1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
//! An `Instance` contains all the runtime state used by execution of a
//! wasm module (except its callstack and register state). An
//! `InstanceHandle` is a reference-counting handle for an `Instance`.
use crate::export::Export;
use crate::externref::VMExternRefActivationsTable;
use crate::memory::{Memory, RuntimeMemoryCreator};
use crate::table::{Table, TableElement, TableElementType};
use crate::vmcontext::{
VMBuiltinFunctionsArray, VMContext, VMFuncRef, VMFunctionImport, VMGlobalDefinition,
VMGlobalImport, VMMemoryDefinition, VMMemoryImport, VMOpaqueContext, VMRuntimeLimits,
VMTableDefinition, VMTableImport,
};
use crate::{
ExportFunction, ExportGlobal, ExportMemory, ExportTable, Imports, ModuleRuntimeInfo,
SendSyncPtr, Store, VMFunctionBody, VMSharedSignatureIndex, WasmFault,
};
use anyhow::Error;
use anyhow::Result;
use sptr::Strict;
use std::alloc::{self, Layout};
use std::any::Any;
use std::convert::TryFrom;
use std::ops::Range;
use std::ptr::NonNull;
use std::sync::atomic::AtomicU64;
use std::sync::Arc;
use std::{mem, ptr};
use wasmtime_environ::{
packed_option::ReservedValue, DataIndex, DefinedGlobalIndex, DefinedMemoryIndex,
DefinedTableIndex, ElemIndex, EntityIndex, EntityRef, EntitySet, FuncIndex, GlobalIndex,
GlobalInit, HostPtr, MemoryIndex, Module, PrimaryMap, SignatureIndex, TableIndex,
TableInitialValue, Trap, VMOffsets, WasmHeapType, WasmRefType, WasmType, VMCONTEXT_MAGIC,
};
mod allocator;
pub use allocator::*;
/// A type that roughly corresponds to a WebAssembly instance, but is also used
/// for host-defined objects.
///
/// This structure is is never allocated directly but is instead managed through
/// an `InstanceHandle`. This structure ends with a `VMContext` which has a
/// dynamic size corresponding to the `module` configured within. Memory
/// management of this structure is always externalized.
///
/// Instances here can correspond to actual instantiated modules, but it's also
/// used ubiquitously for host-defined objects. For example creating a
/// host-defined memory will have a `module` that looks like it exports a single
/// memory (and similar for other constructs).
///
/// This `Instance` type is used as a ubiquitous representation for WebAssembly
/// values, whether or not they were created on the host or through a module.
#[repr(C)] // ensure that the vmctx field is last.
pub struct Instance {
/// The runtime info (corresponding to the "compiled module"
/// abstraction in higher layers) that is retained and needed for
/// lazy initialization. This provides access to the underlying
/// Wasm module entities, the compiled JIT code, metadata about
/// functions, lazy initialization state, etc.
runtime_info: Arc<dyn ModuleRuntimeInfo>,
/// WebAssembly linear memory data.
///
/// This is where all runtime information about defined linear memories in
/// this module lives.
memories: PrimaryMap<DefinedMemoryIndex, Memory>,
/// WebAssembly table data.
///
/// Like memories, this is only for defined tables in the module and
/// contains all of their runtime state.
tables: PrimaryMap<DefinedTableIndex, Table>,
/// Stores the dropped passive element segments in this instantiation by index.
/// If the index is present in the set, the segment has been dropped.
dropped_elements: EntitySet<ElemIndex>,
/// Stores the dropped passive data segments in this instantiation by index.
/// If the index is present in the set, the segment has been dropped.
dropped_data: EntitySet<DataIndex>,
/// Hosts can store arbitrary per-instance information here.
///
/// Most of the time from Wasmtime this is `Box::new(())`, a noop
/// allocation, but some host-defined objects will store their state here.
host_state: Box<dyn Any + Send + Sync>,
/// Instance of this instance within its `InstanceAllocator` trait
/// implementation.
///
/// This is always 0 for the on-demand instance allocator and it's the
/// index of the slot in the pooling allocator.
index: usize,
/// A pointer to the `vmctx` field at the end of the `Instance`.
///
/// If you're looking at this a reasonable question would be "why do we need
/// a pointer to ourselves?" because after all the pointer's value is
/// trivially derivable from any `&Instance` pointer. The rationale for this
/// field's existence is subtle, but it's required for correctness. The
/// short version is "this makes miri happy".
///
/// The long version of why this field exists is that the rules that MIRI
/// uses to ensure pointers are used correctly have various conditions on
/// them depend on how pointers are used. More specifically if `*mut T` is
/// derived from `&mut T`, then that invalidates all prior pointers drived
/// from the `&mut T`. This means that while we liberally want to re-acquire
/// a `*mut VMContext` throughout the implementation of `Instance` the
/// trivial way, a function `fn vmctx(&mut Instance) -> *mut VMContext`
/// would effectively invalidate all prior `*mut VMContext` pointers
/// acquired. The purpose of this field is to serve as a sort of
/// source-of-truth for where `*mut VMContext` pointers come from.
///
/// This field is initialized when the `Instance` is created with the
/// original allocation's pointer. That means that the provenance of this
/// pointer contains the entire allocation (both instance and `VMContext`).
/// This provenance bit is then "carried through" where `fn vmctx` will base
/// all returned pointers on this pointer itself. This provides the means of
/// never invalidating this pointer throughout MIRI and additionally being
/// able to still temporarily have `&mut Instance` methods and such.
///
/// It's important to note, though, that this is not here purely for MIRI.
