1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
//! Copy-on-write initialization support: creation of backing images for
//! modules, and logic to support mapping these backing images into memory.
use crate::sys::vm::{self, MemoryImageSource};
use crate::{MmapVec, SendSyncPtr};
use anyhow::Result;
use std::ffi::c_void;
use std::ptr::NonNull;
use std::sync::Arc;
use std::{convert::TryFrom, ops::Range};
use wasmtime_environ::{
DefinedMemoryIndex, MemoryInitialization, MemoryPlan, MemoryStyle, Module, PrimaryMap,
};
/// Backing images for memories in a module.
///
/// This is meant to be built once, when a module is first loaded/constructed,
/// and then used many times for instantiation.
pub struct ModuleMemoryImages {
memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryImage>>>,
}
impl ModuleMemoryImages {
/// Get the MemoryImage for a given memory.
pub fn get_memory_image(&self, defined_index: DefinedMemoryIndex) -> Option<&Arc<MemoryImage>> {
self.memories[defined_index].as_ref()
}
}
/// One backing image for one memory.
#[derive(Debug, PartialEq)]
pub struct MemoryImage {
/// The platform-specific source of this image.
///
/// This might be a mapped `*.cwasm` file or on Unix it could also be a
/// `Memfd` as an anonymous file in memory on Linux. In either case this is
/// used as the backing-source for the CoW image.
source: MemoryImageSource,
/// Length of image, in bytes.
///
/// Note that initial memory size may be larger; leading and trailing zeroes
/// are truncated (handled by backing fd).
///
/// Must be a multiple of the system page size.
len: usize,
/// Image starts this many bytes into `source`.
///
/// This is 0 for anonymous-backed memfd files and is the offset of the
/// data section in a `*.cwasm` file for `*.cwasm`-backed images.
///
/// Must be a multiple of the system page size.
source_offset: u64,
/// Image starts this many bytes into heap space.
///
/// Must be a multiple of the system page size.
linear_memory_offset: usize,
}
impl MemoryImage {
fn new(
page_size: u32,
offset: u64,
data: &[u8],
mmap: Option<&MmapVec>,
) -> Result<Option<MemoryImage>> {
// Sanity-check that various parameters are page-aligned.
let len = data.len();
assert_eq!(offset % u64::from(page_size), 0);
assert_eq!((len as u32) % page_size, 0);
let linear_memory_offset = match usize::try_from(offset) {
Ok(offset) => offset,
Err(_) => return Ok(None),
};
// If a backing `mmap` is present then `data` should be a sub-slice of
// the `mmap`. The sanity-checks here double-check that. Additionally
// compilation should have ensured that the `data` section is
// page-aligned within `mmap`, so that's also all double-checked here.
//
// Finally if the `mmap` itself comes from a backing file on disk, such
// as a `*.cwasm` file, then that's a valid source of data for the
// memory image so we simply return referencing that.
//
// Note that this path is platform-agnostic in the sense of all
// platforms we support support memory mapping copy-on-write data from
// files, but for now this is still a Linux-specific region of Wasmtime.
// Some work will be needed to get this file compiling for macOS and
// Windows.
if let Some(mmap) = mmap {
let start = mmap.as_ptr() as usize;
let end = start + mmap.len();
let data_start = data.as_ptr() as usize;
let data_end = data_start + data.len();
assert!(start <= data_start && data_end <= end);
assert_eq!((start as u32) % page_size, 0);
assert_eq!((data_start as u32) % page_size, 0);
assert_eq!((data_end as u32) % page_size, 0);
assert_eq!((mmap.original_offset() as u32) % page_size, 0);
if let Some(file) = mmap.original_file() {
if let Some(source) = MemoryImageSource::from_file(file) {
return Ok(Some(MemoryImage {
source,
source_offset: u64::try_from(mmap.original_offset() + (data_start - start))
.unwrap(),
linear_memory_offset,
len,
}));
}
}
}
// If `mmap` doesn't come from a file then platform-specific mechanisms
// may be used to place the data in a form that's amenable to an mmap.
