1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//! Runtime library calls.
//!
//! Note that Wasm compilers may sometimes perform these inline rather than
//! calling them, particularly when CPUs have special instructions which compute
//! them directly.
//!
//! These functions are called by compiled Wasm code, and therefore must take
//! certain care about some things:
//!
//! * They must only contain basic, raw i32/i64/f32/f64/pointer parameters that
//!   are safe to pass across the system ABI.
//!
//! * If any nested function propagates an `Err(trap)` out to the library
//!   function frame, we need to raise it. This involves some nasty and quite
//!   unsafe code under the covers! Notably, after raising the trap, drops
//!   **will not** be run for local variables! This can lead to things like
//!   leaking `InstanceHandle`s which leads to never deallocating JIT code,
//!   instances, and modules if we are not careful!
//!
//! * The libcall must be entered via a Wasm-to-libcall trampoline that saves
//!   the last Wasm FP and PC for stack walking purposes. (For more details, see
//!   `crates/runtime/src/backtrace.rs`.)
//!
//! To make it easier to correctly handle all these things, **all** libcalls
//! must be defined via the `libcall!` helper macro! See its doc comments below
//! for an example, or just look at the rest of the file.
//!
//! ## Dealing with `externref`s
//!
//! When receiving a raw `*mut u8` that is actually a `VMExternRef` reference,
//! convert it into a proper `VMExternRef` with `VMExternRef::clone_from_raw` as
//! soon as apossible. Any GC before raw pointer is converted into a reference
//! can potentially collect the referenced object, which could lead to use after
//! free.
//!
//! Avoid this by eagerly converting into a proper `VMExternRef`! (Unfortunately
//! there is no macro to help us automatically get this correct, so stay
//! vigilant!)
//!
//! ```ignore
//! pub unsafe extern "C" my_libcall_takes_ref(raw_extern_ref: *mut u8) {
//!     // Before `clone_from_raw`, `raw_extern_ref` is potentially unrooted,
//!     // and doing GC here could lead to use after free!
//!
//!     let my_extern_ref = if raw_extern_ref.is_null() {
//!         None
//!     } else {
//!         Some(VMExternRef::clone_from_raw(raw_extern_ref))
//!     };
//!
//!     // Now that we did `clone_from_raw`, it is safe to do a GC (or do
//!     // anything else that might transitively GC, like call back into
//!     // Wasm!)
//! }
//! ```

use crate::externref::VMExternRef;
use crate::table::{Table, TableElementType};
use crate::vmcontext::{VMCallerCheckedAnyfunc, VMContext};
use crate::TrapReason;
use anyhow::Result;
use std::mem;
use std::ptr::{self, NonNull};
use std::time::{Duration, Instant};
use wasmtime_environ::{
    DataIndex, ElemIndex, FuncIndex, GlobalIndex, MemoryIndex, TableIndex, Trap,
};

/// Actually public trampolines which are used by the runtime as the entrypoint
/// for libcalls.
///
/// Note that the trampolines here are actually defined in inline assembly right
/// now to ensure that the fp/sp on exit are recorded for backtraces to work
/// properly.
pub mod trampolines {
    use crate::{TrapReason, VMContext};

    macro_rules! libcall {
        (
            $(
                $( #[$attr:meta] )*
                $name:ident( vmctx: vmctx $(, $pname:ident: $param:ident )* ) $( -> $result:ident )?;
            )*
        ) => {paste::paste! {
            $(
                // The actual libcall itself, which has the `pub` name here, is
                // defined via the `wasm_to_libcall_trampoline!` macro on
                // supported platforms or otherwise in inline assembly for
                // platforms like s390x which don't have stable `global_asm!`
                // yet.
                extern "C" {
                    #[allow(missing_docs)]
                    #[allow(improper_ctypes)]
                    pub fn $name(
                        vmctx: *mut VMContext,
                        $( $pname: libcall!(@ty $param), )*
                    ) $(-> libcall!(@ty $result))?;
                }

                wasm_to_libcall_trampoline!($name ; [<impl_ $name>]);