/// The careful construction of the `fn vmctx` method has ramifications on
/// the LLVM IR generated, for example. A historical CVE on Wasmtime,
/// GHSA-ch89-5g45-qwc7, was caused due to relying on undefined behavior. By
/// deriving VMContext pointers from this pointer it specifically hints to
/// LLVM that trickery is afoot and it properly informs `noalias` and such
/// annotations and analysis. More-or-less this pointer is actually loaded
/// in LLVM IR which helps defeat otherwise present aliasing optimizations,
/// which we want, since writes to this should basically never be optimized
/// out.
///
/// As a final note it's worth pointing out that the machine code generated
/// for accessing `fn vmctx` is still as one would expect. This member isn't
/// actually ever loaded at runtime (or at least shouldn't be). Perhaps in
/// the future if the memory consumption of this field is a problem we could
/// shrink it slightly, but for now one extra pointer per wasm instance
/// seems not too bad.
vmctx_self_reference: SendSyncPtr<VMContext>,
/// Additional context used by compiled wasm code. This field is last, and
/// represents a dynamically-sized array that extends beyond the nominal
/// end of the struct (similar to a flexible array member).
vmctx: VMContext,
}
#[allow(clippy::cast_ptr_alignment)]
impl Instance {
/// Create an instance at the given memory address.
///
/// It is assumed the memory was properly aligned and the
/// allocation was `alloc_size` in bytes.
unsafe fn new(
req: InstanceAllocationRequest,
index: usize,
memories: PrimaryMap<DefinedMemoryIndex, Memory>,
tables: PrimaryMap<DefinedTableIndex, Table>,
) -> InstanceHandle {
// The allocation must be *at least* the size required of `Instance`.
let layout = Self::alloc_layout(req.runtime_info.offsets());
let ptr = alloc::alloc(layout);
if ptr.is_null() {
alloc::handle_alloc_error(layout);
}
let ptr = ptr.cast::<Instance>();
let module = req.runtime_info.module();
let dropped_elements = EntitySet::with_capacity(module.passive_elements.len());
let dropped_data = EntitySet::with_capacity(module.passive_data_map.len());
ptr::write(
ptr,
Instance {
runtime_info: req.runtime_info.clone(),
index,
memories,
tables,
dropped_elements,
dropped_data,
host_state: req.host_state,
vmctx_self_reference: SendSyncPtr::new(
NonNull::new(ptr.cast::<u8>().add(mem::size_of::<Instance>()).cast()).unwrap(),
),
vmctx: VMContext {
_marker: std::marker::PhantomPinned,
},
},
);
(*ptr).initialize_vmctx(module, req.runtime_info.offsets(), req.store, req.imports);
InstanceHandle {
instance: Some(SendSyncPtr::new(NonNull::new(ptr).unwrap())),
}
}
/// Converts the provided `*mut VMContext` to an `Instance` pointer and runs
/// the provided closure with the instance.
///
/// This method will move the `vmctx` pointer backwards to point to the
/// original `Instance` that precedes it. The closure is provided a
/// temporary version of the `Instance` pointer with a constrained lifetime
/// to the closure to ensure it doesn't accidentally escape.
///
/// # Unsafety
///
/// Callers must validate that the `vmctx` pointer is a valid allocation
/// and that it's valid to acquire `&mut Instance` at this time. For example
/// this can't be called twice on the same `VMContext` to get two active
/// pointers to the same `Instance`.
pub unsafe fn from_vmctx<R>(vmctx: *mut VMContext, f: impl FnOnce(&mut Instance) -> R) -> R {
let ptr = vmctx
.cast::<u8>()
.sub(mem::size_of::<Instance>())
.cast::<Instance>();
f(&mut *ptr)
}
/// Helper function to access various locations offset from our `*mut
/// VMContext` object.
///
/// # Safety
///
/// This method is unsafe because the `offset` must be within bounds of the
/// `VMContext` object trailing this instance.
unsafe fn vmctx_plus_offset<T>(&self, offset: u32) -> *const T {
self.vmctx()
.cast::<u8>()
.add(usize::try_from(offset).unwrap())
.cast()
}
/// Dual of `vmctx_plus_offset`, but for mutability.
unsafe fn vmctx_plus_offset_mut<T>(&mut self, offset: u32) -> *mut T {
self.vmctx()
.cast::<u8>()
.add(usize::try_from(offset).unwrap())
.cast()
}
pub(crate) fn module(&self) -> &Arc<Module> {
self.runtime_info.module()
}
#[inline]
fn offsets(&self) -> &VMOffsets<HostPtr> {
self.runtime_info.offsets()
}
/// Return the indexed `VMFunctionImport`.
fn imported_function(&self, index: FuncIndex) -> &VMFunctionImport {
unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmfunction_import(index)) }
}
/// Return the index `VMTableImport`.
fn imported_table(&self, index: TableIndex) -> &VMTableImport {
unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmtable_import(index)) }
}
/// Return the indexed `VMMemoryImport`.
fn imported_memory(&self, index: MemoryIndex) -> &VMMemoryImport {
unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmmemory_import(index)) }
}
/// Return the indexed `VMGlobalImport`.
fn imported_global(&self, index: GlobalIndex) -> &VMGlobalImport {
unsafe { &*self.vmctx_plus_offset(self.offsets().vmctx_vmglobal_import(index)) }
}
/// Return the indexed `VMTableDefinition`.
