1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
//! An `Instance` contains all the runtime state used by execution of a
//! wasm module (except its callstack and register state). An
//! `InstanceHandle` is a reference-counting handle for an `Instance`.

use crate::export::Export;
use crate::externref::VMExternRefActivationsTable;
use crate::memory::{Memory, RuntimeMemoryCreator};
use crate::table::{Table, TableElement, TableElementType};
use crate::vmcontext::{
    VMBuiltinFunctionsArray, VMContext, VMFuncRef, VMFunctionImport, VMGlobalDefinition,
    VMGlobalImport, VMMemoryDefinition, VMMemoryImport, VMOpaqueContext, VMRuntimeLimits,
    VMTableDefinition, VMTableImport,
};
use crate::{
    ExportFunction, ExportGlobal, ExportMemory, ExportTable, Imports, ModuleRuntimeInfo,
    SendSyncPtr, Store, VMFunctionBody, VMSharedSignatureIndex, WasmFault,
};
use anyhow::Error;
use anyhow::Result;
use sptr::Strict;
use std::alloc::{self, Layout};
use std::any::Any;
use std::convert::TryFrom;
use std::ops::Range;
use std::ptr::NonNull;
use std::sync::atomic::AtomicU64;
use std::sync::Arc;
use std::{mem, ptr};
use wasmtime_environ::{
    packed_option::ReservedValue, DataIndex, DefinedGlobalIndex, DefinedMemoryIndex,
    DefinedTableIndex, ElemIndex, EntityIndex, EntityRef, EntitySet, FuncIndex, GlobalIndex,
    GlobalInit, HostPtr, MemoryIndex, Module, PrimaryMap, SignatureIndex, TableIndex,
    TableInitialValue, Trap, VMOffsets, WasmHeapType, WasmRefType, WasmType, VMCONTEXT_MAGIC,
};

mod allocator;

pub use allocator::*;

/// A type that roughly corresponds to a WebAssembly instance, but is also used
/// for host-defined objects.
///
/// This structure is is never allocated directly but is instead managed through
/// an `InstanceHandle`. This structure ends with a `VMContext` which has a
/// dynamic size corresponding to the `module` configured within. Memory
/// management of this structure is always externalized.
///
/// Instances here can correspond to actual instantiated modules, but it's also
/// used ubiquitously for host-defined objects. For example creating a
/// host-defined memory will have a `module` that looks like it exports a single
/// memory (and similar for other constructs).
///
/// This `Instance` type is used as a ubiquitous representation for WebAssembly
/// values, whether or not they were created on the host or through a module.
#[repr(C)] // ensure that the vmctx field is last.
pub struct Instance {
    /// The runtime info (corresponding to the "compiled module"
    /// abstraction in higher layers) that is retained and needed for
    /// lazy initialization. This provides access to the underlying
    /// Wasm module entities, the compiled JIT code, metadata about
    /// functions, lazy initialization state, etc.
    runtime_info: Arc<dyn ModuleRuntimeInfo>,

    /// WebAssembly linear memory data.
    ///
    /// This is where all runtime information about defined linear memories in
    /// this module lives.
    memories: PrimaryMap<DefinedMemoryIndex, Memory>,

    /// WebAssembly table data.
    ///
    /// Like memories, this is only for defined tables in the module and
    /// contains all of their runtime state.
    tables: PrimaryMap<DefinedTableIndex, Table>,

    /// Stores the dropped passive element segments in this instantiation by index.
    /// If the index is present in the set, the segment has been dropped.
    dropped_elements: EntitySet<ElemIndex>,

    /// Stores the dropped passive data segments in this instantiation by index.
    /// If the index is present in the set, the segment has been dropped.
    dropped_data: EntitySet<DataIndex>,

    /// Hosts can store arbitrary per-instance information here.
    ///
    /// Most of the time from Wasmtime this is `Box::new(())`, a noop
    /// allocation, but some host-defined objects will store their state here.
    host_state: Box<dyn Any + Send + Sync>,

    /// Instance of this instance within its `InstanceAllocator` trait
    /// implementation.
    ///
    /// This is always 0 for the on-demand instance allocator and it's the
    /// index of the slot in the pooling allocator.
    index: usize,

    /// A pointer to the `vmctx` field at the end of the `Instance`.
    ///
    /// If you're looking at this a reasonable question would be "why do we need
    /// a pointer to ourselves?" because after all the pointer's value is
    /// trivially derivable from any `&Instance` pointer. The rationale for this
    /// field's existence is subtle, but it's required for correctness. The
    /// short version is "this makes miri happy".
    ///
    /// The long version of why this field exists is that the rules that MIRI
    /// uses to ensure pointers are used correctly have various conditions on
    /// them depend on how pointers are used. More specifically if `*mut T` is
    /// derived from `&mut T`, then that invalidates all prior pointers drived
    /// from the `&mut T`. This means that while we liberally want to re-acquire
    /// a `*mut VMContext` throughout the implementation of `Instance` the
    /// trivial way, a function `fn vmctx(&mut Instance) -> *mut VMContext`
    /// would effectively invalidate all prior `*mut VMContext` pointers
    /// acquired. The purpose of this field is to serve as a sort of
    /// source-of-truth for where `*mut VMContext` pointers come from.
    ///
    /// This field is initialized when the `Instance` is created with the
    /// original allocation's pointer. That means that the provenance of this
    /// pointer contains the entire allocation (both instance and `VMContext`).
    /// This provenance bit is then "carried through" where `fn vmctx` will base
    /// all returned pointers on this pointer itself. This provides the means of
    /// never invalidating this pointer throughout MIRI and additionally being
    /// able to still temporarily have `&mut Instance` methods and such.
    ///
    /// It's important to note, though, that this is not here purely for MIRI.
    /// The careful construction of the `fn vmctx` method has ramifications on
    /// the LLVM IR generated, for example. A historical CVE on Wasmtime,
    /// GHSA-ch89-5g45-qwc7, was caused due to relying on undefined behavior. By
    /// deriving VMContext pointers from this pointer it specifically hints to
    /// LLVM that trickery is afoot and it properly informs `noalias` and such
    /// annotations and analysis. More-or-less this pointer is actually loaded
    /// in LLVM IR which helps defeat otherwise present aliasing optimizations,
    /// which we want, since writes to this should basically never be optimized
    /// out.
    ///
    /// As a final note it's worth pointing out that the machine code generated
    /// for accessing `fn vmctx` is still as one would expect. This member isn't
    /// actually ever loaded at runtime (or at least shouldn't be). Perhaps in
    /// the future if the memory consumption of this field is a problem we could
    /// shrink it slightly, but for now one extra pointer per wasm instance
    /// seems not too bad.
    vmctx_self_reference: SendSyncPtr<VMContext>,

