send_sync<T: Send + Sync>() {}
_assert_send_sync::<CodeMemory>();
}
impl CodeMemory {
/// Creates a new `CodeMemory` by taking ownership of the provided
/// `MmapVec`.
///
/// The returned `CodeMemory` manages the internal `MmapVec` and the
/// `publish` method is used to actually make the memory executable.
pub fn new(mmap: MmapVec) -> Result<Self> {
let obj = File::parse(&mmap[..])
.with_context(|| "failed to parse internal compilation artifact")?;
let mut relocations = Vec::new();
let mut text = 0..0;
let mut unwind = 0..0;
let mut enable_branch_protection = None;
let mut trap_data = 0..0;
let mut wasm_data = 0..0;
let mut address_map_data = 0..0;
let mut func_name_data = 0..0;
let mut info_data = 0..0;
let mut dwarf = 0..0;
for section in obj.sections() {
let data = section.data()?;
let name = section.name()?;
let range = subslice_range(data, &mmap);
// Double-check that sections are all aligned properly.
if section.align() != 0 && data.len() != 0 {
if (data.as_ptr() as u64 - mmap.as_ptr() as u64) % section.align() != 0 {
bail!(
"section `{}` isn't aligned to {:#x}",
section.name().unwrap_or("ERROR"),
section.align()
);
}
}
match name {
obj::ELF_WASM_BTI => match data.len() {
1 => enable_branch_protection = Some(data[0] != 0),
_ => bail!("invalid `{name}` section"),
},
".text" => {
text = range;
// The text section might have relocations for things like
// libcalls which need to be applied, so handle those here.
//
// Note that only a small subset of possible relocations are
// handled. Only those required by the compiler side of
// things are processed.
for (offset, reloc) in section.relocations() {
assert_eq!(reloc.kind(), object::RelocationKind::Absolute);
assert_eq!(reloc.encoding(), object::RelocationEncoding::Generic);
assert_eq!(usize::from(reloc.size()), std::mem::size_of::<usize>());
assert_eq!(reloc.addend(), 0);
let sym = match reloc.target() {
object::RelocationTarget::Symbol(id) => id,
other => panic!("unknown relocation target {other:?}"),
};
let sym = obj.symbol_by_index(sym).unwrap().name().unwrap();
let libcall = obj::LibCall::from_str(sym)
.unwrap_or_else(|| panic!("unknown symbol relocation: {sym}"));
let offset = usize::try_from(offset).unwrap();
relocations.push((offset, libcall));
}
}
UnwindRegistration::SECTION_NAME => unwind = range,
obj::ELF_WASM_DATA => wasm_data = range,
obj::ELF_WASMTIME_ADDRMAP => address_map_data = range,
obj::ELF_WASMTIME_TRAPS => trap_data = range,
obj::ELF_NAME_DATA => func_name_data = range,
obj::ELF_WASMTIME_INFO => info_data = range,
obj::ELF_WASMTIME_DWARF => dwarf = range,
_ => log::debug!("ignoring section {name}"),
}
}
Ok(Self {
mmap: ManuallyDrop::new(mmap),
unwind_registration: ManuallyDrop::new(None),
published: false,
enable_branch_protection: enable_branch_protection
.ok_or_else(|| anyhow!("missing `{}` section", obj::ELF_WASM_BTI))?,
text,
unwind,
trap_data,
address_map_data,
func_name_data,
dwarf,
info_data,
wasm_data,
relocations,
})
}
/// Returns a reference to the underlying `MmapVec` this memory owns.
pub fn mmap(&self) -> &MmapVec {
&self.mmap
}
/// Returns the contents of the text section of the ELF executable this
/// represents.
pub fn text(&self) -> &[u8] {
&self.mmap[self.text.clone()]
}
/// Returns the contents of the `ELF_WASMTIME_DWARF` section.
pub fn dwarf(&self) -> &[u8] {
&self.mmap[self.dwarf.clone()]
}
/// Returns the data in the `ELF_NAME_DATA` section.
pub fn func_name_data(&self) -> &[u8] {
&self.mmap[self.func_name_data.clone()]
}
/// Returns the concatenated list of all data associated with this wasm
/// module.
///
/// This is used for initialization of memories and all data ranges stored
/// in a `Module` are relative to the slice returned here.
pub fn wasm_data(&self) -> &[u8] {
&self.mmap[self.wasm_data.clone()]
}
/// Returns the encoded address map section used to pass to
/// `wasmtime_environ::lookup_file_pos`.
pub fn address_map_data(&self) -> &[u8] {
&self.mmap[self.address_map_data.clone()]
}
/// Returns the contents of the `ELF_WASMTIME_INFO` section, or an empty
/// slice if it wasn't found.
pub fn wasmtime_info(&self) -> &[u8] {
&self.mmap[self.info_data.clone()]
}
/// Returns the contents of the `ELF_WASMTIME_TRAPS` section, or an empty
/// slice if it wasn't found.
pub fn trap_data(&self) -> &[u8] {
&self.mmap[self.trap_data.clone()]
}
/// Publishes the internal ELF image to be ready for execution.