#[allow(dead_code)]
fn table(&mut self, index: DefinedTableIndex) -> VMTableDefinition {
unsafe { *self.table_ptr(index) }
}
/// Updates the value for a defined table to `VMTableDefinition`.
fn set_table(&mut self, index: DefinedTableIndex, table: VMTableDefinition) {
unsafe {
*self.table_ptr(index) = table;
}
}
/// Return the indexed `VMTableDefinition`.
fn table_ptr(&mut self, index: DefinedTableIndex) -> *mut VMTableDefinition {
unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_vmtable_definition(index)) }
}
/// Get a locally defined or imported memory.
pub(crate) fn get_memory(&self, index: MemoryIndex) -> VMMemoryDefinition {
if let Some(defined_index) = self.module().defined_memory_index(index) {
self.memory(defined_index)
} else {
let import = self.imported_memory(index);
unsafe { VMMemoryDefinition::load(import.from) }
}
}
/// Get a locally defined or imported memory.
pub(crate) fn get_runtime_memory(&mut self, index: MemoryIndex) -> &mut Memory {
if let Some(defined_index) = self.module().defined_memory_index(index) {
unsafe { &mut *self.get_defined_memory(defined_index) }
} else {
let import = self.imported_memory(index);
unsafe {
let ptr =
Instance::from_vmctx(import.vmctx, |i| i.get_defined_memory(import.index));
&mut *ptr
}
}
}
/// Return the indexed `VMMemoryDefinition`.
fn memory(&self, index: DefinedMemoryIndex) -> VMMemoryDefinition {
unsafe { VMMemoryDefinition::load(self.memory_ptr(index)) }
}
/// Set the indexed memory to `VMMemoryDefinition`.
fn set_memory(&self, index: DefinedMemoryIndex, mem: VMMemoryDefinition) {
unsafe {
*self.memory_ptr(index) = mem;
}
}
/// Return the indexed `VMMemoryDefinition`.
fn memory_ptr(&self, index: DefinedMemoryIndex) -> *mut VMMemoryDefinition {
unsafe { *self.vmctx_plus_offset(self.offsets().vmctx_vmmemory_pointer(index)) }
}
/// Return the indexed `VMGlobalDefinition`.
fn global(&mut self, index: DefinedGlobalIndex) -> &VMGlobalDefinition {
unsafe { &*self.global_ptr(index) }
}
/// Return the indexed `VMGlobalDefinition`.
fn global_ptr(&mut self, index: DefinedGlobalIndex) -> *mut VMGlobalDefinition {
unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_vmglobal_definition(index)) }
}
/// Get a raw pointer to the global at the given index regardless whether it
/// is defined locally or imported from another module.
///
/// Panics if the index is out of bound or is the reserved value.
pub(crate) fn defined_or_imported_global_ptr(
&mut self,
index: GlobalIndex,
) -> *mut VMGlobalDefinition {
if let Some(index) = self.module().defined_global_index(index) {
self.global_ptr(index)
} else {
self.imported_global(index).from
}
}
/// Return a pointer to the interrupts structure
pub fn runtime_limits(&mut self) -> *mut *const VMRuntimeLimits {
unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_runtime_limits()) }
}
/// Return a pointer to the global epoch counter used by this instance.
pub fn epoch_ptr(&mut self) -> *mut *const AtomicU64 {
unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_epoch_ptr()) }
}
/// Return a pointer to the `VMExternRefActivationsTable`.
pub fn externref_activations_table(&mut self) -> *mut *mut VMExternRefActivationsTable {
unsafe { self.vmctx_plus_offset_mut(self.offsets().vmctx_externref_activations_table()) }
}
/// Gets a pointer to this instance's `Store` which was originally
/// configured on creation.
///
/// # Panics
///
/// This will panic if the originally configured store was `None`. That can
/// happen for host functions so host functions can't be queried what their
/// original `Store` was since it's just retained as null (since host
/// functions are shared amongst threads and don't all share the same
/// store).
#[inline]
pub fn store(&self) -> *mut dyn Store {
let ptr =
unsafe { *self.vmctx_plus_offset::<*mut dyn Store>(self.offsets().vmctx_store()) };
assert!(!ptr.is_null());
ptr
}
pub(crate) unsafe fn set_store(&mut self, store: Option<*mut dyn Store>) {
if let Some(store) = store {
*self.vmctx_plus_offset_mut(self.offsets().vmctx_store()) = store;
*self.runtime_limits() = (*store).vmruntime_limits();
*self.epoch_ptr() = (*store).epoch_ptr();
*self.externref_activations_table() = (*store).externref_activations_table().0;
} else {
assert_eq!(
mem::size_of::<*mut dyn Store>(),
mem::size_of::<[*mut (); 2]>()
);
*self.vmctx_plus_offset_mut::<[*mut (); 2]>(self.offsets().vmctx_store()) =
[ptr::null_mut(), ptr::null_mut()];
*self.runtime_limits() = ptr::null_mut();
*self.epoch_ptr() = ptr::null_mut();
*self.externref_activations_table() = ptr::null_mut();
}
}
pub(crate) unsafe fn set_callee(&mut self, callee: Option<NonNull<VMFunctionBody>>) {
*self.vmctx_plus_offset_mut(self.offsets().vmctx_callee()) =
callee.map_or(ptr::null_mut(), |c| c.as_ptr());
}
/// Return a reference to the vmctx used by compiled wasm code.
#[inline]
pub fn vmctx(&self) -> *mut VMContext {
// The definition of this method is subtle but intentional. The goal
// here is that effectively this should return `&mut self.vmctx`, but
// it's not quite so simple. Some more documentation is available on the
// `vmctx_self_reference` field, but the general idea is that we're
// creating a pointer to return with proper provenance. Provenance is
// still in the works in Rust at the time of this writing but the load
// of the `self.vmctx_self_reference` field is important here as it
// affects how LLVM thinks about aliasing with respect to the returned
// pointer.
//
// The intention of this method is to codegen to machine code as `&mut
// self.vmctx`, however. While it doesn't show up like this in LLVM IR
// (there's an actual load of the field) it does look like that by the
// time the backend runs. (that's magic to me, the backend removing
// loads...)