    /// Additional context used by compiled wasm code. This field is last, and
    /// represents a dynamically-sized array that extends beyond the nominal
    /// end of the struct (similar to a flexible array member).
    vmctx: VMContext,
}

#[allow(clippy::cast_ptr_alignment)]
impl Instance {
    /// Create an instance at the given memory address.
    ///
    /// It is assumed the memory was properly aligned and the
    /// allocation was `alloc_size` in bytes.
    unsafe fn new(
        req: InstanceAllocationRequest,
        index: usize,
        memories: PrimaryMap<DefinedMemoryIndex, Memory>,
        tables: PrimaryMap<DefinedTableIndex, Table>,
    ) -> InstanceHandle {
        // The allocation must be *at least* the size required of `Instance`.
        let layout = Self::alloc_layout(req.runtime_info.offsets());
        let ptr = alloc::alloc(layout);
        if ptr.is_null() {
            alloc::handle_alloc_error(layout);
        }
        let ptr = ptr.cast::<Instance>();

        let module = req.runtime_info.module();
        let dropped_elements = EntitySet::with_capacity(module.passive_elements.len());
        let dropped_data = EntitySet::with_capacity(module.passive_data_map.len());

        ptr::write(
            ptr,
            Instance {
                runtime_info: req.runtime_info.clone(),
                index,
                memories,
                tables,
                dropped_elements,
                dropped_data,
                host_state: req.host_state,
                vmctx_self_reference: SendSyncPtr::new(
                    NonNull::new(ptr.cast::<u8>().add(mem::size_of::<Instance>()).cast()).unwrap(),
                ),
                vmctx: VMContext {
                    _marker: std::marker::PhantomPinned,
                },
            },
        );

        (*ptr).initialize_vmctx(module, req.runtime_info.offsets(), req.store, req.imports);
        InstanceHandle {
            instance: Some(SendSyncPtr::new(NonNull::new(ptr).unwrap())),
        }
    }

    /// Converts the provided `*mut VMContext` to an `Instance` pointer and runs
    /// the provided closure with the instance.
    ///
    /// This method will move the `vmctx` pointer backwards to point to the
    /// original `Instance` that precedes it. The closure is provided a
    /// temporary version of the `Instance` pointer with a constrained lifetime
    /// to the closure to ensure it doesn't accidentally escape.
    ///
    /// # Unsafety
    ///
    /// Callers must validate that the `vmctx` pointer is a valid allocation
    /// and that it's valid to acquire `&mut Instance` at this time. For example
    /// this can't be called twice on the same `VMContext` to get two active
    /// pointers to the same `Instance`.
    pub unsafe fn from_vmctx<R>(vmctx: *mut VMContext, f: impl FnOnce(&mut Instance) -> R) -> R {
        let ptr = vmctx
            .cast::<u8>()
            .sub(mem::size_of::<Instance>())
            .cast::<Instance>();
        f(&mut *ptr)
    }

    /// Helper function to access various locations offset from our `*mut
    /// VMContext` object.
    ///
    /// # Safety
    ///
    /// This method is unsafe because the `offset` must be within bounds of the
    /// `VMContext` object trailing this instance.
    unsafe fn vmctx_plus_offset<T>(&self, offset: u32) -> *const T {
        self.vmctx()
            .cast::<u8>()
            .add(usize::try_from(offset).unwrap())
            .cast()
    }

    /// Dual of `vmctx_plus_offset`, but for mutability.
    unsafe fn vmctx_plus_offset_mut<T>(&mut self, offset: u32) -> *mut T {
        self.vmctx()
            .cast::<u8>()
            .add(usize::try_from(offset).unwrap())
            .cast()
    }

    pub(crate) fn module(&self) -> &Arc<Module> {
        self.runtime_info.module()
    }

    #[inline]
    fn offsets(&self) -> &VMOffsets<HostPtr> {
        self.runtime_info.offsets()
    }

    /// Return the indexed `VMFunctionImport`.
    fn imported_function(&self, index: FuncIndex) -> &VMFunctionImport {
        unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmfunction_import(index)) }
    }

    /// Return the index `VMTableImport`.
    fn imported_table(&self, index: TableIndex) -> &VMTableImport {
        unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmtable_import(index)) }
    }

    /// Return the indexed `VMMemoryImport`.
    fn imported_memory(&self, index: MemoryIndex) -> &VMMemoryImport {
        unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmmemory_import(index)) }
    }

    /// Return the indexed `VMGlobalImport`.
    fn imported_global(&self, index: GlobalIndex) -> &VMGlobalImport {
        unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmglobal_import(index)) }
    }

    /// Return the indexed `VMTableDefinition`.
    #[allow(dead_code)]
    fn table(&mut self, index: DefinedTableIndex) -> VMTableDefinition {
        unsafe { *self.table_ptr(index) }
    }

    /// Updates the value for a defined table to `VMTableDefinition`.
    fn set_table(&mut self, index: DefinedTableIndex, table: VMTableDefinition) {
        unsafe {
            *self.table_ptr(index) = table;
        }
    }

    /// Return the indexed `VMTableDefinition`.
    fn table_ptr(&mut self, index: DefinedTableIndex) -> *mut VMTableDefinition {
        unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_vmtable_definition(index)) }
    }

    /// Get a locally defined or imported memory.
    pub(crate) fn get_memory(&self, index: MemoryIndex) -> VMMemoryDefinition {
        if let Some(defined_index) = self.module().defined_memory_index(index) {
            self.memory(defined_index)
        } else {
            let import = self.imported_memory(index);
            unsafe { VMMemoryDefinition::load(import.from) }
        }
    }