                // This is the direct entrypoint from the inline assembly which
                // still has the same raw signature as the trampoline itself.
                // This will delegate to the outer module to the actual
                // implementation and automatically perform `catch_unwind` along
                // with conversion of the return value in the face of traps.
                //
                // Note that rust targets which support `global_asm!` can use
                // the `sym` operator to get the symbol here, but other targets
                // like s390x need to use outlined assembly files which requires
                // `no_mangle`.
                #[cfg_attr(target_arch = "s390x", no_mangle)]
                unsafe extern "C" fn [<impl_ $name>](
                    vmctx : *mut VMContext,
                    $( $pname : libcall!(@ty $param), )*
                ) $( -> libcall!(@ty $result))? {
                    let result = std::panic::catch_unwind(|| {
                        super::$name(vmctx, $($pname),*)
                    });
                    match result {
                        Ok(ret) => LibcallResult::convert(ret),
                        Err(panic) => crate::traphandlers::resume_panic(panic),
                    }
                }
            )*
        }};

        (@ty i32) => (u32);
        (@ty i64) => (u64);
        (@ty reference) => (*mut u8);
        (@ty pointer) => (*mut u8);
        (@ty vmctx) => (*mut VMContext);
    }

    wasmtime_environ::foreach_builtin_function!(libcall);

    // Helper trait to convert results of libcalls below into the ABI of what
    // the libcall expects.
    //
    // This basically entirely exists for the `Result` implementation which
    // "unwraps" via a throwing of a trap.
    trait LibcallResult {
        type Abi;
        unsafe fn convert(self) -> Self::Abi;
    }

    impl LibcallResult for () {
        type Abi = ();
        unsafe fn convert(self) {}
    }

    impl<T, E> LibcallResult for Result<T, E>
    where
        E: Into<TrapReason>,
    {
        type Abi = T;
        unsafe fn convert(self) -> T {
            match self {
                Ok(t) => t,
                Err(e) => crate::traphandlers::raise_trap(e.into()),
            }
        }
    }

    impl LibcallResult for *mut u8 {
        type Abi = *mut u8;
        unsafe fn convert(self) -> *mut u8 {
            self
        }
    }
}

unsafe fn memory32_grow(
    vmctx: *mut VMContext,
    delta: u64,
    memory_index: u32,
) -> Result<*mut u8, TrapReason> {
    let instance = (*vmctx).instance_mut();
    let memory_index = MemoryIndex::from_u32(memory_index);
    let result =
        match instance
            .memory_grow(memory_index, delta)
            .map_err(|error| TrapReason::User {
                error,
                needs_backtrace: true,
            })? {
            Some(size_in_bytes) => size_in_bytes / (wasmtime_environ::WASM_PAGE_SIZE as usize),
            None => usize::max_value(),
        };
    Ok(result as *mut _)
}

// Implementation of `table.grow`.
//
// Table grow can invoke user code provided in a ResourceLimiter{,Async}, so we
// need to catch a possible panic.
unsafe fn table_grow(
    vmctx: *mut VMContext,
    table_index: u32,
    delta: u32,
    // NB: we don't know whether this is a pointer to a `VMCallerCheckedAnyfunc`
    // or is a `VMExternRef` until we look at the table type.
    init_value: *mut u8,
) -> Result<u32> {
    let instance = (*vmctx).instance_mut();
    let table_index = TableIndex::from_u32(table_index);
    let element = match instance.table_element_type(table_index) {
        TableElementType::Func => (init_value as *mut VMCallerCheckedAnyfunc).into(),
        TableElementType::Extern => {
            let init_value = if init_value.is_null() {
                None
            } else {
                Some(VMExternRef::clone_from_raw(init_value))
            };
            init_value.into()
        }
    };
    Ok(match instance.table_grow(table_index, delta, element)? {
        Some(r) => r,
        None => -1_i32 as u32,
    })
}

use table_grow as table_grow_funcref;
use table_grow as table_grow_externref;