if let Some(source) = MemoryImageSource::from_data(data)? {
return Ok(Some(MemoryImage {
source,
source_offset: 0,
linear_memory_offset,
len,
}));
}
Ok(None)
}
unsafe fn map_at(&self, base: *mut u8) -> Result<()> {
self.source.map_at(
base.add(self.linear_memory_offset),
self.len,
self.source_offset,
)?;
Ok(())
}
unsafe fn remap_as_zeros_at(&self, base: *mut u8) -> Result<()> {
self.source
.remap_as_zeros_at(base.add(self.linear_memory_offset), self.len)?;
Ok(())
}
}
impl ModuleMemoryImages {
/// Create a new `ModuleMemoryImages` for the given module. This can be
/// passed in as part of a `InstanceAllocationRequest` to speed up
/// instantiation and execution by using copy-on-write-backed memories.
pub fn new(
module: &Module,
wasm_data: &[u8],
mmap: Option<&MmapVec>,
) -> Result<Option<ModuleMemoryImages>> {
let map = match &module.memory_initialization {
MemoryInitialization::Static { map } => map,
_ => return Ok(None),
};
let mut memories = PrimaryMap::with_capacity(map.len());
let page_size = crate::page_size() as u32;
for (memory_index, init) in map {
// mmap-based-initialization only works for defined memories with a
// known starting point of all zeros, so bail out if the mmeory is
// imported.
let defined_memory = match module.defined_memory_index(memory_index) {
Some(idx) => idx,
None => return Ok(None),
};
// If there's no initialization for this memory known then we don't
// need an image for the memory so push `None` and move on.
let init = match init {
Some(init) => init,
None => {
memories.push(None);
continue;
}
};
// Get the image for this wasm module as a subslice of `wasm_data`,
// and then use that to try to create the `MemoryImage`. If this
// creation files then we fail creating `ModuleMemoryImages` since this
// memory couldn't be represented.
let data = &wasm_data[init.data.start as usize..init.data.end as usize];
let image = match MemoryImage::new(page_size, init.offset, data, mmap)? {
Some(image) => image,
None => return Ok(None),
};
let idx = memories.push(Some(Arc::new(image)));
assert_eq!(idx, defined_memory);
}
Ok(Some(ModuleMemoryImages { memories }))
}
}
/// Slot management of a copy-on-write image which can be reused for the pooling
/// allocator.
///
/// This data structure manages a slot of linear memory, primarily in the
/// pooling allocator, which optionally has a contiguous memory image in the
/// middle of it. Pictorially this data structure manages a virtual memory
/// region that looks like:
///
/// ```text
/// +--------------------+-------------------+--------------+--------------+
/// | anonymous | optional | anonymous | PROT_NONE |
/// | zero | memory | zero | memory |
/// | memory | image | memory | |
/// +--------------------+-------------------+--------------+--------------+
/// | <------+---------->
/// |<-----+------------> \
/// | \ image.len
/// | \
/// | image.linear_memory_offset
/// |
/// \
/// self.base is this virtual address
///
/// <------------------+------------------------------------------------>
/// \
/// static_size
///
/// <------------------+---------------------------------->
/// \
/// accessible
/// ```
///
/// When a `MemoryImageSlot` is created it's told what the `static_size` and
/// `accessible` limits are. Initially there is assumed to be no image in linear
/// memory.
///
/// When `MemoryImageSlot::instantiate` is called then the method will perform
/// a "synchronization" to take the image from its prior state to the new state
/// for the image specified. The first instantiation for example will mmap the
/// heap image into place. Upon reuse of a slot nothing happens except possibly
/// shrinking `self.accessible`. When a new image is used then the old image is
/// mapped to anonymous zero memory and then the new image is mapped in place.
///
/// A `MemoryImageSlot` is either `dirty` or it isn't. When a `MemoryImageSlot`
/// is dirty then it is assumed that any memory beneath `self.accessible` could
/// have any value. Instantiation cannot happen into a `dirty` slot, however, so
/// the `MemoryImageSlot::clear_and_remain_ready` returns this memory back to
/// its original state to mark `dirty = false`. This is done by resetting all
/// anonymous memory back to zero and the image itself back to its initial
/// contents.
///
/// On Linux this is achieved with the `madvise(MADV_DONTNEED)` syscall. This
/// syscall will release the physical pages back to the OS but retain the
/// original mappings, effectively resetting everything back to its initial
/// state. Non-linux platforms will replace all memory below `self.accessible`
/// with a fresh zero'd mmap, meaning that reuse is effectively not supported.