    /// Get a locally defined or imported memory.
    pub(crate) fn get_runtime_memory(&mut self, index: MemoryIndex) -> &mut Memory {
        if let Some(defined_index) = self.module().defined_memory_index(index) {
            unsafe { &mut *self.get_defined_memory(defined_index) }
        } else {
            let import = self.imported_memory(index);
            unsafe {
                let ptr =
                    Instance::from_vmctx(import.vmctx, |i| i.get_defined_memory(import.index));
                &mut *ptr
            }
        }
    }

    /// Return the indexed `VMMemoryDefinition`.
    fn memory(&self, index: DefinedMemoryIndex) -> VMMemoryDefinition {
        unsafe { VMMemoryDefinition::load(self.memory_ptr(index)) }
    }

    /// Set the indexed memory to `VMMemoryDefinition`.
    fn set_memory(&self, index: DefinedMemoryIndex, mem: VMMemoryDefinition) {
        unsafe {
            *self.memory_ptr(index) = mem;
        }
    }

    /// Return the indexed `VMMemoryDefinition`.
    fn memory_ptr(&self, index: DefinedMemoryIndex) -> *mut VMMemoryDefinition {
        unsafe { *self.vmctx_plus_offset(self.offsets().vmctx_vmmemory_pointer(index)) }
    }

    /// Return the indexed `VMGlobalDefinition`.
    fn global(&mut self, index: DefinedGlobalIndex) -> &VMGlobalDefinition {
        unsafe { &*self.global_ptr(index) }
    }

    /// Return the indexed `VMGlobalDefinition`.
    fn global_ptr(&mut self, index: DefinedGlobalIndex) -> *mut VMGlobalDefinition {
        unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_vmglobal_definition(index)) }
    }

    /// Get a raw pointer to the global at the given index regardless whether it
    /// is defined locally or imported from another module.
    ///
    /// Panics if the index is out of bound or is the reserved value.
    pub(crate) fn defined_or_imported_global_ptr(
        &mut self,
        index: GlobalIndex,
    ) -> *mut VMGlobalDefinition {
        if let Some(index) = self.module().defined_global_index(index) {
            self.global_ptr(index)
        } else {
            self.imported_global(index).from
        }
    }

    /// Return a pointer to the interrupts structure
    pub fn runtime_limits(&mut self) -> *mut *const VMRuntimeLimits {
        unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_runtime_limits()) }
    }

    /// Return a pointer to the global epoch counter used by this instance.
    pub fn epoch_ptr(&mut self) -> *mut *const AtomicU64 {
        unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_epoch_ptr()) }
    }

    /// Return a pointer to the `VMExternRefActivationsTable`.
    pub fn externref_activations_table(&mut self) -> *mut *mut VMExternRefActivationsTable {
        unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_externref_activations_table()) }
    }

    /// Gets a pointer to this instance's `Store` which was originally
    /// configured on creation.
    ///
    /// # Panics
    ///
    /// This will panic if the originally configured store was `None`. That can
    /// happen for host functions so host functions can't be queried what their
    /// original `Store` was since it's just retained as null (since host
    /// functions are shared amongst threads and don't all share the same
    /// store).
    #[inline]
    pub fn store(&self) -> *mut dyn Store {
        let ptr =
            unsafe { *self.vmctx_plus_offset::<*mut dyn Store>(self.offsets().vmctx_store()) };
        assert!(!ptr.is_null());
        ptr
    }

    pub(crate) unsafe fn set_store(&mut self, store: Option<*mut dyn Store>) {
        if let Some(store) = store {
            *self.vmctx_plus_offset_mut(self.offsets().vmctx_store()) = store;
            *self.runtime_limits() = (*store).vmruntime_limits();
            *self.epoch_ptr() = (*store).epoch_ptr();
            *self.externref_activations_table() = (*store).externref_activations_table().0;
        } else {
            assert_eq!(
                mem::size_of::<*mut dyn Store>(),
                mem::size_of::<[*mut (); 2]>()
            );
            *self.vmctx_plus_offset_mut::<[*mut (); 2]>(self.offsets().vmctx_store()) =
                [ptr::null_mut(), ptr::null_mut()];

            *self.runtime_limits() = ptr::null_mut();
            *self.epoch_ptr() = ptr::null_mut();
            *self.externref_activations_table() = ptr::null_mut();
        }
    }

    pub(crate) unsafe fn set_callee(&mut self, callee: Option<NonNull<VMFunctionBody>>) {
        *self.vmctx_plus_offset_mut(self.offsets().vmctx_callee()) =
            callee.map_or(ptr::null_mut(), |c| c.as_ptr());
    }

    /// Return a reference to the vmctx used by compiled wasm code.
    #[inline]
    pub fn vmctx(&self) -> *mut VMContext {
        // The definition of this method is subtle but intentional. The goal
        // here is that effectively this should return `&mut self.vmctx`, but
        // it's not quite so simple. Some more documentation is available on the
        // `vmctx_self_reference` field, but the general idea is that we're
        // creating a pointer to return with proper provenance. Provenance is
        // still in the works in Rust at the time of this writing but the load
        // of the `self.vmctx_self_reference` field is important here as it
        // affects how LLVM thinks about aliasing with respect to the returned
        // pointer.
        //
        // The intention of this method is to codegen to machine code as `&mut
        // self.vmctx`, however. While it doesn't show up like this in LLVM IR
        // (there's an actual load of the field) it does look like that by the
        // time the backend runs. (that's magic to me, the backend removing
        // loads...)
        //
        // As a final minor note, strict provenance APIs are not stable on Rust
        // today so the `sptr` crate is used. This crate provides the extension
        // trait `Strict` but the method names conflict with the nightly methods
        // so a different syntax is used to invoke methods here.
        let addr = std::ptr::addr_of!(self.vmctx);
        Strict::with_addr(self.vmctx_self_reference.as_ptr(), Strict::addr(addr))
    }

    fn get_exported_func(&mut self, index: FuncIndex) -> ExportFunction {
        let func_ref = self.get_func_ref(index).unwrap();
        let func_ref = NonNull::new(func_ref as *const VMFuncRef as *mut _).unwrap();
        ExportFunction { func_ref }
    }

