1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
//! Memory management for linear memories.
//!
//! `RuntimeLinearMemory` is to WebAssembly linear memories what `Table` is to WebAssembly tables.

use crate::mmap::Mmap;
use crate::parking_spot::ParkingSpot;
use crate::vmcontext::VMMemoryDefinition;
use crate::{MemoryImage, MemoryImageSlot, SendSyncPtr, Store, WaitResult};
use anyhow::Error;
use anyhow::{bail, format_err, Result};
use std::convert::TryFrom;
use std::ops::Range;
use std::ptr::NonNull;
use std::sync::atomic::{AtomicU32, AtomicU64, Ordering};
use std::sync::{Arc, RwLock};
use std::time::Instant;
use wasmtime_environ::{MemoryPlan, MemoryStyle, Trap, WASM32_MAX_PAGES, WASM64_MAX_PAGES};

const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize;
const WASM_PAGE_SIZE_U64: u64 = wasmtime_environ::WASM_PAGE_SIZE as u64;

/// A memory allocator
pub trait RuntimeMemoryCreator: Send + Sync {
    /// Create new RuntimeLinearMemory
    fn new_memory(
        &self,
        plan: &MemoryPlan,
        minimum: usize,
        maximum: Option<usize>,
        // Optionally, a memory image for CoW backing.
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Box<dyn RuntimeLinearMemory>>;
}

/// A default memory allocator used by Wasmtime
pub struct DefaultMemoryCreator;

impl RuntimeMemoryCreator for DefaultMemoryCreator {
    /// Create new MmapMemory
    fn new_memory(
        &self,
        plan: &MemoryPlan,
        minimum: usize,
        maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Box<dyn RuntimeLinearMemory>> {
        Ok(Box::new(MmapMemory::new(
            plan,
            minimum,
            maximum,
            memory_image,
        )?))
    }
}

/// A linear memory
pub trait RuntimeLinearMemory: Send + Sync {
    /// Returns the number of allocated bytes.
    fn byte_size(&self) -> usize;

    /// Returns the maximum number of bytes the memory can grow to.
    /// Returns `None` if the memory is unbounded.
    fn maximum_byte_size(&self) -> Option<usize>;

    /// Grows a memory by `delta_pages`.
    ///
    /// This performs the necessary checks on the growth before delegating to
    /// the underlying `grow_to` implementation. A default implementation of
    /// this memory is provided here since this is assumed to be the same for
    /// most kinds of memory; one exception is shared memory, which must perform
    /// all the steps of the default implementation *plus* the required locking.
    ///
    /// The `store` is used only for error reporting.
    fn grow(
        &mut self,
        delta_pages: u64,
        mut store: Option<&mut dyn Store>,
    ) -> Result<Option<(usize, usize)>, Error> {
        let old_byte_size = self.byte_size();

        // Wasm spec: when growing by 0 pages, always return the current size.
        if delta_pages == 0 {
            return Ok(Some((old_byte_size, old_byte_size)));
        }

        // The largest wasm-page-aligned region of memory is possible to
        // represent in a `usize`. This will be impossible for the system to
        // actually allocate.
        let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);

        // Calculate the byte size of the new allocation. Let it overflow up to
        // `usize::MAX`, then clamp it down to `absolute_max`.
        let new_byte_size = usize::try_from(delta_pages)
            .unwrap_or(usize::MAX)
            .saturating_mul(WASM_PAGE_SIZE)
            .saturating_add(old_byte_size);
        let new_byte_size = if new_byte_size > absolute_max {
            absolute_max
        } else {
            new_byte_size
        };

        let maximum = self.maximum_byte_size();
        // Store limiter gets first chance to reject memory_growing.
        if let Some(store) = &mut store {
            if !store.memory_growing(old_byte_size, new_byte_size, maximum)? {
                return Ok(None);
            }
        }

        // Never exceed maximum, even if limiter permitted it.
        if let Some(max) = maximum {
            if new_byte_size > max {
                if let Some(store) = store {
                    // FIXME: shared memories may not have an associated store
                    // to report the growth failure to but the error should not
                    // be dropped
                    // (https://github.com/bytecodealliance/wasmtime/issues/4240).
                    store.memory_grow_failed(&format_err!("Memory maximum size exceeded"));
                }
                return Ok(None);
            }
        }

        match self.grow_to(new_byte_size) {
            Ok(_) => Ok(Some((old_byte_size, new_byte_size))),
            Err(e) => {
                // FIXME: shared memories may not have an associated store to
                // report the growth failure to but the error should not be
                // dropped
                // (https://github.com/bytecodealliance/wasmtime/issues/4240).
                if let Some(store) = store {
                    store.memory_grow_failed(&e);
                }
                Ok(None)
            }
        }
    }

