1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
use crate::imports::Imports;
use crate::instance::{Instance, InstanceHandle};
use crate::memory::Memory;
use crate::table::Table;
use crate::{CompiledModuleId, ModuleRuntimeInfo, Store};
use anyhow::{anyhow, bail, Result};
use std::alloc;
use std::any::Any;
use std::convert::TryFrom;
use std::ptr;
use std::sync::Arc;
use wasmtime_environ::{
    DefinedMemoryIndex, DefinedTableIndex, HostPtr, InitMemory, MemoryInitialization,
    MemoryInitializer, Module, PrimaryMap, TableInitialValue, TableSegment, Trap, VMOffsets,
    WasmType, WASM_PAGE_SIZE,
};

mod on_demand;
pub use self::on_demand::OnDemandInstanceAllocator;

#[cfg(feature = "pooling-allocator")]
mod pooling;
#[cfg(feature = "pooling-allocator")]
pub use self::pooling::{InstanceLimits, PoolingInstanceAllocator, PoolingInstanceAllocatorConfig};

/// Represents a request for a new runtime instance.
pub struct InstanceAllocationRequest<'a> {
    /// The info related to the compiled version of this module,
    /// needed for instantiation: function metadata, JIT code
    /// addresses, precomputed images for lazy memory and table
    /// initialization, and the like. This Arc is cloned and held for
    /// the lifetime of the instance.
    pub runtime_info: &'a Arc<dyn ModuleRuntimeInfo>,

    /// The imports to use for the instantiation.
    pub imports: Imports<'a>,

    /// The host state to associate with the instance.
    pub host_state: Box<dyn Any + Send + Sync>,

    /// A pointer to the "store" for this instance to be allocated. The store
    /// correlates with the `Store` in wasmtime itself, and lots of contextual
    /// information about the execution of wasm can be learned through the store.
    ///
    /// Note that this is a raw pointer and has a static lifetime, both of which
    /// are a bit of a lie. This is done purely so a store can learn about
    /// itself when it gets called as a host function, and additionally so this
    /// runtime can access internals as necessary (such as the
    /// VMExternRefActivationsTable or the resource limiter methods).
    ///
    /// Note that this ends up being a self-pointer to the instance when stored.
    /// The reason is that the instance itself is then stored within the store.
    /// We use a number of `PhantomPinned` declarations to indicate this to the
    /// compiler. More info on this in `wasmtime/src/store.rs`
    pub store: StorePtr,
}

/// A pointer to a Store. This Option<*mut dyn Store> is wrapped in a struct
/// so that the function to create a &mut dyn Store is a method on a member of
/// InstanceAllocationRequest, rather than on a &mut InstanceAllocationRequest
/// itself, because several use-sites require a split mut borrow on the
/// InstanceAllocationRequest.
pub struct StorePtr(Option<*mut dyn Store>);
impl StorePtr {
    /// A pointer to no Store.
    pub fn empty() -> Self {
        Self(None)
    }
    /// A pointer to a Store.
    pub fn new(ptr: *mut dyn Store) -> Self {
        Self(Some(ptr))
    }
    /// The raw contents of this struct
    pub fn as_raw(&self) -> Option<*mut dyn Store> {
        self.0.clone()
    }
    /// Use the StorePtr as a mut ref to the Store.
    /// Safety: must not be used outside the original lifetime of the borrow.
    pub(crate) unsafe fn get(&mut self) -> Option<&mut dyn Store> {
        match self.0 {
            Some(ptr) => Some(&mut *ptr),
            None => None,
        }
    }
}

/// Represents a runtime instance allocator.
///
/// # Safety
///
/// This trait is unsafe as it requires knowledge of Wasmtime's runtime internals to implement correctly.
pub unsafe trait InstanceAllocator {
    /// Validates that a module is supported by the allocator.
    fn validate(&self, module: &Module, offsets: &VMOffsets<HostPtr>) -> Result<()> {
        let _ = (module, offsets);
        Ok(())
    }

    /// Allocates a fresh `InstanceHandle` for the `req` given.
    ///
    /// This will allocate memories and tables internally from this allocator
    /// and weave that altogether into a final and complete `InstanceHandle`
    /// ready to be registered with a store.
    ///
    /// Note that the returned instance must still have `.initialize(..)` called
    /// on it to complete the instantiation process.
    fn allocate(&self, mut req: InstanceAllocationRequest) -> Result<InstanceHandle> {
        let index = self.allocate_index(&req)?;
        let module = req.runtime_info.module();
        let mut memories =
            PrimaryMap::with_capacity(module.memory_plans.len() - module.num_imported_memories);
        let mut tables =
            PrimaryMap::with_capacity(module.table_plans.len() - module.num_imported_tables);