// Implementation of `table.fill`.
unsafe fn table_fill(
    vmctx: *mut VMContext,
    table_index: u32,
    dst: u32,
    // NB: we don't know whether this is a `VMExternRef` or a pointer to a
    // `VMCallerCheckedAnyfunc` until we look at the table's element type.
    val: *mut u8,
    len: u32,
) -> Result<(), Trap> {
    let instance = (*vmctx).instance_mut();
    let table_index = TableIndex::from_u32(table_index);
    let table = &mut *instance.get_table(table_index);
    match table.element_type() {
        TableElementType::Func => {
            let val = val as *mut VMCallerCheckedAnyfunc;
            table.fill(dst, val.into(), len)
        }
        TableElementType::Extern => {
            let val = if val.is_null() {
                None
            } else {
                Some(VMExternRef::clone_from_raw(val))
            };
            table.fill(dst, val.into(), len)
        }
    }
}

use table_fill as table_fill_funcref;
use table_fill as table_fill_externref;

// Implementation of `table.copy`.
unsafe fn table_copy(
    vmctx: *mut VMContext,
    dst_table_index: u32,
    src_table_index: u32,
    dst: u32,
    src: u32,
    len: u32,
) -> Result<(), Trap> {
    let dst_table_index = TableIndex::from_u32(dst_table_index);
    let src_table_index = TableIndex::from_u32(src_table_index);
    let instance = (*vmctx).instance_mut();
    let dst_table = instance.get_table(dst_table_index);
    // Lazy-initialize the whole range in the source table first.
    let src_range = src..(src.checked_add(len).unwrap_or(u32::MAX));
    let src_table = instance.get_table_with_lazy_init(src_table_index, src_range);
    Table::copy(dst_table, src_table, dst, src, len)
}

// Implementation of `table.init`.
unsafe fn table_init(
    vmctx: *mut VMContext,
    table_index: u32,
    elem_index: u32,
    dst: u32,
    src: u32,
    len: u32,
) -> Result<(), Trap> {
    let table_index = TableIndex::from_u32(table_index);
    let elem_index = ElemIndex::from_u32(elem_index);
    let instance = (*vmctx).instance_mut();
    instance.table_init(table_index, elem_index, dst, src, len)
}

// Implementation of `elem.drop`.
unsafe fn elem_drop(vmctx: *mut VMContext, elem_index: u32) {
    let elem_index = ElemIndex::from_u32(elem_index);
    let instance = (*vmctx).instance_mut();
    instance.elem_drop(elem_index);
}

// Implementation of `memory.copy` for locally defined memories.
unsafe fn memory_copy(
    vmctx: *mut VMContext,
    dst_index: u32,
    dst: u64,
    src_index: u32,
    src: u64,
    len: u64,
) -> Result<(), Trap> {
    let src_index = MemoryIndex::from_u32(src_index);
    let dst_index = MemoryIndex::from_u32(dst_index);
    let instance = (*vmctx).instance_mut();
    instance.memory_copy(dst_index, dst, src_index, src, len)
}

// Implementation of `memory.fill` for locally defined memories.
unsafe fn memory_fill(
    vmctx: *mut VMContext,
    memory_index: u32,
    dst: u64,
    val: u32,
    len: u64,
) -> Result<(), Trap> {
    let memory_index = MemoryIndex::from_u32(memory_index);
    let instance = (*vmctx).instance_mut();
    instance.memory_fill(memory_index, dst, val as u8, len)
}

// Implementation of `memory.init`.
unsafe fn memory_init(
    vmctx: *mut VMContext,
    memory_index: u32,
    data_index: u32,
    dst: u64,
    src: u32,
    len: u32,
) -> Result<(), Trap> {
    let memory_index = MemoryIndex::from_u32(memory_index);
    let data_index = DataIndex::from_u32(data_index);
    let instance = (*vmctx).instance_mut();
    instance.memory_init(memory_index, data_index, dst, src, len)
}

// Implementation of `ref.func`.
unsafe fn ref_func(vmctx: *mut VMContext, func_index: u32) -> *mut u8 {
    let instance = (*vmctx).instance_mut();
    let anyfunc = instance
        .get_caller_checked_anyfunc(FuncIndex::from_u32(func_index))
        .expect("ref_func: caller_checked_anyfunc should always be available for given func index");
    anyfunc as *mut _
}

// Implementation of `data.drop`.
unsafe fn data_drop(vmctx: *mut VMContext, data_index: u32) {
    let data_index = DataIndex::from_u32(data_index);
    let instance = (*vmctx).instance_mut();
    instance.data_drop(data_index)
}