    /// Grow memory to the specified amount of bytes.
    ///
    /// Returns an error if memory can't be grown by the specified amount
    /// of bytes.
    fn grow_to(&mut self, size: usize) -> Result<()>;

    /// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm
    /// code.
    fn vmmemory(&mut self) -> VMMemoryDefinition;

    /// Does this memory need initialization? It may not if it already
    /// has initial contents courtesy of the `MemoryImage` passed to
    /// `RuntimeMemoryCreator::new_memory()`.
    fn needs_init(&self) -> bool;

    /// Used for optional dynamic downcasting.
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;

    /// Returns the range of addresses that may be reached by WebAssembly.
    ///
    /// This starts at the base of linear memory and ends at the end of the
    /// guard pages, if any.
    fn wasm_accessible(&self) -> Range<usize>;
}

/// A linear memory instance.
#[derive(Debug)]
pub struct MmapMemory {
    // The underlying allocation.
    mmap: Mmap,

    // The number of bytes that are accessible in `mmap` and available for
    // reading and writing.
    //
    // This region starts at `pre_guard_size` offset from the base of `mmap`.
    accessible: usize,

    // The optional maximum accessible size, in bytes, for this linear memory.
    //
    // Note that this maximum does not factor in guard pages, so this isn't the
    // maximum size of the linear address space reservation for this memory.
    maximum: Option<usize>,

    // The amount of extra bytes to reserve whenever memory grows. This is
    // specified so that the cost of repeated growth is amortized.
    extra_to_reserve_on_growth: usize,

    // Size in bytes of extra guard pages before the start and after the end to
    // optimize loads and stores with constant offsets.
    pre_guard_size: usize,
    offset_guard_size: usize,

    // An optional CoW mapping that provides the initial content of this
    // MmapMemory, if mapped.
    memory_image: Option<MemoryImageSlot>,
}

impl MmapMemory {
    /// Create a new linear memory instance with specified minimum and maximum
    /// number of wasm pages.
    pub fn new(
        plan: &MemoryPlan,
        minimum: usize,
        mut maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        // It's a programmer error for these two configuration values to exceed
        // the host available address space, so panic if such a configuration is
        // found (mostly an issue for hypothetical 32-bit hosts).
        let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
        let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();

        let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
            // Dynamic memories start with the minimum size plus the `reserve`
            // amount specified to grow into.
            MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),

            // Static memories will never move in memory and consequently get
            // their entire allocation up-front with no extra room to grow into.
            // Note that the `maximum` is adjusted here to whatever the smaller
            // of the two is, the `maximum` given or the `bound` specified for
            // this memory.
            MemoryStyle::Static { bound } => {
                assert!(bound >= plan.memory.minimum);
                let bound_bytes =
                    usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
                maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
                (bound_bytes, 0)
            }
        };

        let request_bytes = pre_guard_bytes
            .checked_add(alloc_bytes)
            .and_then(|i| i.checked_add(extra_to_reserve_on_growth))
            .and_then(|i| i.checked_add(offset_guard_bytes))
            .ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;
        let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;

        if minimum > 0 {
            mmap.make_accessible(pre_guard_bytes, minimum)?;
        }

        // If a memory image was specified, try to create the MemoryImageSlot on
        // top of our mmap.
        let memory_image = match memory_image {
            Some(image) => {
                let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
                let mut slot = MemoryImageSlot::create(
                    base.cast(),
                    minimum,
                    alloc_bytes + extra_to_reserve_on_growth,
                );
                slot.instantiate(minimum, Some(image), &plan)?;
                // On drop, we will unmap our mmap'd range that this slot was
                // mapped on top of, so there is no need for the slot to wipe
                // it with an anonymous mapping first.
                slot.no_clear_on_drop();
                Some(slot)
            }
            None => None,
        };

        Ok(Self {
            mmap,
            accessible: minimum,
            maximum,
            pre_guard_size: pre_guard_bytes,
            offset_guard_size: offset_guard_bytes,
            extra_to_reserve_on_growth,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for MmapMemory {
    fn byte_size(&self) -> usize {
        self.accessible
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.maximum
    }