//
// As a final minor note, strict provenance APIs are not stable on Rust
// today so the `sptr` crate is used. This crate provides the extension
// trait `Strict` but the method names conflict with the nightly methods
// so a different syntax is used to invoke methods here.
let addr = std::ptr::addr_of!(self.vmctx);
Strict::with_addr(self.vmctx_self_reference.as_ptr(), Strict::addr(addr))
}
fn get_exported_func(&mut self, index: FuncIndex) -> ExportFunction {
let func_ref = self.get_func_ref(index).unwrap();
let func_ref = NonNull::new(func_ref as *const VMFuncRef as *mut _).unwrap();
ExportFunction { func_ref }
}
fn get_exported_table(&mut self, index: TableIndex) -> ExportTable {
let (definition, vmctx) = if let Some(def_index) = self.module().defined_table_index(index)
{
(self.table_ptr(def_index), self.vmctx())
} else {
let import = self.imported_table(index);
(import.from, import.vmctx)
};
ExportTable {
definition,
vmctx,
table: self.module().table_plans[index].clone(),
}
}
fn get_exported_memory(&mut self, index: MemoryIndex) -> ExportMemory {
let (definition, vmctx, def_index) =
if let Some(def_index) = self.module().defined_memory_index(index) {
(self.memory_ptr(def_index), self.vmctx(), def_index)
} else {
let import = self.imported_memory(index);
(import.from, import.vmctx, import.index)
};
ExportMemory {
definition,
vmctx,
memory: self.module().memory_plans[index].clone(),
index: def_index,
}
}
fn get_exported_global(&mut self, index: GlobalIndex) -> ExportGlobal {
ExportGlobal {
definition: if let Some(def_index) = self.module().defined_global_index(index) {
self.global_ptr(def_index)
} else {
self.imported_global(index).from
},
global: self.module().globals[index],
}
}
/// Return an iterator over the exports of this instance.
///
/// Specifically, it provides access to the key-value pairs, where the keys
/// are export names, and the values are export declarations which can be
/// resolved `lookup_by_declaration`.
pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
self.module().exports.iter()
}
/// Return a reference to the custom state attached to this instance.
#[inline]
pub fn host_state(&self) -> &dyn Any {
&*self.host_state
}
/// Return the table index for the given `VMTableDefinition`.
pub unsafe fn table_index(&mut self, table: &VMTableDefinition) -> DefinedTableIndex {
let index = DefinedTableIndex::new(
usize::try_from(
(table as *const VMTableDefinition)
.offset_from(self.table_ptr(DefinedTableIndex::new(0))),
)
.unwrap(),
);
assert!(index.index() < self.tables.len());
index
}
/// Grow memory by the specified amount of pages.
///
/// Returns `None` if memory can't be grown by the specified amount
/// of pages. Returns `Some` with the old size in bytes if growth was
/// successful.
pub(crate) fn memory_grow(
&mut self,
index: MemoryIndex,
delta: u64,
) -> Result<Option<usize>, Error> {
match self.module().defined_memory_index(index) {
Some(idx) => self.defined_memory_grow(idx, delta),
None => {
let import = self.imported_memory(index);
unsafe {
Instance::from_vmctx(import.vmctx, |i| {
i.defined_memory_grow(import.index, delta)
})
}
}
}
}
fn defined_memory_grow(
&mut self,
idx: DefinedMemoryIndex,
delta: u64,
) -> Result<Option<usize>, Error> {
let store = unsafe { &mut *self.store() };
let memory = &mut self.memories[idx];
let result = unsafe { memory.grow(delta, Some(store)) };
// Update the state used by a non-shared Wasm memory in case the base
// pointer and/or the length changed.
if memory.as_shared_memory().is_none() {
let vmmemory = memory.vmmemory();
self.set_memory(idx, vmmemory);
}
result
}
pub(crate) fn table_element_type(&mut self, table_index: TableIndex) -> TableElementType {
unsafe { (*self.get_table(table_index)).element_type() }
}
/// Grow table by the specified amount of elements, filling them with
/// `init_value`.
///
/// Returns `None` if table can't be grown by the specified amount of
/// elements, or if `init_value` is the wrong type of table element.
pub(crate) fn table_grow(
&mut self,
table_index: TableIndex,
delta: u32,
init_value: TableElement,
) -> Result<Option<u32>, Error> {
self.with_defined_table_index_and_instance(table_index, |i, instance| {
instance.defined_table_grow(i, delta, init_value)
})
}
fn defined_table_grow(
&mut self,
table_index: DefinedTableIndex,
delta: u32,
init_value: TableElement,
) -> Result<Option<u32>, Error> {
let store = unsafe { &mut *self.store() };
let table = self
.tables
.get_mut(table_index)
.unwrap_or_else(|| panic!("no table for index {}", table_index.index()));
let result = unsafe { table.grow(delta, init_value, store) };
// Keep the `VMContext` pointers used by compiled Wasm code up to
// date.
let element = self.tables[table_index].vmtable();
self.set_table(table_index, element);
result
}
fn alloc_layout(offsets: &VMOffsets<HostPtr>) -> Layout {
let size = mem::size_of::<Self>()
.checked_add(usize::try_from(offsets.size_of_vmctx()).unwrap())
.unwrap();
let align = mem::align_of::<Self>();
Layout::from_size_align(size, align).unwrap()
}
/// Construct a new VMFuncRef for the given function
/// (imported or defined in this module) and store into the given
/// location. Used during lazy initialization.
