1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
use crate::imports::Imports;
use crate::instance::{Instance, InstanceHandle};
use crate::memory::Memory;
use crate::mpk::ProtectionKey;
use crate::table::{Table, TableElementType};
use crate::{CompiledModuleId, ModuleRuntimeInfo, Store, VMGcRef, I31};
use anyhow::{anyhow, bail, Result};
use std::{alloc, any::Any, mem, ptr, sync::Arc};
use wasmtime_environ::{
DefinedMemoryIndex, DefinedTableIndex, HostPtr, InitMemory, MemoryInitialization,
MemoryInitializer, MemoryPlan, Module, PrimaryMap, TableInitialValue, TablePlan, TableSegment,
Trap, VMOffsets, WasmValType, WASM_PAGE_SIZE,
};
#[cfg(feature = "gc")]
use crate::{GcHeap, GcRuntime};
#[cfg(feature = "component-model")]
use wasmtime_environ::{
component::{Component, VMComponentOffsets},
StaticModuleIndex,
};
mod on_demand;
pub use self::on_demand::OnDemandInstanceAllocator;
#[cfg(feature = "pooling-allocator")]
mod pooling;
#[cfg(feature = "pooling-allocator")]
pub use self::pooling::{InstanceLimits, PoolingInstanceAllocator, PoolingInstanceAllocatorConfig};
/// Represents a request for a new runtime instance.
pub struct InstanceAllocationRequest<'a> {
/// The info related to the compiled version of this module,
/// needed for instantiation: function metadata, JIT code
/// addresses, precomputed images for lazy memory and table
/// initialization, and the like. This Arc is cloned and held for
/// the lifetime of the instance.
pub runtime_info: &'a Arc<dyn ModuleRuntimeInfo>,
/// The imports to use for the instantiation.
pub imports: Imports<'a>,
/// The host state to associate with the instance.
pub host_state: Box<dyn Any + Send + Sync>,
/// A pointer to the "store" for this instance to be allocated. The store
/// correlates with the `Store` in wasmtime itself, and lots of contextual
/// information about the execution of wasm can be learned through the
/// store.
///
/// Note that this is a raw pointer and has a static lifetime, both of which
/// are a bit of a lie. This is done purely so a store can learn about
/// itself when it gets called as a host function, and additionally so this
/// runtime can access internals as necessary (such as the
/// VMExternRefActivationsTable or the resource limiter methods).
///
/// Note that this ends up being a self-pointer to the instance when stored.
/// The reason is that the instance itself is then stored within the store.
/// We use a number of `PhantomPinned` declarations to indicate this to the
/// compiler. More info on this in `wasmtime/src/store.rs`
pub store: StorePtr,
/// Indicates '--wmemcheck' flag.
pub wmemcheck: bool,
/// Request that the instance's memories be protected by a specific
/// protection key.
pub pkey: Option<ProtectionKey>,
}
/// A pointer to a Store. This Option<*mut dyn Store> is wrapped in a struct
/// so that the function to create a &mut dyn Store is a method on a member of
/// InstanceAllocationRequest, rather than on a &mut InstanceAllocationRequest
/// itself, because several use-sites require a split mut borrow on the
/// InstanceAllocationRequest.
pub struct StorePtr(Option<*mut dyn Store>);
impl StorePtr {
/// A pointer to no Store.
pub fn empty() -> Self {
Self(None)
}
/// A pointer to a Store.
pub fn new(ptr: *mut dyn Store) -> Self {
Self(Some(ptr))
}
/// The raw contents of this struct
pub fn as_raw(&self) -> Option<*mut dyn Store> {
self.0.clone()
}
/// Use the StorePtr as a mut ref to the Store.
///
/// Safety: must not be used outside the original lifetime of the borrow.
pub(crate) unsafe fn get(&mut self) -> Option<&mut dyn Store> {
match self.0 {
Some(ptr) => Some(&mut *ptr),
None => None,
}
}
}
/// The index of a memory allocation within an `InstanceAllocator`.
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct MemoryAllocationIndex(u32);
impl Default for MemoryAllocationIndex {
fn default() -> Self {
// A default `MemoryAllocationIndex` that can be used with
// `InstanceAllocator`s that don't actually need indices.