    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            // This method has an exclusive reference to `self.mmap` and just
            // created `new_mmap` so it should be safe to acquire references
            // into both of them and copy between them.
            unsafe {
                let range = self.pre_guard_size..self.pre_guard_size + self.accessible;
                let src = self.mmap.slice(range.clone());
                let dst = new_mmap.slice_mut(range);
                dst.copy_from_slice(src);
            }

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        VMMemoryDefinition {
            base: unsafe { self.mmap.as_mut_ptr().add(self.pre_guard_size) },
            current_length: self.accessible.into(),
        }
    }

    fn needs_init(&self) -> bool {
        // If we're using a CoW mapping, then no initialization
        // is needed.
        self.memory_image.is_none()
    }

    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    fn wasm_accessible(&self) -> Range<usize> {
        let base = self.mmap.as_ptr() as usize + self.pre_guard_size;
        let end = base + (self.mmap.len() - self.pre_guard_size);
        base..end
    }
}

/// A "static" memory where the lifetime of the backing memory is managed
/// elsewhere. Currently used with the pooling allocator.
struct StaticMemory {
    /// The base pointer of this static memory, wrapped up in a send/sync
    /// wrapper.
    base: SendSyncPtr<u8>,

    /// The byte capacity of the `base` pointer.
    capacity: usize,

    /// The current size, in bytes, of this memory.
    size: usize,

    /// The size, in bytes, of the virtual address allocation starting at `base`
    /// and going to the end of the guard pages at the end of the linear memory.
    memory_and_guard_size: usize,

    /// The image management, if any, for this memory. Owned here and
    /// returned to the pooling allocator when termination occurs.
    memory_image: MemoryImageSlot,
}

impl StaticMemory {
    fn new(
        base_ptr: *mut u8,
        base_capacity: usize,
        initial_size: usize,
        maximum_size: Option<usize>,
        memory_image: MemoryImageSlot,
        memory_and_guard_size: usize,
    ) -> Result<Self> {
        if base_capacity < initial_size {
            bail!(
                "initial memory size of {} exceeds the pooling allocator's \
                 configured maximum memory size of {} bytes",
                initial_size,
                base_capacity,
            );
        }

        // Only use the part of the slice that is necessary.
        let base_capacity = match maximum_size {
            Some(max) if max < base_capacity => max,
            _ => base_capacity,
        };

        Ok(Self {
            base: SendSyncPtr::new(NonNull::new(base_ptr).unwrap()),
            capacity: base_capacity,
            size: initial_size,
            memory_image,
            memory_and_guard_size,
        })
    }
}

impl RuntimeLinearMemory for StaticMemory {
    fn byte_size(&self) -> usize {
        self.size
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        Some(self.capacity)
    }

    fn grow_to(&mut self, new_byte_size: usize) -> Result<()> {
        // Never exceed the static memory size; this check should have been made
        // prior to arriving here.
        assert!(new_byte_size <= self.capacity);

        self.memory_image.set_heap_limit(new_byte_size)?;

        // Update our accounting of the available size.
        self.size = new_byte_size;
        Ok(())
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        VMMemoryDefinition {
            base: self.base.as_ptr(),
            current_length: self.size.into(),
        }
    }

    fn needs_init(&self) -> bool {
        !self.memory_image.has_image()
    }

    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    fn wasm_accessible(&self) -> Range<usize> {
        let base = self.base.as_ptr() as usize;
        let end = base + self.memory_and_guard_size;
        base..end
    }
}

/// For shared memory (and only for shared memory), this lock-version restricts
/// access when growing the memory or checking its size. This is to conform with
/// the [thread proposal]: "When `IsSharedArrayBuffer(...)` is true, the return
/// value should be the result of an atomic read-modify-write of the new size to
/// the internal `length` slot."
///
/// [thread proposal]:
///     https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md#webassemblymemoryprototypegrow
#[derive(Clone)]
pub struct SharedMemory(Arc<SharedMemoryInner>);

struct SharedMemoryInner {
    memory: RwLock<Box<dyn RuntimeLinearMemory>>,
    spot: ParkingSpot,
    ty: wasmtime_environ::Memory,
    def: LongTermVMMemoryDefinition,
}

impl SharedMemory {
    /// Construct a new [`SharedMemory`].
    pub fn new(plan: MemoryPlan) -> Result<Self> {
        let (minimum_bytes, maximum_bytes) = Memory::limit_new(&plan, None)?;
        let mmap_memory = MmapMemory::new(&plan, minimum_bytes, maximum_bytes, None)?;
        Self::wrap(&plan, Box::new(mmap_memory), plan.memory)
    }