#[derive(Debug)]
pub struct MemoryImageSlot {
/// The base address in virtual memory of the actual heap memory.
///
/// Bytes at this address are what is seen by the Wasm guest code.
base: SendSyncPtr<u8>,
/// The maximum static memory size which `self.accessible` can grow to.
static_size: usize,
/// An optional image that is currently being used in this linear memory.
///
/// This can be `None` in which case memory is originally all zeros. When
/// `Some` the image describes where it's located within the image.
image: Option<Arc<MemoryImage>>,
/// The size of the heap that is readable and writable.
///
/// Note that this may extend beyond the actual linear memory heap size in
/// the case of dynamic memories in use. Memory accesses to memory below
/// `self.accessible` may still page fault as pages are lazily brought in
/// but the faults will always be resolved by the kernel.
accessible: usize,
/// Whether this slot may have "dirty" pages (pages written by an
/// instantiation). Set by `instantiate()` and cleared by
/// `clear_and_remain_ready()`, and used in assertions to ensure
/// those methods are called properly.
///
/// Invariant: if !dirty, then this memory slot contains a clean
/// CoW mapping of `image`, if `Some(..)`, and anonymous-zero
/// memory beyond the image up to `static_size`. The addresses
/// from offset 0 to `self.accessible` are R+W and set to zero or the
/// initial image content, as appropriate. Everything between
/// `self.accessible` and `self.static_size` is inaccessible.
dirty: bool,
/// Whether this MemoryImageSlot is responsible for mapping anonymous
/// memory (to hold the reservation while overwriting mappings
/// specific to this slot) in place when it is dropped. Default
/// on, unless the caller knows what they are doing.
clear_on_drop: bool,
}
impl MemoryImageSlot {
/// Create a new MemoryImageSlot. Assumes that there is an anonymous
/// mmap backing in the given range to start.
///
/// The `accessible` parameter descibes how much of linear memory is
/// already mapped as R/W with all zero-bytes. The `static_size` value is
/// the maximum size of this image which `accessible` cannot grow beyond,
/// and all memory from `accessible` from `static_size` should be mapped as
/// `PROT_NONE` backed by zero-bytes.
pub(crate) fn create(base_addr: *mut c_void, accessible: usize, static_size: usize) -> Self {
MemoryImageSlot {
base: NonNull::new(base_addr.cast()).unwrap().into(),
static_size,
accessible,
image: None,
dirty: false,
clear_on_drop: true,
}
}
#[cfg(feature = "pooling-allocator")]
pub(crate) fn dummy() -> MemoryImageSlot {
MemoryImageSlot {
// This pointer isn't ever actually used so its value doesn't
// matter but we need to satisfy `NonNull` requirement so create a
// `dangling` pointer as a sentinel that should cause problems if
// it's actually used.
base: NonNull::dangling().into(),
static_size: 0,
image: None,
accessible: 0,
dirty: false,
clear_on_drop: false,
}
}
/// Inform the MemoryImageSlot that it should *not* clear the underlying
/// address space when dropped. This should be used only when the
/// caller will clear or reuse the address space in some other
/// way.
pub(crate) fn no_clear_on_drop(&mut self) {
self.clear_on_drop = false;
}
pub(crate) fn set_heap_limit(&mut self, size_bytes: usize) -> Result<()> {
assert!(size_bytes <= self.static_size);
// If the heap limit already addresses accessible bytes then no syscalls
// are necessary since the data is already mapped into the process and
// waiting to go.
//
// This is used for "dynamic" memories where memory is not always
// decommitted during recycling (but it's still always reset).
if size_bytes <= self.accessible {
return Ok(());
}
// Otherwise use `mprotect` to make the new pages read/write.
self.set_protection(self.accessible..size_bytes, true)?;
self.accessible = size_bytes;
Ok(())
}
/// Prepares this slot for the instantiation of a new instance with the
/// provided linear memory image.
///
/// The `initial_size_bytes` parameter indicates the required initial size
/// of the heap for the instance. The `maybe_image` is an optional initial
/// image for linear memory to contains. The `style` is the way compiled
/// code will be accessing this memory.