///
/// Note that our current lazy-init scheme actually calls this every
/// time the funcref pointer is fetched; this turns out to be better
/// than tracking state related to whether it's been initialized
/// before, because resetting that state on (re)instantiation is
/// very expensive if there are many funcrefs.
fn construct_func_ref(&mut self, index: FuncIndex, sig: SignatureIndex, into: *mut VMFuncRef) {
let type_index = unsafe {
let base: *const VMSharedSignatureIndex =
*self.vmctx_plus_offset_mut(self.offsets().vmctx_signature_ids_array());
*base.add(sig.index())
};
let func_ref = if let Some(def_index) = self.module().defined_func_index(index) {
VMFuncRef {
native_call: self
.runtime_info
.native_to_wasm_trampoline(def_index)
.expect("should have native-to-Wasm trampoline for escaping function"),
array_call: self
.runtime_info
.array_to_wasm_trampoline(def_index)
.expect("should have array-to-Wasm trampoline for escaping function"),
wasm_call: Some(self.runtime_info.function(def_index)),
vmctx: VMOpaqueContext::from_vmcontext(self.vmctx()),
type_index,
}
} else {
let import = self.imported_function(index);
VMFuncRef {
native_call: import.native_call,
array_call: import.array_call,
wasm_call: Some(import.wasm_call),
vmctx: import.vmctx,
type_index,
}
};
// Safety: we have a `&mut self`, so we have exclusive access
// to this Instance.
unsafe {
std::ptr::write(into, func_ref);
}
}
/// Get a `&VMFuncRef` for the given `FuncIndex`.
///
/// Returns `None` if the index is the reserved index value.
///
/// The returned reference is a stable reference that won't be moved and can
/// be passed into JIT code.
pub(crate) fn get_func_ref(&mut self, index: FuncIndex) -> Option<*mut VMFuncRef> {
if index == FuncIndex::reserved_value() {
return None;
}
// Safety: we have a `&mut self`, so we have exclusive access
// to this Instance.
unsafe {
// For now, we eagerly initialize an funcref struct in-place
// whenever asked for a reference to it. This is mostly
// fine, because in practice each funcref is unlikely to be
// requested more than a few times: once-ish for funcref
// tables used for call_indirect (the usual compilation
// strategy places each function in the table at most once),
// and once or a few times when fetching exports via API.
// Note that for any case driven by table accesses, the lazy
// table init behaves like a higher-level cache layer that
// protects this initialization from happening multiple
// times, via that particular table at least.
//
// When `ref.func` becomes more commonly used or if we
// otherwise see a use-case where this becomes a hotpath,
// we can reconsider by using some state to track
// "uninitialized" explicitly, for example by zeroing the
// funcrefs (perhaps together with other
// zeroed-at-instantiate-time state) or using a separate
// is-initialized bitmap.
//
// We arrived at this design because zeroing memory is
// expensive, so it's better for instantiation performance
// if we don't have to track "is-initialized" state at
// all!
let func = &self.module().functions[index];
let sig = func.signature;
let func_ref: *mut VMFuncRef = self
.vmctx_plus_offset_mut::<VMFuncRef>(self.offsets().vmctx_func_ref(func.func_ref));
self.construct_func_ref(index, sig, func_ref);
Some(func_ref)
}
}
/// The `table.init` operation: initializes a portion of a table with a
/// passive element.
///
/// # Errors
///
/// Returns a `Trap` error when the range within the table is out of bounds
/// or the range within the passive element is out of bounds.
pub(crate) fn table_init(
&mut self,
table_index: TableIndex,
elem_index: ElemIndex,
dst: u32,
src: u32,
len: u32,
) -> Result<(), Trap> {
// TODO: this `clone()` shouldn't be necessary but is used for now to
// inform `rustc` that the lifetime of the elements here are
// disconnected from the lifetime of `self`.
let module = self.module().clone();
let elements = match module.passive_elements_map.get(&elem_index) {
Some(index) if !self.dropped_elements.contains(elem_index) => {
module.passive_elements[*index].as_ref()
}
_ => &[],
};
self.table_init_segment(table_index, elements, dst, src, len)
}
pub(crate) fn table_init_segment(
&mut self,
table_index: TableIndex,
elements: &[FuncIndex],
dst: u32,
src: u32,
len: u32,
) -> Result<(), Trap> {
// https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-table-init
let table = unsafe { &mut *self.get_table(table_index) };
let elements = match elements
.get(usize::try_from(src).unwrap()..)
.and_then(|s| s.get(..usize::try_from(len).unwrap()))
{
Some(elements) => elements,
None => return Err(Trap::TableOutOfBounds),
};
match table.element_type() {
TableElementType::Func => {
table.init_funcs(
dst,
elements
.iter()
.map(|idx| self.get_func_ref(*idx).unwrap_or(std::ptr::null_mut())),
)?;
}
TableElementType::Extern => {
debug_assert!(elements.iter().all(|e| *e == FuncIndex::reserved_value()));
table.fill(dst, TableElement::ExternRef(None), len)?;
}
}
Ok(())
}
/// Drop an element.
pub(crate) fn elem_drop(&mut self, elem_index: ElemIndex) {
// https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-elem-drop
self.dropped_elements.insert(elem_index);
// Note that we don't check that we actually removed a segment because
// dropping a non-passive segment is a no-op (not a trap).
}
/// Get a locally-defined memory.
pub fn get_defined_memory(&mut self, index: DefinedMemoryIndex) -> *mut Memory {
ptr::addr_of_mut!(self.memories[index])
}
/// Do a `memory.copy`
///
/// # Errors
///
/// Returns a `Trap` error when the source or destination ranges are out of
/// bounds.
pub(crate) fn memory_copy(
&mut self,
dst_index: MemoryIndex,
dst: u64,
src_index: MemoryIndex,
src: u64,
len: u64,
) -> Result<(), Trap> {
// https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-memory-copy
let src_mem = self.get_memory(src_index);
let dst_mem = self.get_memory(dst_index);
let src = self.validate_inbounds(src_mem.current_length(), src, len)?;
let dst = self.validate_inbounds(dst_mem.current_length(), dst, len)?;
// Bounds and casts are checked above, by this point we know that
// everything is safe.
unsafe {
let dst = dst_mem.base.add(dst);
let src = src_mem.base.add(src);
// FIXME audit whether this is safe in the presence of shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::copy(src, dst, len as usize);
}
Ok(())
}
fn validate_inbounds(&self, max: usize, ptr: u64, len: u64) -> Result<usize, Trap> {
let oob = || Trap::MemoryOutOfBounds;
let end = ptr
.checked_add(len)
.and_then(|i| usize::try_from(i).ok())
.ok_or_else(oob)?;
if end > max {
Err(oob())
} else {
Ok(ptr as usize)
}
}
/// Perform the `memory.fill` operation on a locally defined memory.