    /// Wrap an existing [Memory] with the locking provided by a [SharedMemory].
    pub fn wrap(
        plan: &MemoryPlan,
        mut memory: Box<dyn RuntimeLinearMemory>,
        ty: wasmtime_environ::Memory,
    ) -> Result<Self> {
        if !ty.shared {
            bail!("shared memory must have a `shared` memory type");
        }
        if !matches!(plan.style, MemoryStyle::Static { .. }) {
            bail!("shared memory can only be built from a static memory allocation")
        }
        assert!(
            memory.as_any_mut().type_id() != std::any::TypeId::of::<SharedMemory>(),
            "cannot re-wrap a shared memory"
        );
        Ok(Self(Arc::new(SharedMemoryInner {
            ty,
            spot: ParkingSpot::default(),
            def: LongTermVMMemoryDefinition(memory.vmmemory()),
            memory: RwLock::new(memory),
        })))
    }

    /// Return the memory type for this [`SharedMemory`].
    pub fn ty(&self) -> wasmtime_environ::Memory {
        self.0.ty
    }

    /// Convert this shared memory into a [`Memory`].
    pub fn as_memory(self) -> Memory {
        Memory(Box::new(self))
    }

    /// Return a pointer to the shared memory's [VMMemoryDefinition].
    pub fn vmmemory_ptr(&self) -> *const VMMemoryDefinition {
        &self.0.def.0
    }

    /// Same as `RuntimeLinearMemory::grow`, except with `&self`.
    pub fn grow(
        &self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<(usize, usize)>, Error> {
        let mut memory = self.0.memory.write().unwrap();
        let result = memory.grow(delta_pages, store)?;
        if let Some((_old_size_in_bytes, new_size_in_bytes)) = result {
            // Store the new size to the `VMMemoryDefinition` for JIT-generated
            // code (and runtime functions) to access. No other code can be
            // growing this memory due to the write lock, but code in other
            // threads could have access to this shared memory and we want them
            // to see the most consistent version of the `current_length`; a
            // weaker consistency is possible if we accept them seeing an older,
            // smaller memory size (assumption: memory only grows) but presently
            // we are aiming for accuracy.
            //
            // Note that it could be possible to access a memory address that is
            // now-valid due to changes to the page flags in `grow` above but
            // beyond the `memory.size` that we are about to assign to. In these
            // and similar cases, discussion in the thread proposal concluded
            // that: "multiple accesses in one thread racing with another
            // thread's `memory.grow` that are in-bounds only after the grow
            // commits may independently succeed or trap" (see
            // https://github.com/WebAssembly/threads/issues/26#issuecomment-433930711).
            // In other words, some non-determinism is acceptable when using
            // `memory.size` on work being done by `memory.grow`.
            self.0
                .def
                .0
                .current_length
                .store(new_size_in_bytes, Ordering::SeqCst);
        }
        Ok(result)
    }

    /// Implementation of `memory.atomic.notify` for this shared memory.
    pub fn atomic_notify(&self, addr_index: u64, count: u32) -> Result<u32, Trap> {
        validate_atomic_addr(&self.0.def.0, addr_index, 4, 4)?;
        Ok(self.0.spot.unpark(addr_index, count))
    }

    /// Implementation of `memory.atomic.wait32` for this shared memory.
    pub fn atomic_wait32(
        &self,
        addr_index: u64,
        expected: u32,
        timeout: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        let addr = validate_atomic_addr(&self.0.def.0, addr_index, 4, 4)?;
        // SAFETY: `addr_index` was validated by `validate_atomic_addr` above.
        assert!(std::mem::size_of::<AtomicU32>() == 4);
        assert!(std::mem::align_of::<AtomicU32>() <= 4);
        let atomic = unsafe { &*(addr as *const AtomicU32) };

        // We want the sequential consistency of `SeqCst` to ensure that the `load` sees the value that the `notify` will/would see.
        // All WASM atomic operations are also `SeqCst`.
        let validate = || atomic.load(Ordering::SeqCst) == expected;

