1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
//! Copy-on-write initialization support: creation of backing images for
//! modules, and logic to support mapping these backing images into memory.

use crate::sys::vm::{self, MemoryImageSource};
use crate::{MmapVec, SendSyncPtr};
use anyhow::Result;
use std::ffi::c_void;
use std::ptr::NonNull;
use std::sync::Arc;
use std::{convert::TryFrom, ops::Range};
use wasmtime_environ::{
    DefinedMemoryIndex, MemoryInitialization, MemoryPlan, MemoryStyle, Module, PrimaryMap,
};

/// Backing images for memories in a module.
///
/// This is meant to be built once, when a module is first loaded/constructed,
/// and then used many times for instantiation.
pub struct ModuleMemoryImages {
    memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryImage>>>,
}

impl ModuleMemoryImages {
    /// Get the MemoryImage for a given memory.
    pub fn get_memory_image(&self, defined_index: DefinedMemoryIndex) -> Option<&Arc<MemoryImage>> {
        self.memories[defined_index].as_ref()
    }
}

/// One backing image for one memory.
#[derive(Debug, PartialEq)]
pub struct MemoryImage {
    /// The platform-specific source of this image.
    ///
    /// This might be a mapped `*.cwasm` file or on Unix it could also be a
    /// `Memfd` as an anonymous file in memory on Linux. In either case this is
    /// used as the backing-source for the CoW image.
    source: MemoryImageSource,

    /// Length of image, in bytes.
    ///
    /// Note that initial memory size may be larger; leading and trailing zeroes
    /// are truncated (handled by backing fd).
    ///
    /// Must be a multiple of the system page size.
    len: usize,

    /// Image starts this many bytes into `source`.
    ///
    /// This is 0 for anonymous-backed memfd files and is the offset of the
    /// data section in a `*.cwasm` file for `*.cwasm`-backed images.
    ///
    /// Must be a multiple of the system page size.
    source_offset: u64,

    /// Image starts this many bytes into heap space.
    ///
    /// Must be a multiple of the system page size.
    linear_memory_offset: usize,
}

impl MemoryImage {
    fn new(
        page_size: u32,
        offset: u64,
        data: &[u8],
        mmap: Option<&MmapVec>,
    ) -> Result<Option<MemoryImage>> {
        // Sanity-check that various parameters are page-aligned.
        let len = data.len();
        assert_eq!(offset % u64::from(page_size), 0);
        assert_eq!((len as u32) % page_size, 0);
        let linear_memory_offset = match usize::try_from(offset) {
            Ok(offset) => offset,
            Err(_) => return Ok(None),
        };

        // If a backing `mmap` is present then `data` should be a sub-slice of
        // the `mmap`. The sanity-checks here double-check that. Additionally
        // compilation should have ensured that the `data` section is
        // page-aligned within `mmap`, so that's also all double-checked here.
        //
        // Finally if the `mmap` itself comes from a backing file on disk, such
        // as a `*.cwasm` file, then that's a valid source of data for the
        // memory image so we simply return referencing that.
        //
        // Note that this path is platform-agnostic in the sense of all
        // platforms we support support memory mapping copy-on-write data from
        // files, but for now this is still a Linux-specific region of Wasmtime.
        // Some work will be needed to get this file compiling for macOS and
        // Windows.
        if let Some(mmap) = mmap {
            let start = mmap.as_ptr() as usize;
            let end = start + mmap.len();
            let data_start = data.as_ptr() as usize;
            let data_end = data_start + data.len();
            assert!(start <= data_start && data_end <= end);
            assert_eq!((start as u32) % page_size, 0);
            assert_eq!((data_start as u32) % page_size, 0);
            assert_eq!((data_end as u32) % page_size, 0);
            assert_eq!((mmap.original_offset() as u32) % page_size, 0);

            if let Some(file) = mmap.original_file() {
                if let Some(source) = MemoryImageSource::from_file(file) {
                    return Ok(Some(MemoryImage {
                        source,
                        source_offset: u64::try_from(mmap.original_offset() + (data_start - start))
                            .unwrap(),
                        linear_memory_offset,
                        len,
                    }));
                }
            }
        }