///
/// The purpose of this method is to take a previously pristine slot
/// (`!self.dirty`) and transform its prior state into state necessary for
/// the given parameters. This could include, for example:
///
/// * More memory may be made read/write if `initial_size_bytes` is larger
/// than `self.accessible`.
/// * For `MemoryStyle::Static` linear memory may be made `PROT_NONE` if
/// `self.accessible` is larger than `initial_size_bytes`.
/// * If no image was previously in place or if the wrong image was
/// previously in place then `mmap` may be used to setup the initial
/// image.
pub(crate) fn instantiate(
&mut self,
initial_size_bytes: usize,
maybe_image: Option<&Arc<MemoryImage>>,
plan: &MemoryPlan,
) -> Result<()> {
assert!(!self.dirty);
assert!(initial_size_bytes <= self.static_size);
// First order of business is to blow away the previous linear memory
// image if it doesn't match the image specified here. If one is
// detected then it's reset with anonymous memory which means that all
// of memory up to `self.accessible` will now be read/write and zero.
//
// Note that this intentionally a "small mmap" which only covers the
// extent of the prior initialization image in order to preserve
// resident memory that might come before or after the image.
if self.image.as_ref() != maybe_image {
self.remove_image()?;
}
// The next order of business is to ensure that `self.accessible` is
// appropriate. First up is to grow the read/write portion of memory if
// it's not large enough to accommodate `initial_size_bytes`.
if self.accessible < initial_size_bytes {
self.set_protection(self.accessible..initial_size_bytes, true)?;
self.accessible = initial_size_bytes;
}
// If (1) the accessible region is not in its initial state, and (2) the
// memory relies on virtual memory at all (i.e. has offset guard pages
// and/or is static), then we need to reset memory protections. Put
// another way, the only time it is safe to not reset protections is
// when we are using dynamic memory without any guard pages.
if initial_size_bytes < self.accessible
&& (plan.offset_guard_size > 0 || matches!(plan.style, MemoryStyle::Static { .. }))
{
self.set_protection(initial_size_bytes..self.accessible, false)?;
self.accessible = initial_size_bytes;
}
// Now that memory is sized appropriately the final operation is to
// place the new image into linear memory. Note that this operation is
// skipped if `self.image` matches `maybe_image`.
assert!(initial_size_bytes <= self.accessible);
if self.image.as_ref() != maybe_image {
if let Some(image) = maybe_image.as_ref() {
assert!(
image.linear_memory_offset.checked_add(image.len).unwrap()
<= initial_size_bytes
);
if image.len > 0 {
unsafe {
image.map_at(self.base.as_ptr())?;
}
}
}
self.image = maybe_image.cloned();
}
// Flag ourselves as `dirty` which means that the next operation on this
// slot is required to be `clear_and_remain_ready`.
self.dirty = true;
Ok(())
}
pub(crate) fn remove_image(&mut self) -> Result<()> {
if let Some(image) = &self.image {
unsafe {
image.remap_as_zeros_at(self.base.as_ptr())?;
}
self.image = None;
}
Ok(())
}
/// Resets this linear memory slot back to a "pristine state".
///
/// This will reset the memory back to its original contents on Linux or
/// reset the contents back to zero on other platforms. The `keep_resident`
/// argument is the maximum amount of memory to keep resident in this
/// process's memory on Linux. Up to that much memory will be `memset` to
/// zero where the rest of it will be reset or released with `madvise`.
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
pub(crate) fn clear_and_remain_ready(&mut self, keep_resident: usize) -> Result<()> {
assert!(self.dirty);
unsafe {
self.reset_all_memory_contents(keep_resident)?;
}
self.dirty = false;
Ok(())
}
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
unsafe fn reset_all_memory_contents(&mut self, keep_resident: usize) -> Result<()> {
if !vm::supports_madvise_dontneed() {
// If we're not on Linux then there's no generic platform way to
// reset memory back to its original state, so instead reset memory
// back to entirely zeros with an anonymous backing.