        Ok(self.0.spot.park(addr_index, validate, timeout))
    }

    /// Implementation of `memory.atomic.wait64` for this shared memory.
    pub fn atomic_wait64(
        &self,
        addr_index: u64,
        expected: u64,
        timeout: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        let addr = validate_atomic_addr(&self.0.def.0, addr_index, 8, 8)?;
        // SAFETY: `addr_index` was validated by `validate_atomic_addr` above.
        assert!(std::mem::size_of::<AtomicU64>() == 8);
        assert!(std::mem::align_of::<AtomicU64>() <= 8);
        let atomic = unsafe { &*(addr as *const AtomicU64) };

        // We want the sequential consistency of `SeqCst` to ensure that the `load` sees the value that the `notify` will/would see.
        // All WASM atomic operations are also `SeqCst`.
        let validate = || atomic.load(Ordering::SeqCst) == expected;

        Ok(self.0.spot.park(addr_index, validate, timeout))
    }
}

/// Shared memory needs some representation of a `VMMemoryDefinition` for
/// JIT-generated code to access. This structure owns the base pointer and
/// length to the actual memory and we share this definition across threads by:
/// - never changing the base pointer; according to the specification, shared
///   memory must be created with a known maximum size so it can be allocated
///   once and never moved
/// - carefully changing the length, using atomic accesses in both the runtime
///   and JIT-generated code.
struct LongTermVMMemoryDefinition(VMMemoryDefinition);
unsafe impl Send for LongTermVMMemoryDefinition {}
unsafe impl Sync for LongTermVMMemoryDefinition {}

/// Proxy all calls through the [`RwLock`].
impl RuntimeLinearMemory for SharedMemory {
    fn byte_size(&self) -> usize {
        self.0.memory.read().unwrap().byte_size()
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.0.memory.read().unwrap().maximum_byte_size()
    }

    fn grow(
        &mut self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<(usize, usize)>, Error> {
        SharedMemory::grow(self, delta_pages, store)
    }

    fn grow_to(&mut self, size: usize) -> Result<()> {
        self.0.memory.write().unwrap().grow_to(size)
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        // `vmmemory()` is used for writing the `VMMemoryDefinition` of a memory
        // into its `VMContext`; this should never be possible for a shared
        // memory because the only `VMMemoryDefinition` for it should be stored
        // in its own `def` field.
        unreachable!()
    }

    fn needs_init(&self) -> bool {
        self.0.memory.read().unwrap().needs_init()
    }

    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    fn wasm_accessible(&self) -> Range<usize> {
        self.0.memory.read().unwrap().wasm_accessible()
    }
}

/// Representation of a runtime wasm linear memory.
pub struct Memory(Box<dyn RuntimeLinearMemory>);

impl Memory {
    /// Create a new dynamic (movable) memory instance for the specified plan.
    pub fn new_dynamic(
        plan: &MemoryPlan,
        creator: &dyn RuntimeMemoryCreator,
        store: &mut dyn Store,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, Some(store))?;
        let allocation = creator.new_memory(plan, minimum, maximum, memory_image)?;
        let allocation = if plan.memory.shared {
            Box::new(SharedMemory::wrap(plan, allocation, plan.memory)?)
        } else {
            allocation
        };
        Ok(Memory(allocation))
    }

    /// Create a new static (immovable) memory instance for the specified plan.
    pub fn new_static(
        plan: &MemoryPlan,
        base_ptr: *mut u8,
        base_capacity: usize,
        memory_image: MemoryImageSlot,
        memory_and_guard_size: usize,
        store: &mut dyn Store,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, Some(store))?;
        let pooled_memory = StaticMemory::new(
            base_ptr,
            base_capacity,
            minimum,
            maximum,
            memory_image,
            memory_and_guard_size,
        )?;
        let allocation = Box::new(pooled_memory);
        let allocation: Box<dyn RuntimeLinearMemory> = if plan.memory.shared {
            // FIXME: since the pooling allocator owns the memory allocation
            // (which is torn down with the instance), the current shared memory
            // implementation will cause problems; see
            // https://github.com/bytecodealliance/wasmtime/issues/4244.
            todo!("using shared memory with the pooling allocator is a work in progress");
        } else {
            allocation
        };
        Ok(Memory(allocation))
    }