        // If `mmap` doesn't come from a file then platform-specific mechanisms
        // may be used to place the data in a form that's amenable to an mmap.
        if let Some(source) = MemoryImageSource::from_data(data)? {
            return Ok(Some(MemoryImage {
                source,
                source_offset: 0,
                linear_memory_offset,
                len,
            }));
        }

        Ok(None)
    }

    unsafe fn map_at(&self, base: *mut u8) -> Result<()> {
        self.source.map_at(
            base.add(self.linear_memory_offset),
            self.len,
            self.source_offset,
        )?;
        Ok(())
    }

    unsafe fn remap_as_zeros_at(&self, base: *mut u8) -> Result<()> {
        self.source
            .remap_as_zeros_at(base.add(self.linear_memory_offset), self.len)?;
        Ok(())
    }
}

impl ModuleMemoryImages {
    /// Create a new `ModuleMemoryImages` for the given module. This can be
    /// passed in as part of a `InstanceAllocationRequest` to speed up
    /// instantiation and execution by using copy-on-write-backed memories.
    pub fn new(
        module: &Module,
        wasm_data: &[u8],
        mmap: Option<&MmapVec>,
    ) -> Result<Option<ModuleMemoryImages>> {
        let map = match &module.memory_initialization {
            MemoryInitialization::Static { map } => map,
            _ => return Ok(None),
        };
        let mut memories = PrimaryMap::with_capacity(map.len());
        let page_size = crate::page_size() as u32;
        for (memory_index, init) in map {
            // mmap-based-initialization only works for defined memories with a
            // known starting point of all zeros, so bail out if the mmeory is
            // imported.
            let defined_memory = match module.defined_memory_index(memory_index) {
                Some(idx) => idx,
                None => return Ok(None),
            };

            // If there's no initialization for this memory known then we don't
            // need an image for the memory so push `None` and move on.
            let init = match init {
                Some(init) => init,
                None => {
                    memories.push(None);
                    continue;
                }
            };

            // Get the image for this wasm module  as a subslice of `wasm_data`,
            // and then use that to try to create the `MemoryImage`. If this
            // creation files then we fail creating `ModuleMemoryImages` since this
            // memory couldn't be represented.
            let data = &wasm_data[init.data.start as usize..init.data.end as usize];
            let image = match MemoryImage::new(page_size, init.offset, data, mmap)? {
                Some(image) => image,
                None => return Ok(None),
            };

            let idx = memories.push(Some(Arc::new(image)));
            assert_eq!(idx, defined_memory);
        }

