1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//!
use super::{pkru, sys};
use anyhow::{Context, Result};
use std::sync::OnceLock;
/// Check if the MPK feature is supported.
pub fn is_supported() -> bool {
cfg!(target_os = "linux") && cfg!(target_arch = "x86_64") && pkru::has_cpuid_bit_set()
}
/// Allocate up to `max` protection keys.
///
/// This asks the kernel for all available keys up to `max` in a thread-safe way
/// (we can expect 1-15; 0 is kernel-reserved). This avoids interference when
/// multiple threads try to allocate keys at the same time (e.g., during
/// testing). It also ensures that a single copy of the keys is reserved for the
/// lifetime of the process. Because of this, `max` is only a hint to
/// allocation: it only is effective on the first invocation of this function.
///
/// TODO: this is not the best-possible design. This creates global state that
/// would prevent any other code in the process from using protection keys; the
/// `KEYS` are never deallocated from the system with `pkey_dealloc`.
pub fn keys(max: usize) -> &'static [ProtectionKey] {
let keys = KEYS.get_or_init(|| {
let mut allocated = vec![];
if is_supported() {
while allocated.len() < max {
if let Ok(key_id) = sys::pkey_alloc(0, 0) {
debug_assert!(key_id < 16);
// UNSAFETY: here we unsafely assume that the
// system-allocated pkey will exist forever.
allocated.push(ProtectionKey {
id: key_id,
stripe: allocated.len().try_into().unwrap(),
});
} else {
break;
}
}
}
allocated
});
&keys[..keys.len().min(max)]
}
static KEYS: OnceLock<Vec<ProtectionKey>> = OnceLock::new();
/// Only allow access to pages marked by the keys set in `mask`.
///
/// Any accesses to pages marked by another key will result in a `SIGSEGV`
/// fault.
pub fn allow(mask: ProtectionMask) {
let previous = pkru::read();
pkru::write(mask.0);
log::trace!("PKRU change: {:#034b} => {:#034b}", previous, pkru::read());
}
/// An MPK protection key.
///
/// The expected usage is:
/// - receive system-allocated keys from [`keys`]
/// - mark some regions of memory as accessible with [`ProtectionKey::protect`]
/// - [`allow`] or disallow access to the memory regions using a
/// [`ProtectionMask`]; any accesses to unmarked pages result in a fault
/// - drop the key
#[derive(Clone, Copy, Debug)]
pub struct ProtectionKey {
id: u32,
stripe: u32,
}
impl ProtectionKey {
/// Mark a page as protected by this [`ProtectionKey`].
///
/// This "colors" the pages of `region` via a kernel `pkey_mprotect` call to
/// only allow reads and writes when this [`ProtectionKey`] is activated
/// (see [`allow`]).
///
/// # Errors
///
/// This will fail if the region is not page aligned or for some unknown
/// kernel reason.
pub fn protect(&self, region: &mut [u8]) -> Result<()> {
let addr = region.as_mut_ptr() as usize;
let len = region.len();
let prot = sys::PROT_NONE;
sys::pkey_mprotect(addr, len, prot, self.id).with_context(|| {
format!(
"failed to mark region with pkey (addr = {addr:#x}, len = {len}, prot = {prot:#b})"
)
})
}
/// Convert the [`ProtectionKey`] to its 0-based index; this is useful for
/// determining which allocation "stripe" a key belongs to.
///
/// This function assumes that the kernel has allocated key 0 for itself.
pub fn as_stripe(&self) -> usize {
self.stripe as usize
}
}
/// A bit field indicating which protection keys should be allowed and disabled.
///
/// The internal representation makes it easy to use [`ProtectionMask`] directly
/// with the PKRU register. When bits `n` and `n+1` are set, it means the
/// protection key is *not* allowed (see the PKRU write and access disabled
/// bits).
pub struct ProtectionMask(u32);
impl ProtectionMask {
/// Allow access from all protection keys.
#[inline]
pub fn all() -> Self {
Self(pkru::ALLOW_ACCESS)
}
/// Only allow access to memory protected with protection key 0; note that
/// this does not mean "none" but rather allows access from the default
/// kernel protection key.
#[inline]
pub fn zero() -> Self {
Self(pkru::DISABLE_ACCESS ^ 0b11)
}
/// Include `pkey` as another allowed protection key in the mask.
#[inline]
pub fn or(self, pkey: ProtectionKey) -> Self {
let mask = pkru::DISABLE_ACCESS ^ 0b11 << (pkey.id * 2);
Self(self.0 & mask)
}
}
/// Helper macro for skipping tests on systems that do not have MPK enabled
/// (e.g., older architecture, disabled by kernel, etc.)
#[cfg(test)]
macro_rules! skip_if_mpk_unavailable {
() => {
if !crate::mpk::is_supported() {
println!("> mpk is not supported: ignoring test");
return;
}
};
}
/// Necessary for inter-module access.
#[cfg(test)]
pub(crate) use skip_if_mpk_unavailable;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_is_supported() {
println!("is pku supported = {}", is_supported());
if std::env::var("WASMTIME_TEST_FORCE_MPK").is_ok() {
assert!(is_supported());
}
}
#[test]
fn check_initialized_keys() {
if is_supported() {
assert!(!keys(15).is_empty())
}
}
#[test]
fn check_invalid_mark() {
skip_if_mpk_unavailable!();
let pkey = keys(15)[0];
let unaligned_region = unsafe {
let addr = 1 as *mut u8; // this is not page-aligned!
let len = 1;
std::slice::from_raw_parts_mut(addr, len)
};
let result = pkey.protect(unaligned_region);
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"failed to mark region with pkey (addr = 0x1, len = 1, prot = 0b0)"
);
}
#[test]
fn check_masking() {
skip_if_mpk_unavailable!();
let original = pkru::read();
allow(ProtectionMask::all());
assert_eq!(0, pkru::read());
allow(ProtectionMask::all().or(ProtectionKey { id: 5, stripe: 0 }));
assert_eq!(0, pkru::read());
allow(ProtectionMask::zero());
assert_eq!(0b11111111_11111111_11111111_11111100, pkru::read());
allow(ProtectionMask::zero().or(ProtectionKey { id: 5, stripe: 0 }));
assert_eq!(0b11111111_11111111_11110011_11111100, pkru::read());
// Reset the PKRU state to what we originally observed.
pkru::write(original);
}
}