1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
use crate::{GcHeap, GcStore, VMSharedTypeIndex, I31};
use anyhow::{Context, Result};
use std::num::NonZeroU32;
use wasmtime_environ::VMGcKind;
/// The common header for all objects allocated in a GC heap.
///
/// This header is shared across all collectors, although particular collectors
/// may always add their own trailing fields to this header for all of their own
/// GC objects.
///
/// This is a bit-packed structure that logically has the following fields:
///
/// ```ignore
/// struct VMGcHeader {
/// // Highest 2 bits.
/// kind: VMGcKind,
///
/// // 30 bits available for the `GcRuntime` to make use of however it sees fit.
/// reserved: u30,
///
/// // The `VMSharedTypeIndex` for this GC object, if it isn't an
/// // `externref` (or an `externref` re-wrapped as an `anyref`). `None` is
/// // represented with `VMSharedTypeIndex::default()`.
/// ty: Option<VMSharedTypeIndex>,
/// }
/// ```
#[repr(transparent)]
pub struct VMGcHeader(u64);
unsafe impl GcHeapObject for VMGcHeader {
#[inline]
fn is(_: &VMGcHeader) -> bool {
true
}
}
impl VMGcHeader {
/// Create the header for an `externref`.
pub fn externref() -> Self {
let kind = VMGcKind::ExternRef as u32;
let upper = u64::from(kind) << 32;
let lower = u64::from(u32::MAX);
Self(upper | lower)
}
/// Get the kind of GC object that this is.
pub fn kind(&self) -> VMGcKind {
let upper = u32::try_from(self.0 >> 32).unwrap();
VMGcKind::from_u32(upper)
}
/// Get the reserved 30 bits in this header.
///
/// These are bits are reserved for `GcRuntime` implementations to make use
/// of however they see fit.
pub fn reserved_u30(&self) -> u32 {
let upper = u32::try_from(self.0 >> 32).unwrap();
upper & VMGcKind::UNUSED_MASK
}
/// Set the 30-bit reserved value.
///
/// # Panics
///
/// Panics if the given `value` has any of the upper 2 bits set.
pub fn set_reserved_u30(&mut self, value: u32) {
assert_eq!(
value & VMGcKind::MASK,
0,
"VMGcHeader::set_reserved_u30 with value using more than 30 bits"
);
self.0 |= u64::from(value) << 32;
}
/// Set the 30-bit reserved value.
///
/// # Safety
///
/// The given `value` must only use the lower 30 bits; its upper 2 bits must
/// be unset.
pub unsafe fn unchecked_set_reserved_u30(&mut self, value: u32) {
self.0 |= u64::from(value) << 32;
}
/// Get this object's specific concrete type.
pub fn ty(&self) -> Option<VMSharedTypeIndex> {
let lower_mask = u64::from(u32::MAX);
let lower = u32::try_from(self.0 & lower_mask).unwrap();
if lower == u32::MAX {
None
} else {
Some(VMSharedTypeIndex::new(lower))
}
}
}
#[cfg(test)]
mod vm_gc_header_tests {
use super::*;
#[test]
fn size_align() {
assert_eq!(std::mem::size_of::<VMGcHeader>(), 8);
assert_eq!(std::mem::align_of::<VMGcHeader>(), 8);
}
}
/// A raw, unrooted GC reference.
///
/// A `VMGcRef` is either:
///
/// * A reference to some kind of object on the GC heap, but we don't know
/// exactly which kind without further reflection. Furthermore, this is not
/// actually a pointer, but a compact index into a Wasm GC heap.
///
/// * An `i31ref`: it doesn't actually reference an object in the GC heap, but
/// is instead an inline, unboxed 31-bit integer.
///
/// ## `VMGcRef` and GC Barriers
///
/// Depending on the garbage collector in use, cloning, writing, and dropping a
/// `VMGcRef` may require invoking GC barriers (little snippets of code provided
/// by the collector to ensure it is correctly tracking all GC references).