//
// Additionally the previous image, if any, is dropped here
// since it's no longer applicable to this mapping.
return self.reset_with_anon_memory();
}
match &self.image {
Some(image) => {
assert!(self.accessible >= image.linear_memory_offset + image.len);
if image.linear_memory_offset < keep_resident {
// If the image starts below the `keep_resident` then
// memory looks something like this:
//
// up to `keep_resident` bytes
// |
// +--------------------------+ remaining_memset
// | | /
// <--------------> <------->
//
// image_end
// 0 linear_memory_offset | accessible
// | | | |
// +----------------+--------------+---------+--------+
// | dirty memory | image | dirty memory |
// +----------------+--------------+---------+--------+
//
// <------+-------> <-----+-----> <---+---> <--+--->
// | | | |
// | | | |
// memset (1) / | madvise (4)
// mmadvise (2) /
// /
// memset (3)
//
//
// In this situation there are two disjoint regions that are
// `memset` manually to zero. Note that `memset (3)` may be
// zero bytes large. Furthermore `madvise (4)` may also be
// zero bytes large.
let image_end = image.linear_memory_offset + image.len;
let mem_after_image = self.accessible - image_end;
let remaining_memset =
(keep_resident - image.linear_memory_offset).min(mem_after_image);
// This is memset (1)
std::ptr::write_bytes(self.base.as_ptr(), 0u8, image.linear_memory_offset);
// This is madvise (2)
self.madvise_reset(image.linear_memory_offset, image.len)?;
// This is memset (3)
std::ptr::write_bytes(self.base.as_ptr().add(image_end), 0u8, remaining_memset);
// This is madvise (4)
self.madvise_reset(
image_end + remaining_memset,
mem_after_image - remaining_memset,
)?;
} else {
// If the image starts after the `keep_resident` threshold
// then we memset the start of linear memory and then use
// madvise below for the rest of it, including the image.
//
// 0 keep_resident accessible
// | | |
// +----------------+---+----------+------------------+
// | dirty memory | image | dirty memory |
// +----------------+---+----------+------------------+
//
// <------+-------> <-------------+----------------->
// | |
// | |
// memset (1) madvise (2)
//
// Here only a single memset is necessary since the image
// started after the threshold which we're keeping resident.
// Note that the memset may be zero bytes here.
// This is memset (1)
std::ptr::write_bytes(self.base.as_ptr(), 0u8, keep_resident);
// This is madvise (2)
self.madvise_reset(keep_resident, self.accessible - keep_resident)?;
}
}
// If there's no memory image for this slot then memset the first
// bytes in the memory back to zero while using `madvise` to purge
// the rest.
None => {
let size_to_memset = keep_resident.min(self.accessible);
std::ptr::write_bytes(self.base.as_ptr(), 0u8, size_to_memset);
self.madvise_reset(size_to_memset, self.accessible - size_to_memset)?;
}
}
Ok(())
}
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
unsafe fn madvise_reset(&self, base: usize, len: usize) -> Result<()> {
assert!(base + len <= self.accessible);
if len == 0 {
return Ok(());
}
vm::madvise_dontneed(self.base.as_ptr().add(base), len)?;
Ok(())
}
fn set_protection(&self, range: Range<usize>, readwrite: bool) -> Result<()> {
assert!(range.start <= range.end);
assert!(range.end <= self.static_size);
if range.len() == 0 {
return Ok(());
}
unsafe {
let start = self.base.as_ptr().add(range.start);
if readwrite {
vm::expose_existing_mapping(start, range.len())?;
} else {
vm::hide_existing_mapping(start, range.len())?;
}
}
Ok(())
}
pub(crate) fn has_image(&self) -> bool {
self.image.is_some()
}
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
pub(crate) fn is_dirty(&self) -> bool {
self.dirty
}
/// Map anonymous zeroed memory across the whole slot,
/// inaccessible. Used both during instantiate and during drop.
fn reset_with_anon_memory(&mut self) -> Result<()> {
if self.static_size == 0 {
assert!(self.image.is_none());
assert_eq!(self.accessible, 0);
return Ok(());
}
unsafe {
vm::erase_existing_mapping(self.base.as_ptr(), self.static_size)?;
}
self.image = None;
self.accessible = 0;
Ok(())
}
}
impl Drop for MemoryImageSlot {
fn drop(&mut self) {
// The MemoryImageSlot may be dropped if there is an error during
// instantiation: for example, if a memory-growth limiter
// disallows a guest from having a memory of a certain size,
// after we've already initialized the MemoryImageSlot.