MemoryAllocationIndex(u32::MAX)
}
}
impl MemoryAllocationIndex {
/// Get the underlying index of this `MemoryAllocationIndex`.
pub fn index(&self) -> usize {
self.0 as usize
}
}
/// The index of a table allocation within an `InstanceAllocator`.
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct TableAllocationIndex(u32);
impl Default for TableAllocationIndex {
fn default() -> Self {
// A default `TableAllocationIndex` that can be used with
// `InstanceAllocator`s that don't actually need indices.
TableAllocationIndex(u32::MAX)
}
}
impl TableAllocationIndex {
/// Get the underlying index of this `TableAllocationIndex`.
pub fn index(&self) -> usize {
self.0 as usize
}
}
/// The index of a table allocation within an `InstanceAllocator`.
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct GcHeapAllocationIndex(u32);
impl Default for GcHeapAllocationIndex {
fn default() -> Self {
// A default `GcHeapAllocationIndex` that can be used with
// `InstanceAllocator`s that don't actually need indices.
GcHeapAllocationIndex(u32::MAX)
}
}
impl GcHeapAllocationIndex {
/// Get the underlying index of this `GcHeapAllocationIndex`.
pub fn index(&self) -> usize {
self.0 as usize
}
}
/// Trait that represents the hooks needed to implement an instance allocator.
///
/// Implement this trait when implementing new instance allocators, but don't
/// use this trait when you need an instance allocator. Instead use the
/// `InstanceAllocator` trait for that, which has additional helper methods and
/// a blanket implementation for all types that implement this trait.
///
/// # Safety
///
/// This trait is unsafe as it requires knowledge of Wasmtime's runtime
/// internals to implement correctly.
pub unsafe trait InstanceAllocatorImpl {
/// Validate whether a component (including all of its contained core
/// modules) is allocatable by this instance allocator.
#[cfg(feature = "component-model")]
fn validate_component_impl<'a>(
&self,
component: &Component,
offsets: &VMComponentOffsets<HostPtr>,
get_module: &'a dyn Fn(StaticModuleIndex) -> &'a Module,
) -> Result<()>;
/// Validate whether a module is allocatable by this instance allocator.
fn validate_module_impl(&self, module: &Module, offsets: &VMOffsets<HostPtr>) -> Result<()>;
/// Increment the count of concurrent component instances that are currently
/// allocated, if applicable.
///
/// Not all instance allocators will have limits for the maximum number of
/// concurrent component instances that can be live at the same time, and
/// these allocators may implement this method with a no-op.
//
// Note: It would be nice to have an associated type that on construction
// does the increment and on drop does the decrement but there are two
// problems with this:
//
// 1. This trait's implementations are always used as trait objects, and
// associated types are not object safe.
//
// 2. We would want a parameterized `Drop` implementation so that we could
// pass in the `InstanceAllocatorImpl` on drop, but this doesn't exist in
// Rust. Therefore, we would be forced to add reference counting and
// stuff like that to keep a handle on the instance allocator from this
// theoretical type. That's a bummer.
fn increment_component_instance_count(&self) -> Result<()>;
/// The dual of `increment_component_instance_count`.
fn decrement_component_instance_count(&self);
/// Increment the count of concurrent core module instances that are
/// currently allocated, if applicable.
///
/// Not all instance allocators will have limits for the maximum number of
/// concurrent core module instances that can be live at the same time, and
/// these allocators may implement this method with a no-op.
fn increment_core_instance_count(&self) -> Result<()>;
/// The dual of `increment_core_instance_count`.
fn decrement_core_instance_count(&self);
/// Allocate a memory for an instance.
///
/// # Unsafety
///
/// The memory and its associated module must have already been validated by
/// `Self::validate_module` and passed that validation.
unsafe fn allocate_memory(
&self,
request: &mut InstanceAllocationRequest,
memory_plan: &MemoryPlan,
memory_index: DefinedMemoryIndex,
) -> Result<(MemoryAllocationIndex, Memory)>;
/// Deallocate an instance's previously allocated memory.