///
/// Therefore, to encourage correct usage of GC barriers, this type does *NOT*
/// implement `Clone` or `Copy`. Use `GcStore::clone_gc_ref`,
/// `GcStore::write_gc_ref`, and `GcStore::drop_gc_ref` to clone, write, and
/// drop `VMGcRef`s respectively.
///
/// As an escape hatch, if you really need to copy a `VMGcRef` without invoking
/// GC barriers and you understand why that will not lead to GC bugs in this
/// particular case, you can use the `unchecked_copy` method.
#[derive(Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct VMGcRef(NonZeroU32);
impl<T> From<TypedGcRef<T>> for VMGcRef {
#[inline]
fn from(value: TypedGcRef<T>) -> Self {
value.gc_ref
}
}
impl std::fmt::LowerHex for VMGcRef {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl std::fmt::UpperHex for VMGcRef {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl std::fmt::Pointer for VMGcRef {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:#x}", self)
}
}
impl VMGcRef {
/// The only type of valid `VMGcRef` is currently `VMExternRef`.
///
/// Assert on this anywhere you are making that assumption, so that we know
/// all the places to update when it no longer holds true.
pub const ONLY_EXTERN_REF_AND_I31: bool = true;
/// If this bit is set on a GC reference, then the GC reference is actually an
/// unboxed `i31`.
///
/// Must be kept in sync with `wasmtime_cranelift::I31_REF_DISCRIMINANT`.
pub const I31_REF_DISCRIMINANT: u32 = 1;
/// Create a new `VMGcRef` from the given raw u32 value.
///
/// Does not discriminate between indices into a GC heap and `i31ref`s.
///
/// Returns `None` for zero values.
///
/// The given index should point to a valid GC-managed object within this
/// reference's associated heap. Failure to uphold this will be memory safe,
/// but will lead to general failures such as panics or incorrect results.
pub fn from_raw_u32(raw: u32) -> Option<Self> {
Some(Self::from_raw_non_zero_u32(NonZeroU32::new(raw)?))
}
/// Create a new `VMGcRef` from the given index into a GC heap.
///
/// The given index should point to a valid GC-managed object within this
/// reference's associated heap. Failure to uphold this will be memory safe,
/// but will lead to general failures such as panics or incorrect results.
///
/// Returns `None` when the index is not 2-byte aligned and therefore
/// conflicts with the `i31ref` discriminant.
pub fn from_heap_index(index: NonZeroU32) -> Option<Self> {
if (index.get() & Self::I31_REF_DISCRIMINANT) == 0 {
Some(Self::from_raw_non_zero_u32(index))
} else {
None
}
}
/// Create a new `VMGcRef` from the given raw value.
///
/// Does not discriminate between indices into a GC heap and `i31ref`s.
pub fn from_raw_non_zero_u32(raw: NonZeroU32) -> Self {
VMGcRef(raw)
}
/// Construct a new `VMGcRef` from an unboxed 31-bit integer.
#[inline]
pub fn from_i31(val: I31) -> Self {
let val = (val.get_u32() << 1) | Self::I31_REF_DISCRIMINANT;
debug_assert_ne!(val, 0);
let non_zero = unsafe { NonZeroU32::new_unchecked(val) };
VMGcRef::from_raw_non_zero_u32(non_zero)
}
/// Create a new `VMGcRef` from a raw `r64` value from Cranelift.
///
/// Returns an error if `raw` cannot be losslessly converted from a `u64`
/// into a `u32`.
///
/// Returns `Ok(None)` if `raw` is zero (aka a "null" `VMGcRef`).