///
/// # Errors
///
/// Returns a `Trap` error if the memory range is out of bounds.
pub(crate) fn memory_fill(
&mut self,
memory_index: MemoryIndex,
dst: u64,
val: u8,
len: u64,
) -> Result<(), Trap> {
let memory = self.get_memory(memory_index);
let dst = self.validate_inbounds(memory.current_length(), dst, len)?;
// Bounds and casts are checked above, by this point we know that
// everything is safe.
unsafe {
let dst = memory.base.add(dst);
// FIXME audit whether this is safe in the presence of shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::write_bytes(dst, val, len as usize);
}
Ok(())
}
/// Performs the `memory.init` operation.
///
/// # Errors
///
/// Returns a `Trap` error if the destination range is out of this module's
/// memory's bounds or if the source range is outside the data segment's
/// bounds.
pub(crate) fn memory_init(
&mut self,
memory_index: MemoryIndex,
data_index: DataIndex,
dst: u64,
src: u32,
len: u32,
) -> Result<(), Trap> {
let range = match self.module().passive_data_map.get(&data_index).cloned() {
Some(range) if !self.dropped_data.contains(data_index) => range,
_ => 0..0,
};
self.memory_init_segment(memory_index, range, dst, src, len)
}
pub(crate) fn wasm_data(&self, range: Range<u32>) -> &[u8] {
&self.runtime_info.wasm_data()[range.start as usize..range.end as usize]
}
pub(crate) fn memory_init_segment(
&mut self,
memory_index: MemoryIndex,
range: Range<u32>,
dst: u64,
src: u32,
len: u32,
) -> Result<(), Trap> {
// https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-memory-init
let memory = self.get_memory(memory_index);
let data = self.wasm_data(range);
let dst = self.validate_inbounds(memory.current_length(), dst, len.into())?;
let src = self.validate_inbounds(data.len(), src.into(), len.into())?;
let len = len as usize;
unsafe {
let src_start = data.as_ptr().add(src);
let dst_start = memory.base.add(dst);
// FIXME audit whether this is safe in the presence of shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::copy_nonoverlapping(src_start, dst_start, len);
}
Ok(())
}
/// Drop the given data segment, truncating its length to zero.
pub(crate) fn data_drop(&mut self, data_index: DataIndex) {
self.dropped_data.insert(data_index);
// Note that we don't check that we actually removed a segment because
// dropping a non-passive segment is a no-op (not a trap).
}
/// Get a table by index regardless of whether it is locally-defined
/// or an imported, foreign table. Ensure that the given range of
/// elements in the table is lazily initialized. We define this
/// operation all-in-one for safety, to ensure the lazy-init
/// happens.
///
/// Takes an `Iterator` for the index-range to lazy-initialize,
/// for flexibility. This can be a range, single item, or empty
/// sequence, for example. The iterator should return indices in
/// increasing order, so that the break-at-out-of-bounds behavior
/// works correctly.
pub(crate) fn get_table_with_lazy_init(
&mut self,
table_index: TableIndex,
range: impl Iterator<Item = u32>,
) -> *mut Table {
self.with_defined_table_index_and_instance(table_index, |idx, instance| {
instance.get_defined_table_with_lazy_init(idx, range)
})
}
/// Gets the raw runtime table data structure owned by this instance
/// given the provided `idx`.
///
/// The `range` specified is eagerly initialized for funcref tables.
pub fn get_defined_table_with_lazy_init(
&mut self,
idx: DefinedTableIndex,
range: impl Iterator<Item = u32>,
) -> *mut Table {
let elt_ty = self.tables[idx].element_type();
if elt_ty == TableElementType::Func {
for i in range {
let value = match self.tables[idx].get(i) {
Some(value) => value,
None => {
// Out-of-bounds; caller will handle by likely
// throwing a trap. No work to do to lazy-init
// beyond the end.
break;
}
};
if !value.is_uninit() {
continue;
}
// The table element `i` is uninitialized and is now being
// initialized. This must imply that a `precompiled` list of
// function indices is available for this table. The precompiled
// list is extracted and then it is consulted with `i` to
// determine the function that is going to be initialized. Note
// that `i` may be outside the limits of the static
// initialization so it's a fallible `get` instead of an index.
let module = self.module();
let precomputed = match &module.table_initialization.initial_values[idx] {
TableInitialValue::Null { precomputed } => precomputed,
TableInitialValue::FuncRef(_) => unreachable!(),
};
let func_index = precomputed.get(i as usize).cloned();
let func_ref = func_index
.and_then(|func_index| self.get_func_ref(func_index))
.unwrap_or(std::ptr::null_mut());
self.tables[idx]
.set(i, TableElement::FuncRef(func_ref))
.expect("Table type should match and index should be in-bounds");
}
}
ptr::addr_of_mut!(self.tables[idx])
}
/// Get a table by index regardless of whether it is locally-defined or an
/// imported, foreign table.
pub(crate) fn get_table(&mut self, table_index: TableIndex) -> *mut Table {
self.with_defined_table_index_and_instance(table_index, |idx, instance| {
ptr::addr_of_mut!(instance.tables[idx])
})
}
/// Get a locally-defined table.
pub(crate) fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
ptr::addr_of_mut!(self.tables[index])
}
pub(crate) fn with_defined_table_index_and_instance<R>(
&mut self,
index: TableIndex,
f: impl FnOnce(DefinedTableIndex, &mut Instance) -> R,
) -> R {
if let Some(defined_table_index) = self.module().defined_table_index(index) {
f(defined_table_index, self)
} else {
let import = self.imported_table(index);
unsafe {
Instance::from_vmctx(import.vmctx, |foreign_instance| {
let foreign_table_def = import.from;
let foreign_table_index = foreign_instance.table_index(&*foreign_table_def);
f(foreign_table_index, foreign_instance)
})
}
}
}
/// Initialize the VMContext data associated with this Instance.