///
/// # Unsafety
///
/// The memory must have previously been allocated by
/// `Self::allocate_memory`, be at the given index, and must currently be
/// allocated. It must never be used again.
unsafe fn deallocate_memory(
&self,
memory_index: DefinedMemoryIndex,
allocation_index: MemoryAllocationIndex,
memory: Memory,
);
/// Allocate a table for an instance.
///
/// # Unsafety
///
/// The table and its associated module must have already been validated by
/// `Self::validate_module` and passed that validation.
unsafe fn allocate_table(
&self,
req: &mut InstanceAllocationRequest,
table_plan: &TablePlan,
table_index: DefinedTableIndex,
) -> Result<(TableAllocationIndex, Table)>;
/// Deallocate an instance's previously allocated table.
///
/// # Unsafety
///
/// The table must have previously been allocated by `Self::allocate_table`,
/// be at the given index, and must currently be allocated. It must never be
/// used again.
unsafe fn deallocate_table(
&self,
table_index: DefinedTableIndex,
allocation_index: TableAllocationIndex,
table: Table,
);
/// Allocates a fiber stack for calling async functions on.
#[cfg(feature = "async")]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack>;
/// Deallocates a fiber stack that was previously allocated with
/// `allocate_fiber_stack`.
///
/// # Safety
///
/// The provided stack is required to have been allocated with
/// `allocate_fiber_stack`.
#[cfg(feature = "async")]
unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack);
/// Allocate a GC heap for allocating Wasm GC objects within.
#[cfg(feature = "gc")]
fn allocate_gc_heap(
&self,
gc_runtime: &dyn GcRuntime,
) -> Result<(GcHeapAllocationIndex, Box<dyn GcHeap>)>;
/// Deallocate a GC heap that was previously allocated with
/// `allocate_gc_heap`.
#[cfg(feature = "gc")]
fn deallocate_gc_heap(&self, allocation_index: GcHeapAllocationIndex, gc_heap: Box<dyn GcHeap>);
/// Purges all lingering resources related to `module` from within this
/// allocator.
///
/// Primarily present for the pooling allocator to remove mappings of
/// this module from slots in linear memory.
fn purge_module(&self, module: CompiledModuleId);
/// Use the next available protection key.
///
/// The pooling allocator can use memory protection keys (MPK) for
/// compressing the guard regions protecting against OOB. Each
/// pool-allocated store needs its own key.
fn next_available_pkey(&self) -> Option<ProtectionKey>;
/// Restrict access to memory regions protected by `pkey`.
///
/// This is useful for the pooling allocator, which can use memory
/// protection keys (MPK). Note: this may still allow access to other
/// protection keys, such as the default kernel key; see implementations of
/// this.
fn restrict_to_pkey(&self, pkey: ProtectionKey);
/// Allow access to memory regions protected by any protection key.
fn allow_all_pkeys(&self);
}
/// A thing that can allocate instances.
///
/// Don't implement this trait directly, instead implement
/// `InstanceAllocatorImpl` and you'll get this trait for free via a blanket
/// impl.
pub trait InstanceAllocator: InstanceAllocatorImpl {
/// Validate whether a component (including all of its contained core
/// modules) is allocatable with this instance allocator.
#[cfg(feature = "component-model")]
fn validate_component<'a>(
&self,
component: &Component,
offsets: &VMComponentOffsets<HostPtr>,
get_module: &'a dyn Fn(StaticModuleIndex) -> &'a Module,
) -> Result<()> {
InstanceAllocatorImpl::validate_component_impl(self, component, offsets, get_module)
}
/// Validate whether a core module is allocatable with this instance
/// allocator.
fn validate_module(&self, module: &Module, offsets: &VMOffsets<HostPtr>) -> Result<()> {
InstanceAllocatorImpl::validate_module_impl(self, module, offsets)
}
/// Allocates a fresh `InstanceHandle` for the `req` given.
///
/// This will allocate memories and tables internally from this allocator
/// and weave that altogether into a final and complete `InstanceHandle`
/// ready to be registered with a store.
///
/// Note that the returned instance must still have `.initialize(..)` called
/// on it to complete the instantiation process.