///
/// This method only exists because we can't currently use Cranelift's `r32`
/// type on 64-bit platforms. We should instead have a `from_r32` method.
pub fn from_r64(raw: u64) -> Result<Option<Self>> {
let raw = u32::try_from(raw & (u32::MAX as u64))
.with_context(|| format!("invalid r64: {raw:#x} cannot be converted into a u32"))?;
Ok(Self::from_raw_u32(raw))
}
/// Copy this `VMGcRef` without running the GC's clone barriers.
///
/// Prefer calling `clone(&mut GcStore)` instead! This is mostly an internal
/// escape hatch for collector implementations.
///
/// Failure to run GC barriers when they would otherwise be necessary can
/// lead to leaks, panics, and wrong results. It cannot lead to memory
/// unsafety, however.
pub fn unchecked_copy(&self) -> Self {
VMGcRef(self.0)
}
/// Get this GC reference as a u32 index into its GC heap.
///
/// Returns `None` for `i31ref`s.
pub fn as_heap_index(&self) -> Option<NonZeroU32> {
if self.is_i31() {
None
} else {
Some(self.0)
}
}
/// Get this GC refererence as a raw u32 value, regardless whether it is
/// actually a reference to a GC object or is an `i31ref`.
pub fn as_raw_u32(&self) -> u32 {
self.0.get()
}
/// Get this GC reference as a raw `r64` value for passing to Cranelift.
///
/// This method only exists because we can't currently use Cranelift's `r32`
/// type on 64-bit platforms. We should instead be able to pass `VMGcRef`
/// into compiled code directly.
pub fn into_r64(self) -> u64 {
u64::from(self.0.get())
}
/// Get this GC reference as a raw `r64` value for passing to Cranelift.
///
/// This method only exists because we can't currently use Cranelift's `r32`
/// type on 64-bit platforms. We should instead be able to pass `VMGcRef`
/// into compiled code directly.
pub fn as_r64(&self) -> u64 {
u64::from(self.0.get())
}
/// Creates a typed GC reference from `self`, checking that `self` actually
/// is a `T`.
///
/// If this is not a GC reference to a `T`, then `Err(self)` is returned.
pub fn into_typed<T>(self, gc_heap: &impl GcHeap) -> Result<TypedGcRef<T>, Self>
where
T: GcHeapObject,
{
if self.is_i31() {
return Err(self);
}
if T::is(gc_heap.header(&self)) {
Ok(TypedGcRef {
gc_ref: self,
_phantom: std::marker::PhantomData,
})
} else {
Err(self)
}
}
/// Creates a typed GC reference without actually checking that `self` is a
/// `T`.
///
/// `self` should point to a `T` object. Failure to uphold this invariant is
/// memory safe, but will lead to general incorrectness such as panics or
/// wrong results.
pub fn into_typed_unchecked<T>(self) -> TypedGcRef<T>
where
T: GcHeapObject,
{
debug_assert!(!self.is_i31());
TypedGcRef {
gc_ref: self,
_phantom: std::marker::PhantomData,
}
}
/// Borrow `self` as a typed GC reference, checking that `self` actually is
/// a `T`.
pub fn as_typed<T>(&self, gc_heap: &impl GcHeap) -> Option<&TypedGcRef<T>>
where
T: GcHeapObject,
{
if self.is_i31() {
return None;
}
if T::is(gc_heap.header(&self)) {
let ptr = self as *const VMGcRef;
let ret = unsafe { &*ptr.cast() };
assert!(matches!(
ret,
TypedGcRef {
gc_ref: VMGcRef(_),
_phantom
}
));
Some(ret)
} else {
None
}
}
/// Creates a typed GC reference without actually checking that `self` is a
/// `T`.
///
/// `self` should point to a `T` object. Failure to uphold this invariant is
/// memory safe, but will lead to general incorrectness such as panics or
/// wrong results.
pub fn as_typed_unchecked<T>(&self) -> &TypedGcRef<T>
where
T: GcHeapObject,
{
debug_assert!(!self.is_i31());
let ptr = self as *const VMGcRef;
let ret = unsafe { &*ptr.cast() };
assert!(matches!(
ret,
TypedGcRef {
gc_ref: VMGcRef(_),
_phantom
}
));
ret
}
/// Get a reference to the GC header that this GC reference is pointing to.