//
// We need to return this region of the large pool mmap to a
// safe state (with no module-specific mappings). The
// MemoryImageSlot will not be returned to the MemoryPool, so a new
// MemoryImageSlot will be created and overwrite the mappings anyway
// on the slot's next use; but for safety and to avoid
// resource leaks it's better not to have stale mappings to a
// possibly-otherwise-dead module's image.
//
// To "wipe the slate clean", let's do a mmap of anonymous
// memory over the whole region, with PROT_NONE. Note that we
// *can't* simply munmap, because that leaves a hole in the
// middle of the pooling allocator's big memory area that some
// other random mmap may swoop in and take, to be trampled
// over by the next MemoryImageSlot later.
//
// Since we're in drop(), we can't sanely return an error if
// this mmap fails. Instead though the result is unwrapped here to
// trigger a panic if something goes wrong. Otherwise if this
// reset-the-mapping fails then on reuse it might be possible, depending
// on precisely where errors happened, that stale memory could get
// leaked through.
//
// The exception to all of this is if the `clear_on_drop` flag
// (which is set by default) is false. If so, the owner of
// this MemoryImageSlot has indicated that it will clean up in some
// other way.
if self.clear_on_drop {
self.reset_with_anon_memory().unwrap();
}
}
}
#[cfg(all(test, target_os = "linux", not(miri)))]
mod test {
use std::sync::Arc;
use super::{MemoryImage, MemoryImageSlot, MemoryImageSource, MemoryPlan, MemoryStyle};
use crate::mmap::Mmap;
use anyhow::Result;
use wasmtime_environ::Memory;
fn create_memfd_with_data(offset: usize, data: &[u8]) -> Result<MemoryImage> {
// Offset must be page-aligned.
let page_size = crate::page_size();
assert_eq!(offset & (page_size - 1), 0);
// The image length is rounded up to the nearest page size
let image_len = (data.len() + page_size - 1) & !(page_size - 1);
Ok(MemoryImage {
source: MemoryImageSource::from_data(data)?.unwrap(),
len: image_len,
source_offset: 0,
linear_memory_offset: offset,
})
}
fn dummy_memory_plan(style: MemoryStyle) -> MemoryPlan {
MemoryPlan {
style,
memory: Memory {
minimum: 0,
maximum: None,
shared: false,
memory64: false,
},
pre_guard_size: 0,
offset_guard_size: 0,
}
}
#[test]
fn instantiate_no_image() {
let plan = dummy_memory_plan(MemoryStyle::Static { bound: 4 << 30 });
// 4 MiB mmap'd area, not accessible
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
// Create a MemoryImageSlot on top of it
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
assert!(!memfd.is_dirty());
// instantiate with 64 KiB initial size
memfd.instantiate(64 << 10, None, &plan).unwrap();
assert!(memfd.is_dirty());
// We should be able to access this 64 KiB (try both ends) and
// it should consist of zeroes.
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(0, slice[0]);
assert_eq!(0, slice[65535]);
slice[1024] = 42;
assert_eq!(42, slice[1024]);
// grow the heap
memfd.set_heap_limit(128 << 10).unwrap();
let slice = unsafe { mmap.slice(0..1 << 20) };
assert_eq!(42, slice[1024]);
assert_eq!(0, slice[131071]);
// instantiate again; we should see zeroes, even as the
// reuse-anon-mmap-opt kicks in
memfd.clear_and_remain_ready(0).unwrap();
assert!(!memfd.is_dirty());
memfd.instantiate(64 << 10, None, &plan).unwrap();
let slice = unsafe { mmap.slice(0..65536) };
assert_eq!(0, slice[1024]);
}
#[test]
fn instantiate_image() {
let plan = dummy_memory_plan(MemoryStyle::Static { bound: 4 << 30 });
// 4 MiB mmap'd area, not accessible
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
// Create a MemoryImageSlot on top of it
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
// Create an image with some data.
let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
// Instantiate with this image
memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
assert!(memfd.has_image());
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
slice[4096] = 5;
// Clear and re-instantiate same image
memfd.clear_and_remain_ready(0).unwrap();
memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
let slice = unsafe { mmap.slice_mut(0..65536) };
// Should not see mutation from above
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
// Clear and re-instantiate no image
memfd.clear_and_remain_ready(0).unwrap();
memfd.instantiate(64 << 10, None, &plan).unwrap();
assert!(!memfd.has_image());
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
// Clear and re-instantiate image again
memfd.clear_and_remain_ready(0).unwrap();
memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
// Create another image with different data.