    /// Calls the `store`'s limiter to optionally prevent a memory from being allocated.
    ///
    /// Returns the minimum size and optional maximum size of the memory, in
    /// bytes.
    fn limit_new(
        plan: &MemoryPlan,
        store: Option<&mut dyn Store>,
    ) -> Result<(usize, Option<usize>)> {
        // Sanity-check what should already be true from wasm module validation.
        let absolute_max = if plan.memory.memory64 {
            WASM64_MAX_PAGES
        } else {
            WASM32_MAX_PAGES
        };
        assert!(plan.memory.minimum <= absolute_max);
        assert!(plan.memory.maximum.is_none() || plan.memory.maximum.unwrap() <= absolute_max);

        // This is the absolute possible maximum that the module can try to
        // allocate, which is our entire address space minus a wasm page. That
        // shouldn't ever actually work in terms of an allocation because
        // presumably the kernel wants *something* for itself, but this is used
        // to pass to the `store`'s limiter for a requested size
        // to approximate the scale of the request that the wasm module is
        // making. This is necessary because the limiter works on `usize` bytes
        // whereas we're working with possibly-overflowing `u64` calculations
        // here. To actually faithfully represent the byte requests of modules
        // we'd have to represent things as `u128`, but that's kinda
        // overkill for this purpose.
        let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);

        // If the minimum memory size overflows the size of our own address
        // space, then we can't satisfy this request, but defer the error to
        // later so the `store` can be informed that an effective oom is
        // happening.
        let minimum = plan
            .memory
            .minimum
            .checked_mul(WASM_PAGE_SIZE_U64)
            .and_then(|m| usize::try_from(m).ok());

        // The plan stores the maximum size in units of wasm pages, but we
        // use units of bytes. Unlike for the `minimum` size we silently clamp
        // the effective maximum size to `absolute_max` above if the maximum is
        // too large. This should be ok since as a wasm runtime we get to
        // arbitrarily decide the actual maximum size of memory, regardless of
        // what's actually listed on the memory itself.
        let mut maximum = plan.memory.maximum.map(|max| {
            usize::try_from(max)
                .ok()
                .and_then(|m| m.checked_mul(WASM_PAGE_SIZE))
                .unwrap_or(absolute_max)
        });

        // If this is a 32-bit memory and no maximum is otherwise listed then we
        // need to still specify a maximum size of 4GB. If the host platform is
        // 32-bit then there's no need to limit the maximum this way since no
        // allocation of 4GB can succeed, but for 64-bit platforms this is
        // required to limit memories to 4GB.
        if !plan.memory.memory64 && maximum.is_none() {
            maximum = usize::try_from(1u64 << 32).ok();
        }

        // Inform the store's limiter what's about to happen. This will let the
        // limiter reject anything if necessary, and this also guarantees that
        // we should call the limiter for all requested memories, even if our
        // `minimum` calculation overflowed. This means that the `minimum` we're
        // informing the limiter is lossy and may not be 100% accurate, but for
        // now the expected uses of limiter means that's ok.
        if let Some(store) = store {
            // We ignore the store limits for shared memories since they are
            // technically not created within a store (though, trickily, they
            // may be associated with one in order to get a `vmctx`).
            if !plan.memory.shared {
                if !store.memory_growing(0, minimum.unwrap_or(absolute_max), maximum)? {
                    bail!(
                        "memory minimum size of {} pages exceeds memory limits",
                        plan.memory.minimum
                    );
                }
            }
        }

        // At this point we need to actually handle overflows, so bail out with
        // an error if we made it this far.
        let minimum = minimum.ok_or_else(|| {
            format_err!(
                "memory minimum size of {} pages exceeds memory limits",
                plan.memory.minimum
            )
        })?;
        Ok((minimum, maximum))
    }

    /// Returns the number of allocated wasm pages.
    pub fn byte_size(&self) -> usize {
        self.0.byte_size()
    }

    /// Returns the maximum number of pages the memory can grow to at runtime.
    ///
    /// Returns `None` if the memory is unbounded.
    ///
    /// The runtime maximum may not be equal to the maximum from the linear memory's
    /// Wasm type when it is being constrained by an instance allocator.
    pub fn maximum_byte_size(&self) -> Option<usize> {
        self.0.maximum_byte_size()
    }

    /// Returns whether or not this memory needs initialization. It
    /// may not if it already has initial content thanks to a CoW
    /// mechanism.
    pub(crate) fn needs_init(&self) -> bool {
        self.0.needs_init()
    }