///
/// The `VMContext` memory is assumed to be uninitialized; any field
/// that we need in a certain state will be explicitly written by this
/// function.
unsafe fn initialize_vmctx(
&mut self,
module: &Module,
offsets: &VMOffsets<HostPtr>,
store: StorePtr,
imports: Imports,
) {
assert!(std::ptr::eq(module, self.module().as_ref()));
*self.vmctx_plus_offset_mut(offsets.vmctx_magic()) = VMCONTEXT_MAGIC;
self.set_callee(None);
self.set_store(store.as_raw());
// Initialize shared signatures
let signatures = self.runtime_info.signature_ids();
*self.vmctx_plus_offset_mut(offsets.vmctx_signature_ids_array()) = signatures.as_ptr();
// Initialize the built-in functions
*self.vmctx_plus_offset_mut(offsets.vmctx_builtin_functions()) =
&VMBuiltinFunctionsArray::INIT;
// Initialize the imports
debug_assert_eq!(imports.functions.len(), module.num_imported_funcs);
ptr::copy_nonoverlapping(
imports.functions.as_ptr(),
self.vmctx_plus_offset_mut(offsets.vmctx_imported_functions_begin()),
imports.functions.len(),
);
debug_assert_eq!(imports.tables.len(), module.num_imported_tables);
ptr::copy_nonoverlapping(
imports.tables.as_ptr(),
self.vmctx_plus_offset_mut(offsets.vmctx_imported_tables_begin()),
imports.tables.len(),
);
debug_assert_eq!(imports.memories.len(), module.num_imported_memories);
ptr::copy_nonoverlapping(
imports.memories.as_ptr(),
self.vmctx_plus_offset_mut(offsets.vmctx_imported_memories_begin()),
imports.memories.len(),
);
debug_assert_eq!(imports.globals.len(), module.num_imported_globals);
ptr::copy_nonoverlapping(
imports.globals.as_ptr(),
self.vmctx_plus_offset_mut(offsets.vmctx_imported_globals_begin()),
imports.globals.len(),
);
// N.B.: there is no need to initialize the funcrefs array because we
// eagerly construct each element in it whenever asked for a reference
// to that element. In other words, there is no state needed to track
// the lazy-init, so we don't need to initialize any state now.
// Initialize the defined tables
let mut ptr = self.vmctx_plus_offset_mut(offsets.vmctx_tables_begin());
for i in 0..module.table_plans.len() - module.num_imported_tables {
ptr::write(ptr, self.tables[DefinedTableIndex::new(i)].vmtable());
ptr = ptr.add(1);
}
// Initialize the defined memories. This fills in both the
// `defined_memories` table and the `owned_memories` table at the same
// time. Entries in `defined_memories` hold a pointer to a definition
// (all memories) whereas the `owned_memories` hold the actual
// definitions of memories owned (not shared) in the module.
let mut ptr = self.vmctx_plus_offset_mut(offsets.vmctx_memories_begin());
let mut owned_ptr = self.vmctx_plus_offset_mut(offsets.vmctx_owned_memories_begin());
for i in 0..module.memory_plans.len() - module.num_imported_memories {
let defined_memory_index = DefinedMemoryIndex::new(i);
let memory_index = module.memory_index(defined_memory_index);
if module.memory_plans[memory_index].memory.shared {
let def_ptr = self.memories[defined_memory_index]
.as_shared_memory()
.unwrap()
.vmmemory_ptr();
ptr::write(ptr, def_ptr.cast_mut());
} else {
ptr::write(owned_ptr, self.memories[defined_memory_index].vmmemory());
ptr::write(ptr, owned_ptr);
owned_ptr = owned_ptr.add(1);
}
ptr = ptr.add(1);
}
// Initialize the defined globals
self.initialize_vmctx_globals(module);
}
unsafe fn initialize_vmctx_globals(&mut self, module: &Module) {
for (index, init) in module.global_initializers.iter() {
let to = self.global_ptr(index);
let wasm_ty = module.globals[module.global_index(index)].wasm_ty;
// Initialize the global before writing to it
ptr::write(to, VMGlobalDefinition::new());
match *init {
GlobalInit::I32Const(x) => *(*to).as_i32_mut() = x,
GlobalInit::I64Const(x) => *(*to).as_i64_mut() = x,
GlobalInit::F32Const(x) => *(*to).as_f32_bits_mut() = x,
GlobalInit::F64Const(x) => *(*to).as_f64_bits_mut() = x,
GlobalInit::V128Const(x) => *(*to).as_u128_mut() = x,
GlobalInit::GetGlobal(x) => {
let from = if let Some(def_x) = module.defined_global_index(x) {
self.global(def_x)
} else {
&*self.imported_global(x).from
};
// Globals of type `externref` need to manage the reference
// count as values move between globals, everything else is just
// copy-able bits.
match wasm_ty {
WasmType::Ref(WasmRefType {
heap_type: WasmHeapType::Extern,
..