    fn get_exported_table(&mut self, index: TableIndex) -> ExportTable {
        let (definition, vmctx) = if let Some(def_index) = self.module().defined_table_index(index)
        {
            (self.table_ptr(def_index), self.vmctx())
        } else {
            let import = self.imported_table(index);
            (import.from, import.vmctx)
        };
        ExportTable {
            definition,
            vmctx,
            table: self.module().table_plans[index].clone(),
        }
    }

    fn get_exported_memory(&mut self, index: MemoryIndex) -> ExportMemory {
        let (definition, vmctx, def_index) =
            if let Some(def_index) = self.module().defined_memory_index(index) {
                (self.memory_ptr(def_index), self.vmctx(), def_index)
            } else {
                let import = self.imported_memory(index);
                (import.from, import.vmctx, import.index)
            };
        ExportMemory {
            definition,
            vmctx,
            memory: self.module().memory_plans[index].clone(),
            index: def_index,
        }
    }

    fn get_exported_global(&mut self, index: GlobalIndex) -> ExportGlobal {
        ExportGlobal {
            definition: if let Some(def_index) = self.module().defined_global_index(index) {
                self.global_ptr(def_index)
            } else {
                self.imported_global(index).from
            },
            global: self.module().globals[index],
        }
    }

    /// Return an iterator over the exports of this instance.
    ///
    /// Specifically, it provides access to the key-value pairs, where the keys
    /// are export names, and the values are export declarations which can be
    /// resolved `lookup_by_declaration`.
    pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
        self.module().exports.iter()
    }

    /// Return a reference to the custom state attached to this instance.
    #[inline]
    pub fn host_state(&self) -> &dyn Any {
        &*self.host_state
    }

    /// Return the table index for the given `VMTableDefinition`.
    pub unsafe fn table_index(&mut self, table: &VMTableDefinition) -> DefinedTableIndex {
        let index = DefinedTableIndex::new(
            usize::try_from(
                (table as *const VMTableDefinition)
                    .offset_from(self.table_ptr(DefinedTableIndex::new(0))),
            )
            .unwrap(),
        );
        assert!(index.index() < self.tables.len());
        index
    }

    /// Grow memory by the specified amount of pages.
    ///
    /// Returns `None` if memory can't be grown by the specified amount
    /// of pages. Returns `Some` with the old size in bytes if growth was
    /// successful.
    pub(crate) fn memory_grow(
        &mut self,
        index: MemoryIndex,
        delta: u64,
    ) -> Result<Option<usize>, Error> {
        match self.module().defined_memory_index(index) {
            Some(idx) => self.defined_memory_grow(idx, delta),
            None => {
                let import = self.imported_memory(index);
                unsafe {
                    Instance::from_vmctx(import.vmctx, |i| {
                        i.defined_memory_grow(import.index, delta)
                    })
                }
            }
        }
    }

    fn defined_memory_grow(
        &mut self,
        idx: DefinedMemoryIndex,
        delta: u64,
    ) -> Result<Option<usize>, Error> {
        let store = unsafe { &mut *self.store() };
        let memory = &mut self.memories[idx];

        let result = unsafe { memory.grow(delta, Some(store)) };

        // Update the state used by a non-shared Wasm memory in case the base
        // pointer and/or the length changed.
        if memory.as_shared_memory().is_none() {
            let vmmemory = memory.vmmemory();
            self.set_memory(idx, vmmemory);
        }

        result
    }

    pub(crate) fn table_element_type(&mut self, table_index: TableIndex) -> TableElementType {
        unsafe { (*self.get_table(table_index)).element_type() }
    }

    /// Grow table by the specified amount of elements, filling them with
    /// `init_value`.
    ///
    /// Returns `None` if table can't be grown by the specified amount of
    /// elements, or if `init_value` is the wrong type of table element.
    pub(crate) fn table_grow(
        &mut self,
        table_index: TableIndex,
        delta: u32,
        init_value: TableElement,
    ) -> Result<Option<u32>, Error> {
        self.with_defined_table_index_and_instance(table_index, |i, instance| {
            instance.defined_table_grow(i, delta, init_value)
        })
    }

    fn defined_table_grow(
        &mut self,
        table_index: DefinedTableIndex,
        delta: u32,
        init_value: TableElement,
    ) -> Result<Option<u32>, Error> {
        let store = unsafe { &mut *self.store() };
        let table = self
            .tables
            .get_mut(table_index)
            .unwrap_or_else(|| panic!("no table for index {}", table_index.index()));

        let result = unsafe { table.grow(delta, init_value, store) };

        // Keep the `VMContext` pointers used by compiled Wasm code up to
        // date.
        let element = self.tables[table_index].vmtable();
        self.set_table(table_index, element);

        result
    }

    fn alloc_layout(offsets: &VMOffsets<HostPtr>) -> Layout {
        let size = mem::size_of::<Self>()
            .checked_add(usize::try_from(offsets.size_of_vmctx()).unwrap())
            .unwrap();
        let align = mem::align_of::<Self>();
        Layout::from_size_align(size, align).unwrap()
    }

    /// Construct a new VMFuncRef for the given function
    /// (imported or defined in this module) and store into the given
    /// location. Used during lazy initialization.
    ///
    /// Note that our current lazy-init scheme actually calls this every
    /// time the funcref pointer is fetched; this turns out to be better
    /// than tracking state related to whether it's been initialized
    /// before, because resetting that state on (re)instantiation is
    /// very expensive if there are many funcrefs.
    fn construct_func_ref(&mut self, index: FuncIndex, sig: SignatureIndex, into: *mut VMFuncRef) {
        let type_index = unsafe {
            let base: *const VMSharedSignatureIndex =
                *self.vmctx_plus_offset_mut(self.offsets().vmctx_signature_ids_array());
            *base.add(sig.index())
        };

        let func_ref = if let Some(def_index) = self.module().defined_func_index(index) {
            VMFuncRef {
                native_call: self
                    .runtime_info
                    .native_to_wasm_trampoline(def_index)
                    .expect("should have native-to-Wasm trampoline for escaping function"),
                array_call: self
                    .runtime_info
                    .array_to_wasm_trampoline(def_index)
                    .expect("should have array-to-Wasm trampoline for escaping function"),
                wasm_call: Some(self.runtime_info.function(def_index)),
                vmctx: VMOpaqueContext::from_vmcontext(self.vmctx()),
                type_index,
            }
        } else {
            let import = self.imported_function(index);
            VMFuncRef {
                native_call: import.native_call,
                array_call: import.array_call,
                wasm_call: Some(import.wasm_call),
                vmctx: import.vmctx,
                type_index,
            }
        };