        Ok(Some(ModuleMemoryImages { memories }))
    }
}

/// Slot management of a copy-on-write image which can be reused for the pooling
/// allocator.
///
/// This data structure manages a slot of linear memory, primarily in the
/// pooling allocator, which optionally has a contiguous memory image in the
/// middle of it. Pictorially this data structure manages a virtual memory
/// region that looks like:
///
/// ```text
///   +--------------------+-------------------+--------------+--------------+
///   |   anonymous        |      optional     |   anonymous  |    PROT_NONE |
///   |     zero           |       memory      |     zero     |     memory   |
///   |    memory          |       image       |    memory    |              |
///   +--------------------+-------------------+--------------+--------------+
///   |                     <------+---------->
///   |<-----+------------>         \
///   |      \                   image.len
///   |       \
///   |  image.linear_memory_offset
///   |
///   \
///  self.base is this virtual address
///
///    <------------------+------------------------------------------------>
///                        \
///                      static_size
///
///    <------------------+---------------------------------->
///                        \
///                      accessible
/// ```
///
/// When a `MemoryImageSlot` is created it's told what the `static_size` and
/// `accessible` limits are. Initially there is assumed to be no image in linear
/// memory.
///
/// When `MemoryImageSlot::instantiate` is called then the method will perform
/// a "synchronization" to take the image from its prior state to the new state
/// for the image specified. The first instantiation for example will mmap the
/// heap image into place. Upon reuse of a slot nothing happens except possibly
/// shrinking `self.accessible`. When a new image is used then the old image is
/// mapped to anonymous zero memory and then the new image is mapped in place.
///
/// A `MemoryImageSlot` is either `dirty` or it isn't. When a `MemoryImageSlot`
/// is dirty then it is assumed that any memory beneath `self.accessible` could
/// have any value. Instantiation cannot happen into a `dirty` slot, however, so
/// the `MemoryImageSlot::clear_and_remain_ready` returns this memory back to
/// its original state to mark `dirty = false`. This is done by resetting all
/// anonymous memory back to zero and the image itself back to its initial
/// contents.
///
/// On Linux this is achieved with the `madvise(MADV_DONTNEED)` syscall. This
/// syscall will release the physical pages back to the OS but retain the
/// original mappings, effectively resetting everything back to its initial
/// state. Non-linux platforms will replace all memory below `self.accessible`
/// with a fresh zero'd mmap, meaning that reuse is effectively not supported.
#[derive(Debug)]
pub struct MemoryImageSlot {
    /// The base address in virtual memory of the actual heap memory.
    ///
    /// Bytes at this address are what is seen by the Wasm guest code.
    base: SendSyncPtr<u8>,

    /// The maximum static memory size which `self.accessible` can grow to.
    static_size: usize,

    /// An optional image that is currently being used in this linear memory.
    ///
    /// This can be `None` in which case memory is originally all zeros. When
    /// `Some` the image describes where it's located within the image.
    image: Option<Arc<MemoryImage>>,

    /// The size of the heap that is readable and writable.
    ///
    /// Note that this may extend beyond the actual linear memory heap size in
    /// the case of dynamic memories in use. Memory accesses to memory below
    /// `self.accessible` may still page fault as pages are lazily brought in
    /// but the faults will always be resolved by the kernel.
    accessible: usize,

    /// Whether this slot may have "dirty" pages (pages written by an
    /// instantiation). Set by `instantiate()` and cleared by
    /// `clear_and_remain_ready()`, and used in assertions to ensure
    /// those methods are called properly.
    ///
    /// Invariant: if !dirty, then this memory slot contains a clean
    /// CoW mapping of `image`, if `Some(..)`, and anonymous-zero
    /// memory beyond the image up to `static_size`. The addresses
    /// from offset 0 to `self.accessible` are R+W and set to zero or the
    /// initial image content, as appropriate. Everything between
    /// `self.accessible` and `self.static_size` is inaccessible.
    dirty: bool,

    /// Whether this MemoryImageSlot is responsible for mapping anonymous
    /// memory (to hold the reservation while overwriting mappings
    /// specific to this slot) in place when it is dropped. Default
    /// on, unless the caller knows what they are doing.
    clear_on_drop: bool,
}

impl MemoryImageSlot {
    /// Create a new MemoryImageSlot. Assumes that there is an anonymous
    /// mmap backing in the given range to start.
    ///
    /// The `accessible` parameter descibes how much of linear memory is
    /// already mapped as R/W with all zero-bytes. The `static_size` value is
    /// the maximum size of this image which `accessible` cannot grow beyond,
    /// and all memory from `accessible` from `static_size` should be mapped as
    /// `PROT_NONE` backed by zero-bytes.
    pub(crate) fn create(base_addr: *mut c_void, accessible: usize, static_size: usize) -> Self {
        MemoryImageSlot {
            base: NonNull::new(base_addr.cast()).unwrap().into(),
            static_size,
            accessible,
            image: None,
            dirty: false,
            clear_on_drop: true,
        }
    }

    #[cfg(feature = "pooling-allocator")]
    pub(crate) fn dummy() -> MemoryImageSlot {
        MemoryImageSlot {
            // This pointer isn't ever actually used so its value doesn't
            // matter but we need to satisfy `NonNull` requirement so create a
            // `dangling` pointer as a sentinel that should cause problems if
            // it's actually used.
            base: NonNull::dangling().into(),
            static_size: 0,
            image: None,
            accessible: 0,
            dirty: false,
            clear_on_drop: false,
        }
    }