///
/// Returns `None` when this is an `i31ref` and doesn't actually point to a
/// GC header.
pub fn gc_header<'a>(&self, gc_heap: &'a dyn GcHeap) -> Option<&'a VMGcHeader> {
if self.is_i31() {
None
} else {
Some(gc_heap.header(self))
}
}
/// Is this `VMGcRef` actually an unboxed 31-bit integer, and not actually a
/// GC reference?
#[inline]
pub fn is_i31(&self) -> bool {
let val = self.0.get();
(val & Self::I31_REF_DISCRIMINANT) != 0
}
/// Get the underlying `i31`, if any.
#[inline]
pub fn as_i31(&self) -> Option<I31> {
if self.is_i31() {
let val = self.0.get();
Some(I31::wrapping_u32(val >> 1))
} else {
None
}
}
/// Get the underlying `i31`, panicking if this is not an `i31`.
#[inline]
pub fn unwrap_i31(&self) -> I31 {
self.as_i31().unwrap()
}
/// Is this `VMGcRef` a `VMExternRef`?
#[inline]
pub fn is_extern_ref(&self) -> bool {
assert!(Self::ONLY_EXTERN_REF_AND_I31);
!self.is_i31()
}
}
/// A trait implemented by all objects allocated inside a GC heap.
///
/// # Safety
///
/// All implementations must:
///
/// * Be `repr(C)` or `repr(transparent)`
///
/// * Begin with a `VMGcHeader` as their first field
///
/// * Not have `Drop` implementations (aka, `std::mem::needs_drop::<Self>()`
/// should return `false`).
///
/// * Be memory safe to transmute to from an arbitrary byte sequence (that is,
/// it is okay if some bit patterns are invalid with regards to correctness,
/// so long as these invalid bit patterns cannot lead to memory unsafety).
pub unsafe trait GcHeapObject: Send + Sync {
/// Check whether the GC object with the given header is an instance of
/// `Self`.
fn is(header: &VMGcHeader) -> bool;
}
/// A GC reference to a heap object of concrete type `T`.
///
/// Create typed GC refs via `VMGcRef::into_typed` and `VMGcRef::as_typed`, as
/// well as via their unchecked equivalents `VMGcRef::into_typed_unchecked` and
/// `VMGcRef::as_typed_unchecked`.
#[derive(Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct TypedGcRef<T> {
gc_ref: VMGcRef,
_phantom: std::marker::PhantomData<*mut T>,
}
impl<T> TypedGcRef<T>
where
T: GcHeapObject,
{
/// Clone this `VMGcRef`, running any GC barriers as necessary.
pub fn clone(&self, gc_store: &mut GcStore) -> Self {
Self {
gc_ref: gc_store.clone_gc_ref(&self.gc_ref),
_phantom: std::marker::PhantomData,
}
}
/// Explicitly drop this GC reference, running any GC barriers as necessary.
pub fn drop(self, gc_store: &mut GcStore) {
gc_store.drop_gc_ref(self.gc_ref);
}
/// Copy this GC reference without running the GC's clone barriers.
///
/// Prefer calling `clone(&mut GcStore)` instead! This is mostly an internal
/// escape hatch for collector implementations.
///
/// Failure to run GC barriers when they would otherwise be necessary can
/// lead to leaks, panics, and wrong results. It cannot lead to memory
/// unsafety, however.
pub fn unchecked_copy(&self) -> Self {
Self {
gc_ref: self.gc_ref.unchecked_copy(),
_phantom: std::marker::PhantomData,
}
}
}
impl<T> TypedGcRef<T> {
/// Get the untyped version of this GC reference.
pub fn as_untyped(&self) -> &VMGcRef {
&self.gc_ref
}
}