        // Safety: we have a `&mut self`, so we have exclusive access
        // to this Instance.
        unsafe {
            std::ptr::write(into, func_ref);
        }
    }

    /// Get a `&VMFuncRef` for the given `FuncIndex`.
    ///
    /// Returns `None` if the index is the reserved index value.
    ///
    /// The returned reference is a stable reference that won't be moved and can
    /// be passed into JIT code.
    pub(crate) fn get_func_ref(&mut self, index: FuncIndex) -> Option<*mut VMFuncRef> {
        if index == FuncIndex::reserved_value() {
            return None;
        }

        // Safety: we have a `&mut self`, so we have exclusive access
        // to this Instance.
        unsafe {
            // For now, we eagerly initialize an funcref struct in-place
            // whenever asked for a reference to it. This is mostly
            // fine, because in practice each funcref is unlikely to be
            // requested more than a few times: once-ish for funcref
            // tables used for call_indirect (the usual compilation
            // strategy places each function in the table at most once),
            // and once or a few times when fetching exports via API.
            // Note that for any case driven by table accesses, the lazy
            // table init behaves like a higher-level cache layer that
            // protects this initialization from happening multiple
            // times, via that particular table at least.
            //
            // When `ref.func` becomes more commonly used or if we
            // otherwise see a use-case where this becomes a hotpath,
            // we can reconsider by using some state to track
            // "uninitialized" explicitly, for example by zeroing the
            // funcrefs (perhaps together with other
            // zeroed-at-instantiate-time state) or using a separate
            // is-initialized bitmap.
            //
            // We arrived at this design because zeroing memory is
            // expensive, so it's better for instantiation performance
            // if we don't have to track "is-initialized" state at
            // all!
            let func = &self.module().functions[index];
            let sig = func.signature;
            let func_ref: *mut VMFuncRef = self
                .vmctx_plus_offset_mut::<VMFuncRef>(self.offsets().vmctx_func_ref(func.func_ref));
            self.construct_func_ref(index, sig, func_ref);

            Some(func_ref)
        }
    }

    /// The `table.init` operation: initializes a portion of a table with a
    /// passive element.
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error when the range within the table is out of bounds
    /// or the range within the passive element is out of bounds.
    pub(crate) fn table_init(
        &mut self,
        table_index: TableIndex,
        elem_index: ElemIndex,
        dst: u32,
        src: u32,
        len: u32,
    ) -> Result<(), Trap> {
        // TODO: this `clone()` shouldn't be necessary but is used for now to
        // inform `rustc` that the lifetime of the elements here are
        // disconnected from the lifetime of `self`.
        let module = self.module().clone();

        let elements = match module.passive_elements_map.get(&elem_index) {
            Some(index) if !self.dropped_elements.contains(elem_index) => {
                module.passive_elements[*index].as_ref()
            }
            _ => &[],
        };
        self.table_init_segment(table_index, elements, dst, src, len)
    }

    pub(crate) fn table_init_segment(
        &mut self,
        table_index: TableIndex,
        elements: &[FuncIndex],
        dst: u32,
        src: u32,
        len: u32,
    ) -> Result<(), Trap> {
        // https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-table-init

        let table = unsafe { &mut *self.get_table(table_index) };

        let elements = match elements
            .get(usize::try_from(src).unwrap()..)
            .and_then(|s| s.get(..usize::try_from(len).unwrap()))
        {
            Some(elements) => elements,
            None => return Err(Trap::TableOutOfBounds),
        };

        match table.element_type() {
            TableElementType::Func => {
                table.init_funcs(
                    dst,
                    elements
                        .iter()
                        .map(|idx| self.get_func_ref(*idx).unwrap_or(std::ptr::null_mut())),
                )?;
            }

            TableElementType::Extern => {
                debug_assert!(elements.iter().all(|e| *e == FuncIndex::reserved_value()));
                table.fill(dst, TableElement::ExternRef(None), len)?;
            }
        }
        Ok(())
    }

    /// Drop an element.
    pub(crate) fn elem_drop(&mut self, elem_index: ElemIndex) {
        // https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-elem-drop

        self.dropped_elements.insert(elem_index);

        // Note that we don't check that we actually removed a segment because
        // dropping a non-passive segment is a no-op (not a trap).
    }

    /// Get a locally-defined memory.
    pub fn get_defined_memory(&mut self, index: DefinedMemoryIndex) -> *mut Memory {
        ptr::addr_of_mut!(self.memories[index])
    }

    /// Do a `memory.copy`
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error when the source or destination ranges are out of
    /// bounds.
    pub(crate) fn memory_copy(
        &mut self,
        dst_index: MemoryIndex,
        dst: u64,
        src_index: MemoryIndex,
        src: u64,
        len: u64,
    ) -> Result<(), Trap> {
        // https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-memory-copy

        let src_mem = self.get_memory(src_index);
        let dst_mem = self.get_memory(dst_index);

        let src = self.validate_inbounds(src_mem.current_length(), src, len)?;
        let dst = self.validate_inbounds(dst_mem.current_length(), dst, len)?;

        // Bounds and casts are checked above, by this point we know that
        // everything is safe.
        unsafe {
            let dst = dst_mem.base.add(dst);
            let src = src_mem.base.add(src);
            // FIXME audit whether this is safe in the presence of shared memory
            // (https://github.com/bytecodealliance/wasmtime/issues/4203).
            ptr::copy(src, dst, len as usize);
        }

        Ok(())
    }

    fn validate_inbounds(&self, max: usize, ptr: u64, len: u64) -> Result<usize, Trap> {
        let oob = || Trap::MemoryOutOfBounds;
        let end = ptr
            .checked_add(len)
            .and_then(|i| usize::try_from(i).ok())
            .ok_or_else(oob)?;
        if end > max {
            Err(oob())
        } else {
            Ok(ptr as usize)
        }
    }