    /// Inform the MemoryImageSlot that it should *not* clear the underlying
    /// address space when dropped. This should be used only when the
    /// caller will clear or reuse the address space in some other
    /// way.
    pub(crate) fn no_clear_on_drop(&mut self) {
        self.clear_on_drop = false;
    }

    pub(crate) fn set_heap_limit(&mut self, size_bytes: usize) -> Result<()> {
        assert!(size_bytes <= self.static_size);

        // If the heap limit already addresses accessible bytes then no syscalls
        // are necessary since the data is already mapped into the process and
        // waiting to go.
        //
        // This is used for "dynamic" memories where memory is not always
        // decommitted during recycling (but it's still always reset).
        if size_bytes <= self.accessible {
            return Ok(());
        }

        // Otherwise use `mprotect` to make the new pages read/write.
        self.set_protection(self.accessible..size_bytes, true)?;
        self.accessible = size_bytes;

        Ok(())
    }

    /// Prepares this slot for the instantiation of a new instance with the
    /// provided linear memory image.
    ///
    /// The `initial_size_bytes` parameter indicates the required initial size
    /// of the heap for the instance. The `maybe_image` is an optional initial
    /// image for linear memory to contains. The `style` is the way compiled
    /// code will be accessing this memory.
    ///
    /// The purpose of this method is to take a previously pristine slot
    /// (`!self.dirty`) and transform its prior state into state necessary for
    /// the given parameters. This could include, for example:
    ///
    /// * More memory may be made read/write if `initial_size_bytes` is larger
    ///   than `self.accessible`.
    /// * For `MemoryStyle::Static` linear memory may be made `PROT_NONE` if
    ///   `self.accessible` is larger than `initial_size_bytes`.
    /// * If no image was previously in place or if the wrong image was
    ///   previously in place then `mmap` may be used to setup the initial
    ///   image.
    pub(crate) fn instantiate(
        &mut self,
        initial_size_bytes: usize,
        maybe_image: Option<&Arc<MemoryImage>>,
        plan: &MemoryPlan,
    ) -> Result<()> {
        assert!(!self.dirty);
        assert!(initial_size_bytes <= self.static_size);

        // First order of business is to blow away the previous linear memory
        // image if it doesn't match the image specified here. If one is
        // detected then it's reset with anonymous memory which means that all
        // of memory up to `self.accessible` will now be read/write and zero.
        //
        // Note that this intentionally a "small mmap" which only covers the
        // extent of the prior initialization image in order to preserve
        // resident memory that might come before or after the image.
        if self.image.as_ref() != maybe_image {
            self.remove_image()?;
        }

        // The next order of business is to ensure that `self.accessible` is
        // appropriate. First up is to grow the read/write portion of memory if
        // it's not large enough to accommodate `initial_size_bytes`.
        if self.accessible < initial_size_bytes {
            self.set_protection(self.accessible..initial_size_bytes, true)?;
            self.accessible = initial_size_bytes;
        }

        // If (1) the accessible region is not in its initial state, and (2) the
        // memory relies on virtual memory at all (i.e. has offset guard pages
        // and/or is static), then we need to reset memory protections. Put
        // another way, the only time it is safe to not reset protections is
        // when we are using dynamic memory without any guard pages.
        if initial_size_bytes < self.accessible
            && (plan.offset_guard_size > 0 || matches!(plan.style, MemoryStyle::Static { .. }))
        {
            self.set_protection(initial_size_bytes..self.accessible, false)?;
            self.accessible = initial_size_bytes;
        }

        // Now that memory is sized appropriately the final operation is to
        // place the new image into linear memory. Note that this operation is
        // skipped if `self.image` matches `maybe_image`.
        assert!(initial_size_bytes <= self.accessible);
        if self.image.as_ref() != maybe_image {
            if let Some(image) = maybe_image.as_ref() {
                assert!(
                    image.linear_memory_offset.checked_add(image.len).unwrap()
                        <= initial_size_bytes
                );
                if image.len > 0 {
                    unsafe {
                        image.map_at(self.base.as_ptr())?;
                    }
                }
            }
            self.image = maybe_image.cloned();
        }