        let result = self
            .allocate_memories(index, &mut req, &mut memories)
            .and_then(|()| self.allocate_tables(index, &mut req, &mut tables));
        if let Err(e) = result {
            self.deallocate_memories(index, &mut memories);
            self.deallocate_tables(index, &mut tables);
            self.deallocate_index(index);
            return Err(e);
        }

        unsafe { Ok(Instance::new(req, index, memories, tables)) }
    }

    /// Deallocates the provided instance.
    ///
    /// This will null-out the pointer within `handle` and otherwise reclaim
    /// resources such as tables, memories, and the instance memory itself.
    fn deallocate(&self, handle: &mut InstanceHandle) {
        let index = handle.instance().index;
        self.deallocate_memories(index, &mut handle.instance_mut().memories);
        self.deallocate_tables(index, &mut handle.instance_mut().tables);
        unsafe {
            let layout = Instance::alloc_layout(handle.instance().offsets());
            let ptr = handle.instance.take().unwrap();
            ptr::drop_in_place(ptr.as_ptr());
            alloc::dealloc(ptr.as_ptr().cast(), layout);
        }
        self.deallocate_index(index);
    }

    /// Optionally allocates an allocator-defined index for the `req` provided.
    ///
    /// The return value here, if successful, is passed to the various methods
    /// below for memory/table allocation/deallocation.
    fn allocate_index(&self, req: &InstanceAllocationRequest) -> Result<usize>;

    /// Deallocates indices allocated by `allocate_index`.
    fn deallocate_index(&self, index: usize);

    /// Attempts to allocate all defined linear memories for a module.
    ///
    /// Pushes all memories for `req` onto the `mems` storage provided which is
    /// already appropriately allocated to contain all memories.
    ///
    /// Note that this is allowed to fail. Failure can additionally happen after
    /// some memories have already been successfully allocated. All memories
    /// pushed onto `mem` are guaranteed to one day make their way to
    /// `deallocate_memories`.
    fn allocate_memories(
        &self,
        index: usize,
        req: &mut InstanceAllocationRequest,
        mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
    ) -> Result<()>;

    /// Deallocates all memories provided, optionally reclaiming resources for
    /// the pooling allocator for example.
    fn deallocate_memories(&self, index: usize, mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>);

    /// Same as `allocate_memories`, but for tables.
    fn allocate_tables(
        &self,
        index: usize,
        req: &mut InstanceAllocationRequest,
        tables: &mut PrimaryMap<DefinedTableIndex, Table>,
    ) -> Result<()>;

    /// Same as `deallocate_memories`, but for tables.
    fn deallocate_tables(&self, index: usize, tables: &mut PrimaryMap<DefinedTableIndex, Table>);

    /// Allocates a fiber stack for calling async functions on.
    #[cfg(feature = "async")]
    fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack>;

    /// Deallocates a fiber stack that was previously allocated with `allocate_fiber_stack`.
    ///
    /// # Safety
    ///
    /// The provided stack is required to have been allocated with `allocate_fiber_stack`.
    #[cfg(feature = "async")]
    unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack);

    /// Purges all lingering resources related to `module` from within this
    /// allocator.
    ///
    /// Primarily present for the pooling allocator to remove mappings of
    /// this module from slots in linear memory.
    fn purge_module(&self, module: CompiledModuleId);
}

fn get_table_init_start(init: &TableSegment, instance: &mut Instance) -> Result<u32> {
    match init.base {
        Some(base) => {
            let val = unsafe { *(*instance.defined_or_imported_global_ptr(base)).as_u32() };

            init.offset
                .checked_add(val)
                .ok_or_else(|| anyhow!("element segment global base overflows"))
        }
        None => Ok(init.offset),
    }
}

fn check_table_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
    for segment in module.table_initialization.segments.iter() {
        let table = unsafe { &*instance.get_table(segment.table_index) };
        let start = get_table_init_start(segment, instance)?;
        let start = usize::try_from(start).unwrap();
        let end = start.checked_add(segment.elements.len());

        match end {
            Some(end) if end <= table.size() as usize => {
                // Initializer is in bounds
            }
            _ => {
                bail!("table out of bounds: elements segment does not fit")
            }
        }
    }

    Ok(())
}

fn initialize_tables(instance: &mut Instance, module: &Module) -> Result<()> {
    for (table, init) in module.table_initialization.initial_values.iter() {
        match init {
            // Tables are always initially null-initialized at this time
            TableInitialValue::Null { precomputed: _ } => {}

            TableInitialValue::FuncRef(idx) => {
                let funcref = instance.get_func_ref(*idx).unwrap();
                let table = unsafe { &mut *instance.get_defined_table(table) };
                table.init_func(funcref)?;
            }
        }
    }