    /// Perform the `memory.fill` operation on a locally defined memory.
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error if the memory range is out of bounds.
    pub(crate) fn memory_fill(
        &mut self,
        memory_index: MemoryIndex,
        dst: u64,
        val: u8,
        len: u64,
    ) -> Result<(), Trap> {
        let memory = self.get_memory(memory_index);
        let dst = self.validate_inbounds(memory.current_length(), dst, len)?;

        // Bounds and casts are checked above, by this point we know that
        // everything is safe.
        unsafe {
            let dst = memory.base.add(dst);
            // FIXME audit whether this is safe in the presence of shared memory
            // (https://github.com/bytecodealliance/wasmtime/issues/4203).
            ptr::write_bytes(dst, val, len as usize);
        }

        Ok(())
    }

    /// Performs the `memory.init` operation.
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error if the destination range is out of this module's
    /// memory's bounds or if the source range is outside the data segment's
    /// bounds.
    pub(crate) fn memory_init(
        &mut self,
        memory_index: MemoryIndex,
        data_index: DataIndex,
        dst: u64,
        src: u32,
        len: u32,
    ) -> Result<(), Trap> {
        let range = match self.module().passive_data_map.get(&data_index).cloned() {
            Some(range) if !self.dropped_data.contains(data_index) => range,
            _ => 0..0,
        };
        self.memory_init_segment(memory_index, range, dst, src, len)
    }

    pub(crate) fn wasm_data(&self, range: Range<u32>) -> &[u8] {
        &self.runtime_info.wasm_data()[range.start as usize..range.end as usize]
    }

    pub(crate) fn memory_init_segment(
        &mut self,
        memory_index: MemoryIndex,
        range: Range<u32>,
        dst: u64,
        src: u32,
        len: u32,
    ) -> Result<(), Trap> {
        // https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-memory-init

        let memory = self.get_memory(memory_index);
        let data = self.wasm_data(range);
        let dst = self.validate_inbounds(memory.current_length(), dst, len.into())?;
        let src = self.validate_inbounds(data.len(), src.into(), len.into())?;
        let len = len as usize;

        unsafe {
            let src_start = data.as_ptr().add(src);
            let dst_start = memory.base.add(dst);
            // FIXME audit whether this is safe in the presence of shared memory
            // (https://github.com/bytecodealliance/wasmtime/issues/4203).
            ptr::copy_nonoverlapping(src_start, dst_start, len);
        }

        Ok(())
    }

    /// Drop the given data segment, truncating its length to zero.
    pub(crate) fn data_drop(&mut self, data_index: DataIndex) {
        self.dropped_data.insert(data_index);

        // Note that we don't check that we actually removed a segment because
        // dropping a non-passive segment is a no-op (not a trap).
    }

    /// Get a table by index regardless of whether it is locally-defined
    /// or an imported, foreign table. Ensure that the given range of
    /// elements in the table is lazily initialized.  We define this
    /// operation all-in-one for safety, to ensure the lazy-init
    /// happens.
    ///
    /// Takes an `Iterator` for the index-range to lazy-initialize,
    /// for flexibility. This can be a range, single item, or empty
    /// sequence, for example. The iterator should return indices in
    /// increasing order, so that the break-at-out-of-bounds behavior
    /// works correctly.
    pub(crate) fn get_table_with_lazy_init(
        &mut self,
        table_index: TableIndex,
        range: impl Iterator<Item = u32>,
    ) -> *mut Table {
        self.with_defined_table_index_and_instance(table_index, |idx, instance| {
            instance.get_defined_table_with_lazy_init(idx, range)
        })
    }

    /// Gets the raw runtime table data structure owned by this instance
    /// given the provided `idx`.
    ///
    /// The `range` specified is eagerly initialized for funcref tables.
    pub fn get_defined_table_with_lazy_init(
        &mut self,
        idx: DefinedTableIndex,
        range: impl Iterator<Item = u32>,
    ) -> *mut Table {
        let elt_ty = self.tables[idx].element_type();

        if elt_ty == TableElementType::Func {
            for i in range {
                let value = match self.tables[idx].get(i) {
                    Some(value) => value,
                    None => {
                        // Out-of-bounds; caller will handle by likely
                        // throwing a trap. No work to do to lazy-init
                        // beyond the end.
                        break;
                    }
                };

                if !value.is_uninit() {
                    continue;
                }

                // The table element `i` is uninitialized and is now being
                // initialized. This must imply that a `precompiled` list of
                // function indices is available for this table. The precompiled
                // list is extracted and then it is consulted with `i` to
                // determine the function that is going to be initialized. Note
                // that `i` may be outside the limits of the static
                // initialization so it's a fallible `get` instead of an index.
                let module = self.module();
                let precomputed = match &module.table_initialization.initial_values[idx] {
                    TableInitialValue::Null { precomputed } => precomputed,
                    TableInitialValue::FuncRef(_) => unreachable!(),
                };
                let func_index = precomputed.get(i as usize).cloned();
                let func_ref = func_index
                    .and_then(|func_index| self.get_func_ref(func_index))
                    .unwrap_or(std::ptr::null_mut());
                self.tables[idx]
                    .set(i, TableElement::FuncRef(func_ref))
                    .expect("Table type should match and index should be in-bounds");
            }
        }

        ptr::addr_of_mut!(self.tables[idx])
    }

    /// Get a table by index regardless of whether it is locally-defined or an
    /// imported, foreign table.
    pub(crate) fn get_table(&mut self, table_index: TableIndex) -> *mut Table {
        self.with_defined_table_index_and_instance(table_index, |idx, instance| {
            ptr::addr_of_mut!(instance.tables[idx])
        })
    }