        // Flag ourselves as `dirty` which means that the next operation on this
        // slot is required to be `clear_and_remain_ready`.
        self.dirty = true;

        Ok(())
    }

    pub(crate) fn remove_image(&mut self) -> Result<()> {
        if let Some(image) = &self.image {
            unsafe {
                image.remap_as_zeros_at(self.base.as_ptr())?;
            }
            self.image = None;
        }
        Ok(())
    }

    /// Resets this linear memory slot back to a "pristine state".
    ///
    /// This will reset the memory back to its original contents on Linux or
    /// reset the contents back to zero on other platforms. The `keep_resident`
    /// argument is the maximum amount of memory to keep resident in this
    /// process's memory on Linux. Up to that much memory will be `memset` to
    /// zero where the rest of it will be reset or released with `madvise`.
    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    pub(crate) fn clear_and_remain_ready(&mut self, keep_resident: usize) -> Result<()> {
        assert!(self.dirty);

        unsafe {
            self.reset_all_memory_contents(keep_resident)?;
        }

        self.dirty = false;
        Ok(())
    }

    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    unsafe fn reset_all_memory_contents(&mut self, keep_resident: usize) -> Result<()> {
        if !vm::supports_madvise_dontneed() {
            // If we're not on Linux then there's no generic platform way to
            // reset memory back to its original state, so instead reset memory
            // back to entirely zeros with an anonymous backing.
            //
            // Additionally the previous image, if any, is dropped here
            // since it's no longer applicable to this mapping.
            return self.reset_with_anon_memory();
        }

        match &self.image {
            Some(image) => {
                assert!(self.accessible >= image.linear_memory_offset + image.len);
                if image.linear_memory_offset < keep_resident {
                    // If the image starts below the `keep_resident` then
                    // memory looks something like this:
                    //
                    //               up to `keep_resident` bytes
                    //                          |
                    //          +--------------------------+  remaining_memset
                    //          |                          | /
                    //  <-------------->                <------->
                    //
                    //                              image_end
                    // 0        linear_memory_offset   |             accessible
                    // |                |              |                  |
                    // +----------------+--------------+---------+--------+
                    // |  dirty memory  |    image     |   dirty memory   |
                    // +----------------+--------------+---------+--------+
                    //
                    //  <------+-------> <-----+----->  <---+---> <--+--->
                    //         |               |            |        |
                    //         |               |            |        |
                    //   memset (1)            /            |   madvise (4)
                    //                  mmadvise (2)       /
                    //                                    /
                    //                              memset (3)
                    //
                    //
                    // In this situation there are two disjoint regions that are
                    // `memset` manually to zero. Note that `memset (3)` may be
                    // zero bytes large. Furthermore `madvise (4)` may also be
                    // zero bytes large.

                    let image_end = image.linear_memory_offset + image.len;
                    let mem_after_image = self.accessible - image_end;
                    let remaining_memset =
                        (keep_resident - image.linear_memory_offset).min(mem_after_image);

                    // This is memset (1)
                    std::ptr::write_bytes(self.base.as_ptr(), 0u8, image.linear_memory_offset);

                    // This is madvise (2)
                    self.madvise_reset(image.linear_memory_offset, image.len)?;

                    // This is memset (3)
                    std::ptr::write_bytes(self.base.as_ptr().add(image_end), 0u8, remaining_memset);

                    // This is madvise (4)
                    self.madvise_reset(
                        image_end + remaining_memset,
                        mem_after_image - remaining_memset,
                    )?;
                } else {
                    // If the image starts after the `keep_resident` threshold
                    // then we memset the start of linear memory and then use
                    // madvise below for the rest of it, including the image.
                    //
                    // 0             keep_resident                   accessible
                    // |                |                                 |
                    // +----------------+---+----------+------------------+
                    // |  dirty memory      |  image   |   dirty memory   |
                    // +----------------+---+----------+------------------+
                    //
                    //  <------+-------> <-------------+----------------->
                    //         |                       |
                    //         |                       |
                    //   memset (1)                 madvise (2)
                    //
                    // Here only a single memset is necessary since the image
                    // started after the threshold which we're keeping resident.
                    // Note that the memset may be zero bytes here.