///
/// # Unsafety
///
/// The request's associated module, memories, tables, and vmctx must have
/// already have been validated by `Self::validate_module`.
unsafe fn allocate_module(
&self,
mut request: InstanceAllocationRequest,
) -> Result<InstanceHandle> {
let module = request.runtime_info.module();
#[cfg(debug_assertions)]
InstanceAllocatorImpl::validate_module_impl(self, module, request.runtime_info.offsets())
.expect("module should have already been validated before allocation");
self.increment_core_instance_count()?;
let num_defined_memories = module.memory_plans.len() - module.num_imported_memories;
let mut memories = PrimaryMap::with_capacity(num_defined_memories);
let num_defined_tables = module.table_plans.len() - module.num_imported_tables;
let mut tables = PrimaryMap::with_capacity(num_defined_tables);
match (|| {
self.allocate_memories(&mut request, &mut memories)?;
self.allocate_tables(&mut request, &mut tables)?;
Ok(())
})() {
Ok(_) => Ok(Instance::new(
request,
memories,
tables,
&module.memory_plans,
)),
Err(e) => {
self.deallocate_memories(&mut memories);
self.deallocate_tables(&mut tables);
self.decrement_core_instance_count();
Err(e)
}
}
}
/// Deallocates the provided instance.
///
/// This will null-out the pointer within `handle` and otherwise reclaim
/// resources such as tables, memories, and the instance memory itself.
///
/// # Unsafety
///
/// The instance must have previously been allocated by `Self::allocate`.
unsafe fn deallocate_module(&self, handle: &mut InstanceHandle) {
self.deallocate_memories(&mut handle.instance_mut().memories);
self.deallocate_tables(&mut handle.instance_mut().tables);
let layout = Instance::alloc_layout(handle.instance().offsets());
let ptr = handle.instance.take().unwrap();
ptr::drop_in_place(ptr.as_ptr());
alloc::dealloc(ptr.as_ptr().cast(), layout);
self.decrement_core_instance_count();
}
/// Allocate the memories for the given instance allocation request, pushing
/// them into `memories`.
///
/// # Unsafety
///
/// The request's associated module and memories must have previously been
/// validated by `Self::validate_module`.
unsafe fn allocate_memories(
&self,
request: &mut InstanceAllocationRequest,
memories: &mut PrimaryMap<DefinedMemoryIndex, (MemoryAllocationIndex, Memory)>,
) -> Result<()> {
let module = request.runtime_info.module();
#[cfg(debug_assertions)]
InstanceAllocatorImpl::validate_module_impl(self, module, request.runtime_info.offsets())
.expect("module should have already been validated before allocation");
for (memory_index, memory_plan) in module
.memory_plans
.iter()
.skip(module.num_imported_memories)
{
let memory_index = module
.defined_memory_index(memory_index)
.expect("should be a defined memory since we skipped imported ones");
memories.push(self.allocate_memory(request, memory_plan, memory_index)?);
}
Ok(())
}
/// Deallocate all the memories in the given primary map.
///
/// # Unsafety
///
/// The memories must have previously been allocated by
/// `Self::allocate_memories`.
unsafe fn deallocate_memories(
&self,
memories: &mut PrimaryMap<DefinedMemoryIndex, (MemoryAllocationIndex, Memory)>,
) {
for (memory_index, (allocation_index, memory)) in mem::take(memories) {
// Because deallocating memory is infallible, we don't need to worry
// about leaking subsequent memories if the first memory failed to
// deallocate. If deallocating memory ever becomes fallible, we will
// need to be careful here!
self.deallocate_memory(memory_index, allocation_index, memory);
}
}
/// Allocate tables for the given instance allocation request, pushing them
/// into `tables`.
///
/// # Unsafety
///
/// The request's associated module and tables must have previously been
/// validated by `Self::validate_module`.
unsafe fn allocate_tables(
&self,
request: &mut InstanceAllocationRequest,
tables: &mut PrimaryMap<DefinedTableIndex, (TableAllocationIndex, Table)>,
) -> Result<()> {
let module = request.runtime_info.module();
#[cfg(debug_assertions)]
InstanceAllocatorImpl::validate_module_impl(self, module, request.runtime_info.offsets())
.expect("module should have already been validated before allocation");
for (index, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
let def_index = module
.defined_table_index(index)
.expect("should be a defined table since we skipped imported ones");
tables.push(self.allocate_table(request, plan, def_index)?);
}
Ok(())
}
/// Deallocate all the tables in the given primary map.