    /// Get a locally-defined table.
    pub(crate) fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
        ptr::addr_of_mut!(self.tables[index])
    }

    pub(crate) fn with_defined_table_index_and_instance<R>(
        &mut self,
        index: TableIndex,
        f: impl FnOnce(DefinedTableIndex, &mut Instance) -> R,
    ) -> R {
        if let Some(defined_table_index) = self.module().defined_table_index(index) {
            f(defined_table_index, self)
        } else {
            let import = self.imported_table(index);
            unsafe {
                Instance::from_vmctx(import.vmctx, |foreign_instance| {
                    let foreign_table_def = import.from;
                    let foreign_table_index = foreign_instance.table_index(&*foreign_table_def);
                    f(foreign_table_index, foreign_instance)
                })
            }
        }
    }

    /// Initialize the VMContext data associated with this Instance.
    ///
    /// The `VMContext` memory is assumed to be uninitialized; any field
    /// that we need in a certain state will be explicitly written by this
    /// function.
    unsafe fn initialize_vmctx(
        &mut self,
        module: &Module,
        offsets: &VMOffsets<HostPtr>,
        store: StorePtr,
        imports: Imports,
    ) {
        assert!(std::ptr::eq(module, self.module().as_ref()));

        *self.vmctx_plus_offset_mut(offsets.vmctx_magic()) = VMCONTEXT_MAGIC;
        self.set_callee(None);
        self.set_store(store.as_raw());

        // Initialize shared signatures
        let signatures = self.runtime_info.signature_ids();
        *self.vmctx_plus_offset_mut(offsets.vmctx_signature_ids_array()) = signatures.as_ptr();

        // Initialize the built-in functions
        *self.vmctx_plus_offset_mut(offsets.vmctx_builtin_functions()) =
            &VMBuiltinFunctionsArray::INIT;

        // Initialize the imports
        debug_assert_eq!(imports.functions.len(), module.num_imported_funcs);
        ptr::copy_nonoverlapping(
            imports.functions.as_ptr(),
            self.vmctx_plus_offset_mut(offsets.vmctx_imported_functions_begin()),
            imports.functions.len(),
        );
        debug_assert_eq!(imports.tables.len(), module.num_imported_tables);
        ptr::copy_nonoverlapping(
            imports.tables.as_ptr(),
            self.vmctx_plus_offset_mut(offsets.vmctx_imported_tables_begin()),
            imports.tables.len(),
        );
        debug_assert_eq!(imports.memories.len(), module.num_imported_memories);
        ptr::copy_nonoverlapping(
            imports.memories.as_ptr(),
            self.vmctx_plus_offset_mut(offsets.vmctx_imported_memories_begin()),
            imports.memories.len(),
        );
        debug_assert_eq!(imports.globals.len(), module.num_imported_globals);
        ptr::copy_nonoverlapping(
            imports.globals.as_ptr(),
            self.vmctx_plus_offset_mut(offsets.vmctx_imported_globals_begin()),
            imports.globals.len(),
        );

        // N.B.: there is no need to initialize the funcrefs array because we
        // eagerly construct each element in it whenever asked for a reference
        // to that element. In other words, there is no state needed to track
        // the lazy-init, so we don't need to initialize any state now.

        // Initialize the defined tables
        let mut ptr = self.vmctx_plus_offset_mut(offsets.vmctx_tables_begin());
        for i in 0..module.table_plans.len() - module.num_imported_tables {
            ptr::write(ptr, self.tables[DefinedTableIndex::new(i)].vmtable());
            ptr = ptr.add(1);
        }

        // Initialize the defined memories. This fills in both the
        // `defined_memories` table and the `owned_memories` table at the same
        // time. Entries in `defined_memories` hold a pointer to a definition
        // (all memories) whereas the `owned_memories` hold the actual
        // definitions of memories owned (not shared) in the module.
        let mut ptr = self.vmctx_plus_offset_mut(offsets.vmctx_memories_begin());
        let mut owned_ptr = self.vmctx_plus_offset_mut(offsets.vmctx_owned_memories_begin());
        for i in 0..module.memory_plans.len() - module.num_imported_memories {
            let defined_memory_index = DefinedMemoryIndex::new(i);
            let memory_index = module.memory_index(defined_memory_index);
            if module.memory_plans[memory_index].memory.shared {
                let def_ptr = self.memories[defined_memory_index]
                    .as_shared_memory()
                    .unwrap()
                    .vmmemory_ptr();
                ptr::write(ptr, def_ptr.cast_mut());
            } else {
                ptr::write(owned_ptr, self.memories[defined_memory_index].vmmemory());
                ptr::write(ptr, owned_ptr);
                owned_ptr = owned_ptr.add(1);
            }
            ptr = ptr.add(1);
        }

        // Initialize the defined globals
        self.initialize_vmctx_globals(module);
    }

    unsafe fn initialize_vmctx_globals(&mut self, module: &Module) {
        for (index, init) in module.global_initializers.iter() {
            let to = self.global_ptr(index);
            let wasm_ty = module.globals[module.global_index(index)].wasm_ty;

            // Initialize the global before writing to it
            ptr::write(to, VMGlobalDefinition::new());

            match *init {
                GlobalInit::I32Const(x) => *(*to).as_i32_mut() = x,
                GlobalInit::I64Const(x) => *(*to).as_i64_mut() = x,
                GlobalInit::F32Const(x) => *(*to).as_f32_bits_mut() = x,
                GlobalInit::F64Const(x) => *(*to).as_f64_bits_mut() = x,
                GlobalInit::V128Const(x) => *(*to).as_u128_mut() = x,
                GlobalInit::GetGlobal(x) => {
                    let from = if let Some(def_x) = module.defined_global_index(x) {
                        self.global(def_x)
                    } else {
                        &*self.imported_global(x).from
                    };
                    // Globals of type `externref` need to manage the reference
                    // count as values move between globals, everything else is just
                    // copy-able bits.
                    match wasm_ty {
                        WasmType::Ref(WasmRefType {
                            heap_type: WasmHeapType::Extern,
                            ..
                        }) => *(*to).as_externref_mut() = from.as_externref().clone(),
                        _ => ptr::copy_nonoverlapping(from, to, 1),
                    }
                }
                GlobalInit::RefFunc(f) => {
                    *(*to).as_func_ref_mut() = self.get_func_ref(f).unwrap();
                }
                GlobalInit::RefNullConst => match wasm_ty {
                    // `VMGlobalDefinition::new()` already zeroed out the bits
                    WasmType::Ref(WasmRefType { nullable: true, .. }) => {}
                    ty => panic!("unsupported reference type for global: {:?}", ty),
                },
            }
        }
    }