                    // This is memset (1)
                    std::ptr::write_bytes(self.base.as_ptr(), 0u8, keep_resident);

                    // This is madvise (2)
                    self.madvise_reset(keep_resident, self.accessible - keep_resident)?;
                }
            }

            // If there's no memory image for this slot then memset the first
            // bytes in the memory back to zero while using `madvise` to purge
            // the rest.
            None => {
                let size_to_memset = keep_resident.min(self.accessible);
                std::ptr::write_bytes(self.base.as_ptr(), 0u8, size_to_memset);
                self.madvise_reset(size_to_memset, self.accessible - size_to_memset)?;
            }
        }

        Ok(())
    }

    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    unsafe fn madvise_reset(&self, base: usize, len: usize) -> Result<()> {
        assert!(base + len <= self.accessible);
        if len == 0 {
            return Ok(());
        }
        vm::madvise_dontneed(self.base.as_ptr().add(base), len)?;
        Ok(())
    }

    fn set_protection(&self, range: Range<usize>, readwrite: bool) -> Result<()> {
        assert!(range.start <= range.end);
        assert!(range.end <= self.static_size);
        if range.len() == 0 {
            return Ok(());
        }

        unsafe {
            let start = self.base.as_ptr().add(range.start);
            if readwrite {
                vm::expose_existing_mapping(start, range.len())?;
            } else {
                vm::hide_existing_mapping(start, range.len())?;
            }
        }

        Ok(())
    }

    pub(crate) fn has_image(&self) -> bool {
        self.image.is_some()
    }

    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    pub(crate) fn is_dirty(&self) -> bool {
        self.dirty
    }

    /// Map anonymous zeroed memory across the whole slot,
    /// inaccessible. Used both during instantiate and during drop.
    fn reset_with_anon_memory(&mut self) -> Result<()> {
        if self.static_size == 0 {
            assert!(self.image.is_none());
            assert_eq!(self.accessible, 0);
            return Ok(());
        }

        unsafe {
            vm::erase_existing_mapping(self.base.as_ptr(), self.static_size)?;
        }

        self.image = None;
        self.accessible = 0;

        Ok(())
    }
}

impl Drop for MemoryImageSlot {
    fn drop(&mut self) {
        // The MemoryImageSlot may be dropped if there is an error during
        // instantiation: for example, if a memory-growth limiter
        // disallows a guest from having a memory of a certain size,
        // after we've already initialized the MemoryImageSlot.
        //
        // We need to return this region of the large pool mmap to a
        // safe state (with no module-specific mappings). The
        // MemoryImageSlot will not be returned to the MemoryPool, so a new
        // MemoryImageSlot will be created and overwrite the mappings anyway
        // on the slot's next use; but for safety and to avoid
        // resource leaks it's better not to have stale mappings to a
        // possibly-otherwise-dead module's image.
        //
        // To "wipe the slate clean", let's do a mmap of anonymous
        // memory over the whole region, with PROT_NONE. Note that we
        // *can't* simply munmap, because that leaves a hole in the
        // middle of the pooling allocator's big memory area that some
        // other random mmap may swoop in and take, to be trampled
        // over by the next MemoryImageSlot later.
        //
        // Since we're in drop(), we can't sanely return an error if
        // this mmap fails. Instead though the result is unwrapped here to
        // trigger a panic if something goes wrong. Otherwise if this
        // reset-the-mapping fails then on reuse it might be possible, depending
        // on precisely where errors happened, that stale memory could get
        // leaked through.
        //
        // The exception to all of this is if the `clear_on_drop` flag
        // (which is set by default) is false. If so, the owner of
        // this MemoryImageSlot has indicated that it will clean up in some
        // other way.
        if self.clear_on_drop {
            self.reset_with_anon_memory().unwrap();
        }
    }
}