///
/// # Unsafety
///
/// The tables must have previously been allocated by
/// `Self::allocate_tables`.
unsafe fn deallocate_tables(
&self,
tables: &mut PrimaryMap<DefinedTableIndex, (TableAllocationIndex, Table)>,
) {
for (table_index, (allocation_index, table)) in mem::take(tables) {
self.deallocate_table(table_index, allocation_index, table);
}
}
}
// Every `InstanceAllocatorImpl` is an `InstanceAllocator` when used
// correctly. Also, no one is allowed to override this trait's methods, they
// must use the defaults. This blanket impl provides both of those things.
impl<T: InstanceAllocatorImpl> InstanceAllocator for T {}
fn get_table_init_start(init: &TableSegment, instance: &mut Instance) -> Result<u32> {
match init.base {
Some(base) => {
let val = unsafe { *(*instance.defined_or_imported_global_ptr(base)).as_u32() };
init.offset
.checked_add(val)
.ok_or_else(|| anyhow!("element segment global base overflows"))
}
None => Ok(init.offset),
}
}
fn check_table_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
for segment in module.table_initialization.segments.iter() {
let table = unsafe { &*instance.get_table(segment.table_index) };
let start = get_table_init_start(segment, instance)?;
let start = usize::try_from(start).unwrap();
let end = start.checked_add(usize::try_from(segment.elements.len()).unwrap());
match end {
Some(end) if end <= table.size() as usize => {
// Initializer is in bounds
}
_ => {
bail!("table out of bounds: elements segment does not fit")
}
}
}
Ok(())
}
fn initialize_tables(instance: &mut Instance, module: &Module) -> Result<()> {
for (table, init) in module.table_initialization.initial_values.iter() {
match init {
// Tables are always initially null-initialized at this time
TableInitialValue::Null { precomputed: _ } => {}
TableInitialValue::FuncRef(idx) => {
let funcref = instance.get_func_ref(*idx).unwrap();
let table = unsafe { &mut *instance.get_defined_table(table) };
let init = (0..table.size()).map(|_| funcref);
table.init_func(0, init)?;
}
TableInitialValue::GlobalGet(idx) => unsafe {
let global = instance.defined_or_imported_global_ptr(*idx);
let table = &mut *instance.get_defined_table(table);
match table.element_type() {
TableElementType::Func => {
let funcref = (*global).as_func_ref();
let init = (0..table.size()).map(|_| funcref);
table.init_func(0, init)?;
}
TableElementType::GcRef => {
let gc_ref = (*global).as_gc_ref();
let gc_ref = gc_ref.map(|r| r.unchecked_copy());
let init = (0..table.size()).map(|_| {
gc_ref
.as_ref()
.map(|r| (*instance.store()).gc_store().clone_gc_ref(r))
});
table.init_gc_refs(0, init)?;
}
}
},
TableInitialValue::I31Ref(value) => {
let value = VMGcRef::from_i31(I31::wrapping_i32(*value));
let table = unsafe { &mut *instance.get_defined_table(table) };
let init = (0..table.size()).map(|_| {
// NB: Okay to use `unchecked_copy` because `i31` doesn't
// need GC barriers.
Some(value.unchecked_copy())
});
table.init_gc_refs(0, init)?;
}
}
}
// Note: if the module's table initializer state is in
// FuncTable mode, we will lazily initialize tables based on
// any statically-precomputed image of FuncIndexes, but there
// may still be "leftover segments" that could not be
// incorporated. So we have a unified handler here that
// iterates over all segments (Segments mode) or leftover
// segments (FuncTable mode) to initialize.