    fn wasm_fault(&self, addr: usize) -> Option<WasmFault> {
        let mut fault = None;
        for (_, memory) in self.memories.iter() {
            let accessible = memory.wasm_accessible();
            if accessible.start <= addr && addr < accessible.end {
                // All linear memories should be disjoint so assert that no
                // prior fault has been found.
                assert!(fault.is_none());
                fault = Some(WasmFault {
                    memory_size: memory.byte_size(),
                    wasm_address: u64::try_from(addr - accessible.start).unwrap(),
                });
            }
        }
        fault
    }
}

impl Drop for Instance {
    fn drop(&mut self) {
        // Drop any defined globals
        let module = self.module().clone();
        for (idx, global) in module.globals.iter() {
            let idx = match module.defined_global_index(idx) {
                Some(idx) => idx,
                None => continue,
            };
            match global.wasm_ty {
                // For now only externref globals need to get destroyed
                WasmType::Ref(WasmRefType {
                    heap_type: WasmHeapType::Extern,
                    ..
                }) => {}
                _ => continue,
            }
            unsafe {
                drop((*self.global_ptr(idx)).as_externref_mut().take());
            }
        }
    }
}

/// A handle holding an `Instance` of a WebAssembly module.
pub struct InstanceHandle {
    instance: Option<SendSyncPtr<Instance>>,
}

impl InstanceHandle {
    /// Creates an "empty" instance handle which internally has a null pointer
    /// to an instance.
    pub fn null() -> InstanceHandle {
        InstanceHandle { instance: None }
    }

    /// Return a raw pointer to the vmctx used by compiled wasm code.
    #[inline]
    pub fn vmctx(&self) -> *mut VMContext {
        self.instance().vmctx()
    }

    /// Return a reference to a module.
    pub fn module(&self) -> &Arc<Module> {
        self.instance().module()
    }

    /// Lookup a function by index.
    pub fn get_exported_func(&mut self, export: FuncIndex) -> ExportFunction {
        self.instance_mut().get_exported_func(export)
    }

    /// Lookup a global by index.
    pub fn get_exported_global(&mut self, export: GlobalIndex) -> ExportGlobal {
        self.instance_mut().get_exported_global(export)
    }

    /// Lookup a memory by index.
    pub fn get_exported_memory(&mut self, export: MemoryIndex) -> ExportMemory {
        self.instance_mut().get_exported_memory(export)
    }

    /// Lookup a table by index.
    pub fn get_exported_table(&mut self, export: TableIndex) -> ExportTable {
        self.instance_mut().get_exported_table(export)
    }

    /// Lookup an item with the given index.
    pub fn get_export_by_index(&mut self, export: EntityIndex) -> Export {
        match export {
            EntityIndex::Function(i) => Export::Function(self.get_exported_func(i)),
            EntityIndex::Global(i) => Export::Global(self.get_exported_global(i)),
            EntityIndex::Table(i) => Export::Table(self.get_exported_table(i)),
            EntityIndex::Memory(i) => Export::Memory(self.get_exported_memory(i)),
        }
    }

    /// Return an iterator over the exports of this instance.
    ///
    /// Specifically, it provides access to the key-value pairs, where the keys
    /// are export names, and the values are export declarations which can be
    /// resolved `lookup_by_declaration`.
    pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
        self.instance().exports()
    }

    /// Return a reference to the custom state attached to this instance.
    pub fn host_state(&self) -> &dyn Any {
        self.instance().host_state()
    }

    /// Get a table defined locally within this module.
    pub fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
        self.instance_mut().get_defined_table(index)
    }

    /// Get a table defined locally within this module, lazily
    /// initializing the given range first.
    pub fn get_defined_table_with_lazy_init(
        &mut self,
        index: DefinedTableIndex,
        range: impl Iterator<Item = u32>,
    ) -> *mut Table {
        let index = self.instance().module().table_index(index);
        self.instance_mut().get_table_with_lazy_init(index, range)
    }

    /// Return a reference to the contained `Instance`.
    #[inline]
    pub(crate) fn instance(&self) -> &Instance {
        unsafe { &*self.instance.unwrap().as_ptr() }
    }

    pub(crate) fn instance_mut(&mut self) -> &mut Instance {
        unsafe { &mut *self.instance.unwrap().as_ptr() }
    }

    /// Returns the `Store` pointer that was stored on creation
    #[inline]
    pub fn store(&self) -> *mut dyn Store {
        self.instance().store()
    }

    /// Configure the `*mut dyn Store` internal pointer after-the-fact.
    ///
    /// This is provided for the original `Store` itself to configure the first
    /// self-pointer after the original `Box` has been initialized.
    pub unsafe fn set_store(&mut self, store: *mut dyn Store) {
        self.instance_mut().set_store(Some(store));
    }

    /// Returns a clone of this instance.
    ///
    /// This is unsafe because the returned handle here is just a cheap clone
    /// of the internals, there's no lifetime tracking around its validity.
    /// You'll need to ensure that the returned handles all go out of scope at
    /// the same time.
    #[inline]
    pub unsafe fn clone(&self) -> InstanceHandle {
        InstanceHandle {
            instance: self.instance,
        }
    }

    /// Performs post-initialization of an instance after its handle has been
    /// created and registered with a store.
    ///
    /// Failure of this function means that the instance still must persist
    /// within the store since failure may indicate partial failure, or some
    /// state could be referenced by other instances.
    pub fn initialize(&mut self, module: &Module, is_bulk_memory: bool) -> Result<()> {
        allocator::initialize_instance(self.instance_mut(), module, is_bulk_memory)
    }

    /// Attempts to convert from the host `addr` specified to a WebAssembly
    /// based address recorded in `WasmFault`.
    ///
    /// This method will check all linear memories that this instance contains
    /// to see if any of them contain `addr`. If one does then `Some` is
    /// returned with metadata about the wasm fault. Otherwise `None` is
    /// returned and `addr` doesn't belong to this instance.
    pub fn wasm_fault(&self, addr: usize) -> Option<WasmFault> {
        self.instance().wasm_fault(addr)
    }
}