#[cfg(all(test, target_os = "linux", not(miri)))]
mod test {
    use std::sync::Arc;

    use super::{MemoryImage, MemoryImageSlot, MemoryImageSource, MemoryPlan, MemoryStyle};
    use crate::mmap::Mmap;
    use anyhow::Result;
    use wasmtime_environ::Memory;

    fn create_memfd_with_data(offset: usize, data: &[u8]) -> Result<MemoryImage> {
        // Offset must be page-aligned.
        let page_size = crate::page_size();
        assert_eq!(offset & (page_size - 1), 0);

        // The image length is rounded up to the nearest page size
        let image_len = (data.len() + page_size - 1) & !(page_size - 1);

        Ok(MemoryImage {
            source: MemoryImageSource::from_data(data)?.unwrap(),
            len: image_len,
            source_offset: 0,
            linear_memory_offset: offset,
        })
    }

    fn dummy_memory_plan(style: MemoryStyle) -> MemoryPlan {
        MemoryPlan {
            style,
            memory: Memory {
                minimum: 0,
                maximum: None,
                shared: false,
                memory64: false,
            },
            pre_guard_size: 0,
            offset_guard_size: 0,
        }
    }

    #[test]
    fn instantiate_no_image() {
        let plan = dummy_memory_plan(MemoryStyle::Static { bound: 4 << 30 });
        // 4 MiB mmap'd area, not accessible
        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        // Create a MemoryImageSlot on top of it
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();
        assert!(!memfd.is_dirty());
        // instantiate with 64 KiB initial size
        memfd.instantiate(64 << 10, None, &plan).unwrap();
        assert!(memfd.is_dirty());
        // We should be able to access this 64 KiB (try both ends) and
        // it should consist of zeroes.
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(0, slice[0]);
        assert_eq!(0, slice[65535]);
        slice[1024] = 42;
        assert_eq!(42, slice[1024]);
        // grow the heap
        memfd.set_heap_limit(128 << 10).unwrap();
        let slice = unsafe { mmap.slice(0..1 << 20) };
        assert_eq!(42, slice[1024]);
        assert_eq!(0, slice[131071]);
        // instantiate again; we should see zeroes, even as the
        // reuse-anon-mmap-opt kicks in
        memfd.clear_and_remain_ready(0).unwrap();
        assert!(!memfd.is_dirty());
        memfd.instantiate(64 << 10, None, &plan).unwrap();
        let slice = unsafe { mmap.slice(0..65536) };
        assert_eq!(0, slice[1024]);
    }

    #[test]
    fn instantiate_image() {
        let plan = dummy_memory_plan(MemoryStyle::Static { bound: 4 << 30 });
        // 4 MiB mmap'd area, not accessible
        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        // Create a MemoryImageSlot on top of it
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();
        // Create an image with some data.
        let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
        // Instantiate with this image
        memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
        assert!(memfd.has_image());
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        slice[4096] = 5;
        // Clear and re-instantiate same image
        memfd.clear_and_remain_ready(0).unwrap();
        memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
        let slice = unsafe { mmap.slice_mut(0..65536) };
        // Should not see mutation from above
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        // Clear and re-instantiate no image
        memfd.clear_and_remain_ready(0).unwrap();
        memfd.instantiate(64 << 10, None, &plan).unwrap();
        assert!(!memfd.has_image());
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
        // Clear and re-instantiate image again
        memfd.clear_and_remain_ready(0).unwrap();
        memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        // Create another image with different data.
        let image2 = Arc::new(create_memfd_with_data(4096, &[10, 11, 12, 13]).unwrap());
        memfd.clear_and_remain_ready(0).unwrap();
        memfd.instantiate(128 << 10, Some(&image2), &plan).unwrap();
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(&[10, 11, 12, 13], &slice[4096..4100]);
        // Instantiate the original image again; we should notice it's
        // a different image and not reuse the mappings.
        memfd.clear_and_remain_ready(0).unwrap();
        memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
        let slice = unsafe { mmap.slice_mut(0..65536) };
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
    }