    // Note: if the module's table initializer state is in
    // FuncTable mode, we will lazily initialize tables based on
    // any statically-precomputed image of FuncIndexes, but there
    // may still be "leftover segments" that could not be
    // incorporated. So we have a unified handler here that
    // iterates over all segments (Segments mode) or leftover
    // segments (FuncTable mode) to initialize.
    for segment in module.table_initialization.segments.iter() {
        let start = get_table_init_start(segment, instance)?;
        instance.table_init_segment(
            segment.table_index,
            &segment.elements,
            start,
            0,
            segment.elements.len() as u32,
        )?;
    }

    Ok(())
}

fn get_memory_init_start(init: &MemoryInitializer, instance: &mut Instance) -> Result<u64> {
    match init.base {
        Some(base) => {
            let mem64 = instance.module().memory_plans[init.memory_index]
                .memory
                .memory64;
            let val = unsafe {
                let global = instance.defined_or_imported_global_ptr(base);
                if mem64 {
                    *(*global).as_u64()
                } else {
                    u64::from(*(*global).as_u32())
                }
            };

            init.offset
                .checked_add(val)
                .ok_or_else(|| anyhow!("data segment global base overflows"))
        }
        None => Ok(init.offset),
    }
}

fn check_memory_init_bounds(
    instance: &mut Instance,
    initializers: &[MemoryInitializer],
) -> Result<()> {
    for init in initializers {
        let memory = instance.get_memory(init.memory_index);
        let start = get_memory_init_start(init, instance)?;
        let end = usize::try_from(start)
            .ok()
            .and_then(|start| start.checked_add(init.data.len()));

        match end {
            Some(end) if end <= memory.current_length() => {
                // Initializer is in bounds
            }
            _ => {
                bail!("memory out of bounds: data segment does not fit")
            }
        }
    }

    Ok(())
}

fn initialize_memories(instance: &mut Instance, module: &Module) -> Result<()> {
    let memory_size_in_pages = &|instance: &mut Instance, memory| {
        (instance.get_memory(memory).current_length() as u64) / u64::from(WASM_PAGE_SIZE)
    };

    // Loads the `global` value and returns it as a `u64`, but sign-extends
    // 32-bit globals which can be used as the base for 32-bit memories.
    let get_global_as_u64 = &mut |instance: &mut Instance, global| unsafe {
        let def = instance.defined_or_imported_global_ptr(global);
        if module.globals[global].wasm_ty == WasmType::I64 {
            *(*def).as_u64()
        } else {
            u64::from(*(*def).as_u32())
        }
    };

    // Delegates to the `init_memory` method which is sort of a duplicate of
    // `instance.memory_init_segment` but is used at compile-time in other
    // contexts so is shared here to have only one method of memory
    // initialization.
    //
    // This call to `init_memory` notably implements all the bells and whistles
    // so errors only happen if an out-of-bounds segment is found, in which case
    // a trap is returned.
    let ok = module.memory_initialization.init_memory(
        instance,
        InitMemory::Runtime {
            memory_size_in_pages,
            get_global_as_u64,
        },
        |instance, memory_index, init| {
            // If this initializer applies to a defined memory but that memory
            // doesn't need initialization, due to something like copy-on-write
            // pre-initializing it via mmap magic, then this initializer can be
            // skipped entirely.
            if let Some(memory_index) = module.defined_memory_index(memory_index) {
                if !instance.memories[memory_index].needs_init() {
                    return true;
                }
            }
            let memory = instance.get_memory(memory_index);

            unsafe {
                let src = instance.wasm_data(init.data.clone());
                let dst = memory.base.add(usize::try_from(init.offset).unwrap());
                // FIXME audit whether this is safe in the presence of shared
                // memory
                // (https://github.com/bytecodealliance/wasmtime/issues/4203).
                ptr::copy_nonoverlapping(src.as_ptr(), dst, src.len())
            }
            true
        },
    );
    if !ok {
        return Err(Trap::MemoryOutOfBounds.into());
    }

    Ok(())
}

fn check_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
    check_table_init_bounds(instance, module)?;

    match &module.memory_initialization {
        MemoryInitialization::Segmented(initializers) => {
            check_memory_init_bounds(instance, initializers)?;
        }
        // Statically validated already to have everything in-bounds.
        MemoryInitialization::Static { .. } => {}
    }

    Ok(())
}

pub(super) fn initialize_instance(
    instance: &mut Instance,
    module: &Module,
    is_bulk_memory: bool,
) -> Result<()> {
    // If bulk memory is not enabled, bounds check the data and element segments before
    // making any changes. With bulk memory enabled, initializers are processed
    // in-order and side effects are observed up to the point of an out-of-bounds
    // initializer, so the early checking is not desired.
    if !is_bulk_memory {
        check_init_bounds(instance, module)?;
    }

    // Initialize the tables
    initialize_tables(instance, module)?;

    // Initialize the memories
    initialize_memories(instance, &module)?;

    Ok(())
}