for segment in module.table_initialization.segments.iter() {
let start = get_table_init_start(segment, instance)?;
instance.table_init_segment(
segment.table_index,
&segment.elements,
start,
0,
segment.elements.len(),
)?;
}
Ok(())
}
fn get_memory_init_start(init: &MemoryInitializer, instance: &mut Instance) -> Result<u64> {
match init.base {
Some(base) => {
let mem64 = instance.module().memory_plans[init.memory_index]
.memory
.memory64;
let val = unsafe {
let global = instance.defined_or_imported_global_ptr(base);
if mem64 {
*(*global).as_u64()
} else {
u64::from(*(*global).as_u32())
}
};
init.offset
.checked_add(val)
.ok_or_else(|| anyhow!("data segment global base overflows"))
}
None => Ok(init.offset),
}
}
fn check_memory_init_bounds(
instance: &mut Instance,
initializers: &[MemoryInitializer],
) -> Result<()> {
for init in initializers {
let memory = instance.get_memory(init.memory_index);
let start = get_memory_init_start(init, instance)?;
let end = usize::try_from(start)
.ok()
.and_then(|start| start.checked_add(init.data.len()));
match end {
Some(end) if end <= memory.current_length() => {
// Initializer is in bounds
}
_ => {
bail!("memory out of bounds: data segment does not fit")
}
}
}
Ok(())
}
fn initialize_memories(instance: &mut Instance, module: &Module) -> Result<()> {
let memory_size_in_pages = &|instance: &mut Instance, memory| {
(instance.get_memory(memory).current_length() as u64) / u64::from(WASM_PAGE_SIZE)
};
// Loads the `global` value and returns it as a `u64`, but sign-extends
// 32-bit globals which can be used as the base for 32-bit memories.
let get_global_as_u64 = &mut |instance: &mut Instance, global| unsafe {
let def = instance.defined_or_imported_global_ptr(global);
if module.globals[global].wasm_ty == WasmValType::I64 {
*(*def).as_u64()
} else {
u64::from(*(*def).as_u32())
}
};
// Delegates to the `init_memory` method which is sort of a duplicate of
// `instance.memory_init_segment` but is used at compile-time in other
// contexts so is shared here to have only one method of memory
// initialization.
//
// This call to `init_memory` notably implements all the bells and whistles
// so errors only happen if an out-of-bounds segment is found, in which case
// a trap is returned.
let ok = module.memory_initialization.init_memory(
instance,
InitMemory::Runtime {
memory_size_in_pages,
get_global_as_u64,
},
|instance, memory_index, init| {
// If this initializer applies to a defined memory but that memory
// doesn't need initialization, due to something like copy-on-write
// pre-initializing it via mmap magic, then this initializer can be
// skipped entirely.
if let Some(memory_index) = module.defined_memory_index(memory_index) {
if !instance.memories[memory_index].1.needs_init() {
return true;
}
}
let memory = instance.get_memory(memory_index);
unsafe {
let src = instance.wasm_data(init.data.clone());
let dst = memory.base.add(usize::try_from(init.offset).unwrap());
// FIXME audit whether this is safe in the presence of shared
// memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::copy_nonoverlapping(src.as_ptr(), dst, src.len())
}
true
},
);
if !ok {
return Err(Trap::MemoryOutOfBounds.into());
}
Ok(())
}
fn check_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
check_table_init_bounds(instance, module)?;
match &module.memory_initialization {
MemoryInitialization::Segmented(initializers) => {
check_memory_init_bounds(instance, initializers)?;
}
// Statically validated already to have everything in-bounds.
MemoryInitialization::Static { .. } => {}
}
Ok(())
}
pub(super) fn initialize_instance(
instance: &mut Instance,
module: &Module,
is_bulk_memory: bool,
) -> Result<()> {
// If bulk memory is not enabled, bounds check the data and element segments before
// making any changes. With bulk memory enabled, initializers are processed
// in-order and side effects are observed up to the point of an out-of-bounds
// initializer, so the early checking is not desired.
if !is_bulk_memory {
check_init_bounds(instance, module)?;
}
// Initialize the tables
initialize_tables(instance, module)?;
// Initialize the memories
initialize_memories(instance, &module)?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn allocator_traits_are_object_safe() {
fn _instance_allocator(_: &dyn InstanceAllocatorImpl) {}
fn _instance_allocator_ext(_: &dyn InstanceAllocator) {}
}
}