    #[test]
    #[cfg(target_os = "linux")]
    fn memset_instead_of_madvise() {
        let plan = dummy_memory_plan(MemoryStyle::Static { bound: 100 });
        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();

        // Test basics with the image
        for image_off in [0, 4096, 8 << 10] {
            let image = Arc::new(create_memfd_with_data(image_off, &[1, 2, 3, 4]).unwrap());
            for amt_to_memset in [0, 4096, 10 << 12, 1 << 20, 10 << 20] {
                memfd.instantiate(64 << 10, Some(&image), &plan).unwrap();
                assert!(memfd.has_image());
                let slice = unsafe { mmap.slice_mut(0..64 << 10) };
                if image_off > 0 {
                    assert_eq!(slice[image_off - 1], 0);
                }
                assert_eq!(slice[image_off + 5], 0);
                assert_eq!(&[1, 2, 3, 4], &slice[image_off..][..4]);
                slice[image_off] = 5;
                assert_eq!(&[5, 2, 3, 4], &slice[image_off..][..4]);
                memfd.clear_and_remain_ready(amt_to_memset).unwrap();
            }
        }

        // Test without an image
        for amt_to_memset in [0, 4096, 10 << 12, 1 << 20, 10 << 20] {
            memfd.instantiate(64 << 10, None, &plan).unwrap();
            let mem = unsafe { mmap.slice_mut(0..64 << 10) };
            for chunk in mem.chunks_mut(1024) {
                assert_eq!(chunk[0], 0);
                chunk[0] = 5;
            }
            memfd.clear_and_remain_ready(amt_to_memset).unwrap();
        }
    }

    #[test]
    #[cfg(target_os = "linux")]
    fn dynamic() {
        let plan = dummy_memory_plan(MemoryStyle::Dynamic { reserve: 200 });

        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();
        let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
        let initial = 64 << 10;

        // Instantiate the image and test that memory remains accessible after
        // it's cleared.
        memfd.instantiate(initial, Some(&image), &plan).unwrap();
        assert!(memfd.has_image());
        let slice = unsafe { mmap.slice_mut(0..(64 << 10) + 4096) };
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        slice[4096] = 5;
        assert_eq!(&[5, 2, 3, 4], &slice[4096..4100]);
        memfd.clear_and_remain_ready(0).unwrap();
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);

        // Re-instantiate make sure it preserves memory. Grow a bit and set data
        // beyond the initial size.
        memfd.instantiate(initial, Some(&image), &plan).unwrap();
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        memfd.set_heap_limit(initial * 2).unwrap();
        assert_eq!(&[0, 0], &slice[initial..initial + 2]);
        slice[initial] = 100;
        assert_eq!(&[100, 0], &slice[initial..initial + 2]);
        memfd.clear_and_remain_ready(0).unwrap();

        // Test that memory is still accessible, but it's been reset
        assert_eq!(&[0, 0], &slice[initial..initial + 2]);

        // Instantiate again, and again memory beyond the initial size should
        // still be accessible. Grow into it again and make sure it works.
        memfd.instantiate(initial, Some(&image), &plan).unwrap();
        assert_eq!(&[0, 0], &slice[initial..initial + 2]);
        memfd.set_heap_limit(initial * 2).unwrap();
        assert_eq!(&[0, 0], &slice[initial..initial + 2]);
        slice[initial] = 100;
        assert_eq!(&[100, 0], &slice[initial..initial + 2]);
        memfd.clear_and_remain_ready(0).unwrap();

        // Reset the image to none and double-check everything is back to zero
        memfd.instantiate(64 << 10, None, &plan).unwrap();
        assert!(!memfd.has_image());
        assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
        assert_eq!(&[0, 0], &slice[initial..initial + 2]);
    }
}