}) => *(*to).as_externref_mut() = from.as_externref().clone(),
_ => ptr::copy_nonoverlapping(from, to, 1),
}
}
GlobalInit::RefFunc(f) => {
*(*to).as_func_ref_mut() = self.get_func_ref(f).unwrap();
}
GlobalInit::RefNullConst => match wasm_ty {
// `VMGlobalDefinition::new()` already zeroed out the bits
WasmType::Ref(WasmRefType { nullable: true, .. }) => {}
ty => panic!("unsupported reference type for global: {:?}", ty),
},
}
}
}
fn wasm_fault(&self, addr: usize) -> Option<WasmFault> {
let mut fault = None;
for (_, memory) in self.memories.iter() {
let accessible = memory.wasm_accessible();
if accessible.start <= addr && addr < accessible.end {
// All linear memories should be disjoint so assert that no
// prior fault has been found.
assert!(fault.is_none());
fault = Some(WasmFault {
memory_size: memory.byte_size(),
wasm_address: u64::try_from(addr - accessible.start).unwrap(),
});
}
}
fault
}
}
impl Drop for Instance {
fn drop(&mut self) {
// Drop any defined globals
let module = self.module().clone();
for (idx, global) in module.globals.iter() {
let idx = match module.defined_global_index(idx) {
Some(idx) => idx,
None => continue,
};
match global.wasm_ty {
// For now only externref globals need to get destroyed
WasmType::Ref(WasmRefType {
heap_type: WasmHeapType::Extern,
..
}) => {}
_ => continue,
}
unsafe {
drop((*self.global_ptr(idx)).as_externref_mut().take());
}
}
}
}
/// A handle holding an `Instance` of a WebAssembly module.
pub struct InstanceHandle {
instance: Option<SendSyncPtr<Instance>>,
}
impl InstanceHandle {
/// Creates an "empty" instance handle which internally has a null pointer
/// to an instance.
pub fn null() -> InstanceHandle {
InstanceHandle { instance: None }
}
/// Return a raw pointer to the vmctx used by compiled wasm code.
#[inline]
pub fn vmctx(&self) -> *mut VMContext {
self.instance().vmctx()
}
/// Return a reference to a module.
pub fn module(&self) -> &Arc<Module> {
self.instance().module()
}
/// Lookup a function by index.
pub fn get_exported_func(&mut self, export: FuncIndex) -> ExportFunction {
self.instance_mut().get_exported_func(export)
}
/// Lookup a global by index.
pub fn get_exported_global(&mut self, export: GlobalIndex) -> ExportGlobal {
self.instance_mut().get_exported_global(export)
}
/// Lookup a memory by index.
pub fn get_exported_memory(&mut self, export: MemoryIndex) -> ExportMemory {
self.instance_mut().get_exported_memory(export)
}
/// Lookup a table by index.
pub fn get_exported_table(&mut self, export: TableIndex) -> ExportTable {
self.instance_mut().get_exported_table(export)
}
/// Lookup an item with the given index.
pub fn get_export_by_index(&mut self, export: EntityIndex) -> Export {
match export {
EntityIndex::Function(i) => Export::Function(self.get_exported_func(i)),
EntityIndex::Global(i) => Export::Global(self.get_exported_global(i)),
EntityIndex::Table(i) => Export::Table(self.get_exported_table(i)),
EntityIndex::Memory(i) => Export::Memory(self.get_exported_memory(i)),
}
}
/// Return an iterator over the exports of this instance.
///
/// Specifically, it provides access to the key-value pairs, where the keys
/// are export names, and the values are export declarations which can be
/// resolved `lookup_by_declaration`.
pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
self.instance().exports()
}
/// Return a reference to the custom state attached to this instance.
pub fn host_state(&self) -> &dyn Any {
self.instance().host_state()
}
/// Get a table defined locally within this module.
pub fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
self.instance_mut().get_defined_table(index)
}
/// Get a table defined locally within this module, lazily
/// initializing the given range first.
pub fn get_defined_table_with_lazy_init(
&mut self,
index: DefinedTableIndex,
range: impl Iterator<Item = u32>,
) -> *mut Table {
let index = self.instance().module().table_index(index);
self.instance_mut().get_table_with_lazy_init(index, range)
}
/// Return a reference to the contained `Instance`.
#[inline]
pub(crate) fn instance(&self) -> &Instance {
unsafe { &*self.instance.unwrap().as_ptr() }
}
pub(crate) fn instance_mut(&mut self) -> &mut Instance {
unsafe { &mut *self.instance.unwrap().as_ptr() }
}
/// Returns the `Store` pointer that was stored on creation
#[inline]
pub fn store(&self) -> *mut dyn Store {
self.instance().store()
}
/// Configure the `*mut dyn Store` internal pointer after-the-fact.
///
/// This is provided for the original `Store` itself to configure the first
/// self-pointer after the original `Box` has been initialized.
pub unsafe fn set_store(&mut self, store: *mut dyn Store) {
self.instance_mut().set_store(Some(store));
}
/// Returns a clone of this instance.
///
/// This is unsafe because the returned handle here is just a cheap clone
/// of the internals, there's no lifetime tracking around its validity.
/// You'll need to ensure that the returned handles all go out of scope at
/// the same time.
#[inline]
pub unsafe fn clone(&self) -> InstanceHandle {
InstanceHandle {
instance: self.instance,
}
}
/// Performs post-initialization of an instance after its handle has been
/// created and registered with a store.
///
/// Failure of this function means that the instance still must persist
/// within the store since failure may indicate partial failure, or some
/// state could be referenced by other instances.
pub fn initialize(&mut self, module: &Module, is_bulk_memory: bool) -> Result<()> {
allocator::initialize_instance(self.instance_mut(), module, is_bulk_memory)
}
/// Attempts to convert from the host `addr` specified to a WebAssembly
/// based address recorded in `WasmFault`.
///
/// This method will check all linear memories that this instance contains
/// to see if any of them contain `addr`. If one does then `Some` is
/// returned with metadata about the wasm fault. Otherwise `None` is
/// returned and `addr` doesn't belong to this instance.
pub fn wasm_fault(&self, addr: usize) -> Option<WasmFault> {
self.instance().wasm_fault(addr)
}
}