///
/// This method can only be called once and will panic if called twice. This
/// will parse the ELF image from the original `MmapVec` and do everything
/// necessary to get it ready for execution, including:
///
/// * Change page protections from read/write to read/execute.
/// * Register unwinding information with the OS
///
/// After this function executes all JIT code should be ready to execute.
pub fn publish(&mut self) -> Result<()> {
assert!(!self.published);
self.published = true;
if self.text().is_empty() {
return Ok(());
}
// The unsafety here comes from a few things:
//
// * We're actually updating some page protections to executable memory.
//
// * We're registering unwinding information which relies on the
// correctness of the information in the first place. This applies to
// both the actual unwinding tables as well as the validity of the
// pointers we pass in itself.
unsafe {
// First, if necessary, apply relocations. This can happen for
// things like libcalls which happen late in the lowering process
// that don't go through the Wasm-based libcalls layer that's
// indirected through the `VMContext`. Note that most modules won't
// have relocations, so this typically doesn't do anything.
self.apply_relocations()?;
// Next freeze the contents of this image by making all of the
// memory readonly. Nothing after this point should ever be modified
// so commit everything. For a compiled-in-memory image this will
// mean IPIs to evict writable mappings from other cores. For
// loaded-from-disk images this shouldn't result in IPIs so long as
// there weren't any relocations because nothing should have
// otherwise written to the image at any point either.
self.mmap.make_readonly(0..self.mmap.len())?;
let text = self.text();
// Clear the newly allocated code from cache if the processor requires it
//
// Do this before marking the memory as R+X, technically we should be able to do it after
// but there are some CPU's that have had errata about doing this with read only memory.
icache_coherence::clear_cache(text.as_ptr().cast(), text.len())
.expect("Failed cache clear");
// Switch the executable portion from readonly to read/execute.
self.mmap
.make_executable(self.text.clone(), self.enable_branch_protection)
.expect("unable to make memory executable");
// Flush any in-flight instructions from the pipeline
icache_coherence::pipeline_flush_mt().expect("Failed pipeline flush");
// With all our memory set up use the platform-specific
// `UnwindRegistration` implementation to inform the general
// runtime that there's unwinding information available for all
// our just-published JIT functions.
self.register_unwind_info()?;
}
Ok(())
}
unsafe fn apply_relocations(&mut self) -> Result<()> {
if self.relocations.is_empty() {
return Ok(());
}
for (offset, libcall) in self.relocations.iter() {
let offset = self.text.start + offset;
let libcall = match libcall {
obj::LibCall::FloorF32 => libcalls::relocs::floorf32 as usize,
obj::LibCall::FloorF64 => libcalls::relocs::floorf64 as usize,
obj::LibCall::NearestF32 => libcalls::relocs::nearestf32 as usize,
obj::LibCall::NearestF64 => libcalls::relocs::nearestf64 as usize,
obj::LibCall::CeilF32 => libcalls::relocs::ceilf32 as usize,
obj::LibCall::CeilF64 => libcalls::relocs::ceilf64 as usize,
obj::LibCall::TruncF32 => libcalls::relocs::truncf32 as usize,
obj::LibCall::TruncF64 => libcalls::relocs::truncf64 as usize,
obj::LibCall::FmaF32 => libcalls::relocs::fmaf32 as usize,
obj::LibCall::FmaF64 => libcalls::relocs::fmaf64 as usize,
#[cfg(target_arch = "x86_64")]
obj::LibCall::X86Pshufb => libcalls::relocs::x86_pshufb as usize,
#[cfg(not(target_arch = "x86_64"))]
obj::LibCall::X86Pshufb => unreachable!(),
};
self.mmap
.as_mut_ptr()
.add(offset)
.cast::<usize>()
.write_unaligned(libcall);
}
Ok(())
}
unsafe fn register_unwind_info(&mut self) -> Result<()> {
if self.unwind.len() == 0 {
return Ok(());
}
let text = self.text();
let unwind_info = &self.mmap[self.unwind.clone()];
let registration =
UnwindRegistration::new(text.as_ptr(), unwind_info.as_ptr(), unwind_info.len())
.context("failed to create unwind info registration")?;
*self.unwind_registration = Some(registration);
Ok(())
}
}