let image2 = Arc::new(create_memfd_with_data(4096, &[10, 11, 12, 13]).unwrap());
memfd.clear_and_remain_ready(0).unwrap();
memfd.instantiate(128 << 10, Some(&image2), &plan).unwrap();
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(&[10, 11, 12, 13], &slice[4096..4100]);
// Instantiate the original image again; we should notice it's
// a different image and not reuse the mappings.
memfd.clear_and_remain_ready(0).unwrap();
memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
let slice = unsafe { mmap.slice_mut(0..65536) };
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
}
#[test]
#[cfg(target_os = "linux")]
fn memset_instead_of_madvise() {
let plan = dummy_memory_plan(MemoryStyle::Static { bound: 100 });
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
// Test basics with the image
for image_off in [0, 4096, 8 << 10] {
let image = Arc::new(create_memfd_with_data(image_off, &[1, 2, 3, 4]).unwrap());
for amt_to_memset in [0, 4096, 10 << 12, 1 << 20, 10 << 20] {
memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
assert!(memfd.has_image());
let slice = unsafe { mmap.slice_mut(0..64 << 10) };
if image_off > 0 {
assert_eq!(slice[image_off - 1], 0);
}
assert_eq!(slice[image_off + 5], 0);
assert_eq!(&[1, 2, 3, 4], &slice[image_off..][..4]);
slice[image_off] = 5;
assert_eq!(&[5, 2, 3, 4], &slice[image_off..][..4]);
memfd.clear_and_remain_ready(amt_to_memset).unwrap();
}
}
// Test without an image
for amt_to_memset in [0, 4096, 10 << 12, 1 << 20, 10 << 20] {
memfd.instantiate(64 << 10, None, &plan).unwrap();
let mem = unsafe { mmap.slice_mut(0..64 << 10) };
for chunk in mem.chunks_mut(1024) {
assert_eq!(chunk[0], 0);
chunk[0] = 5;
}
memfd.clear_and_remain_ready(amt_to_memset).unwrap();
}
}
#[test]
#[cfg(target_os = "linux")]
fn dynamic() {
let plan = dummy_memory_plan(MemoryStyle::Dynamic { reserve: 200 });
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
let initial = 64 << 10;
// Instantiate the image and test that memory remains accessible after
// it's cleared.
memfd.instantiate(initial, Some(&image), &plan).unwrap();
assert!(memfd.has_image());
let slice = unsafe { mmap.slice_mut(0..(64 << 10) + 4096) };
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
slice[4096] = 5;
assert_eq!(&[5, 2, 3, 4], &slice[4096..4100]);
memfd.clear_and_remain_ready(0).unwrap();
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
// Re-instantiate make sure it preserves memory. Grow a bit and set data
// beyond the initial size.
memfd.instantiate(initial, Some(&image), &plan).unwrap();
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
memfd.set_heap_limit(initial * 2).unwrap();
assert_eq!(&[0, 0], &slice[initial..initial + 2]);
slice[initial] = 100;
assert_eq!(&[100, 0], &slice[initial..initial + 2]);
memfd.clear_and_remain_ready(0).unwrap();
// Test that memory is still accessible, but it's been reset
assert_eq!(&[0, 0], &slice[initial..initial + 2]);
// Instantiate again, and again memory beyond the initial size should
// still be accessible. Grow into it again and make sure it works.
memfd.instantiate(initial, Some(&image), &plan).unwrap();
assert_eq!(&[0, 0], &slice[initial..initial + 2]);
memfd.set_heap_limit(initial * 2).unwrap();
assert_eq!(&[0, 0], &slice[initial..initial + 2]);
slice[initial] = 100;
assert_eq!(&[100, 0], &slice[initial..initial + 2]);
memfd.clear_and_remain_ready(0).unwrap();
// Reset the image to none and double-check everything is back to zero
memfd.instantiate(64 << 10, None, &plan).unwrap();
assert!(!memfd.has_image());
assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
assert_eq!(&[0, 0], &slice[initial..initial + 2]);
}
}