    /// Grow memory by the specified amount of wasm pages.
    ///
    /// Returns `None` if memory can't be grown by the specified amount
    /// of wasm pages. Returns `Some` with the old size of memory, in bytes, on
    /// successful growth.
    ///
    /// # Safety
    ///
    /// Resizing the memory can reallocate the memory buffer for dynamic memories.
    /// An instance's `VMContext` may have pointers to the memory's base and will
    /// need to be fixed up after growing the memory.
    ///
    /// Generally, prefer using `InstanceHandle::memory_grow`, which encapsulates
    /// this unsafety.
    ///
    /// Ensure that the provided Store is not used to get access any Memory
    /// which lives inside it.
    pub unsafe fn grow(
        &mut self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<usize>, Error> {
        self.0
            .grow(delta_pages, store)
            .map(|opt| opt.map(|(old, _new)| old))
    }

    /// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
    pub fn vmmemory(&mut self) -> VMMemoryDefinition {
        self.0.vmmemory()
    }

    /// Consume the memory, returning its [`MemoryImageSlot`] if any is present.
    /// The image should only be present for a subset of memories created with
    /// [`Memory::new_static()`].
    #[cfg(feature = "pooling-allocator")]
    pub fn unwrap_static_image(mut self) -> MemoryImageSlot {
        let mem = self.0.as_any_mut().downcast_mut::<StaticMemory>().unwrap();
        std::mem::replace(&mut mem.memory_image, MemoryImageSlot::dummy())
    }

    /// If the [Memory] is a [SharedMemory], unwrap it and return a clone to
    /// that shared memory.
    pub fn as_shared_memory(&mut self) -> Option<&mut SharedMemory> {
        let as_any = self.0.as_any_mut();
        if let Some(m) = as_any.downcast_mut::<SharedMemory>() {
            Some(m)
        } else {
            None
        }
    }

    /// Implementation of `memory.atomic.notify` for all memories.
    pub fn atomic_notify(&mut self, addr: u64, count: u32) -> Result<u32, Trap> {
        match self.0.as_any_mut().downcast_mut::<SharedMemory>() {
            Some(m) => m.atomic_notify(addr, count),
            None => {
                validate_atomic_addr(&self.vmmemory(), addr, 4, 4)?;
                Ok(0)
            }
        }
    }

    /// Implementation of `memory.atomic.wait32` for all memories.
    pub fn atomic_wait32(
        &mut self,
        addr: u64,
        expected: u32,
        deadline: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        match self.0.as_any_mut().downcast_mut::<SharedMemory>() {
            Some(m) => m.atomic_wait32(addr, expected, deadline),
            None => {
                validate_atomic_addr(&self.vmmemory(), addr, 4, 4)?;
                Err(Trap::AtomicWaitNonSharedMemory)
            }
        }
    }

    /// Implementation of `memory.atomic.wait64` for all memories.
    pub fn atomic_wait64(
        &mut self,
        addr: u64,
        expected: u64,
        deadline: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        match self.0.as_any_mut().downcast_mut::<SharedMemory>() {
            Some(m) => m.atomic_wait64(addr, expected, deadline),
            None => {
                validate_atomic_addr(&self.vmmemory(), addr, 8, 8)?;
                Err(Trap::AtomicWaitNonSharedMemory)
            }
        }
    }

    /// Returns the range of bytes that WebAssembly should be able to address in
    /// this linear memory. Note that this includes guard pages which wasm can
    /// hit.
    pub fn wasm_accessible(&self) -> Range<usize> {
        self.0.wasm_accessible()
    }
}

/// In the configurations where bounds checks were elided in JIT code (because
/// we are using static memories with virtual memory guard pages) this manual
/// check is here so we don't segfault from Rust. For other configurations,
/// these checks are required anyways.
fn validate_atomic_addr(
    def: &VMMemoryDefinition,
    addr: u64,
    access_size: u64,
    access_alignment: u64,
) -> Result<*mut u8, Trap> {
    debug_assert!(access_alignment.is_power_of_two());
    if !(addr % access_alignment == 0) {
        return Err(Trap::HeapMisaligned);
    }

    let length = u64::try_from(def.current_length()).unwrap();
    if !(addr.saturating_add(access_size) < length) {
        return Err(Trap::MemoryOutOfBounds);
    }

    Ok(def.base.wrapping_add(addr as usize))
}