// Returns a table entry after lazily initializing it.
unsafe fn table_get_lazy_init_funcref(
    vmctx: *mut VMContext,
    table_index: u32,
    index: u32,
) -> *mut u8 {
    let instance = (*vmctx).instance_mut();
    let table_index = TableIndex::from_u32(table_index);
    let table = instance.get_table_with_lazy_init(table_index, std::iter::once(index));
    let elem = (*table)
        .get(index)
        .expect("table access already bounds-checked");

    elem.into_ref_asserting_initialized() as *mut _
}

// Drop a `VMExternRef`.
unsafe fn drop_externref(_vmctx: *mut VMContext, externref: *mut u8) {
    let externref = externref as *mut crate::externref::VMExternData;
    let externref = NonNull::new(externref).unwrap();
    crate::externref::VMExternData::drop_and_dealloc(externref);
}

// Do a GC and insert the given `externref` into the
// `VMExternRefActivationsTable`.
unsafe fn activations_table_insert_with_gc(vmctx: *mut VMContext, externref: *mut u8) {
    let externref = VMExternRef::clone_from_raw(externref);
    let instance = (*vmctx).instance();
    let (activations_table, module_info_lookup) = (*instance.store()).externref_activations_table();

    // Invariant: all `externref`s on the stack have an entry in the activations
    // table. So we need to ensure that this `externref` is in the table
    // *before* we GC, even though `insert_with_gc` will ensure that it is in
    // the table *after* the GC. This technically results in one more hash table
    // look up than is strictly necessary -- which we could avoid by having an
    // additional GC method that is aware of these GC-triggering references --
    // but it isn't really a concern because this is already a slow path.
    activations_table.insert_without_gc(externref.clone());

    activations_table.insert_with_gc(externref, module_info_lookup);
}

// Perform a Wasm `global.get` for `externref` globals.
unsafe fn externref_global_get(vmctx: *mut VMContext, index: u32) -> *mut u8 {
    let index = GlobalIndex::from_u32(index);
    let instance = (*vmctx).instance();
    let global = instance.defined_or_imported_global_ptr(index);
    match (*global).as_externref().clone() {
        None => ptr::null_mut(),
        Some(externref) => {
            let raw = externref.as_raw();
            let (activations_table, module_info_lookup) =
                (*instance.store()).externref_activations_table();
            activations_table.insert_with_gc(externref, module_info_lookup);
            raw
        }
    }
}

// Perform a Wasm `global.set` for `externref` globals.
unsafe fn externref_global_set(vmctx: *mut VMContext, index: u32, externref: *mut u8) {
    let externref = if externref.is_null() {
        None
    } else {
        Some(VMExternRef::clone_from_raw(externref))
    };

    let index = GlobalIndex::from_u32(index);
    let instance = (*vmctx).instance();
    let global = instance.defined_or_imported_global_ptr(index);

    // Swap the new `externref` value into the global before we drop the old
    // value. This protects against an `externref` with a `Drop` implementation
    // that calls back into Wasm and touches this global again (we want to avoid
    // it observing a halfway-deinitialized value).
    let old = mem::replace((*global).as_externref_mut(), externref);
    drop(old);
}

// Implementation of `memory.atomic.notify` for locally defined memories.
unsafe fn memory_atomic_notify(
    vmctx: *mut VMContext,
    memory_index: u32,
    addr_index: u64,
    count: u32,
) -> Result<u32, Trap> {
    let memory = MemoryIndex::from_u32(memory_index);
    let instance = (*vmctx).instance_mut();
    instance
        .get_runtime_memory(memory)
        .atomic_notify(addr_index, count)
}

// Implementation of `memory.atomic.wait32` for locally defined memories.
unsafe fn memory_atomic_wait32(
    vmctx: *mut VMContext,
    memory_index: u32,
    addr_index: u64,
    expected: u32,
    timeout: u64,
) -> Result<u32, Trap> {
    // convert timeout to Instant, before any wait happens on locking
    let timeout = (timeout as i64 >= 0).then(|| Instant::now() + Duration::from_nanos(timeout));
    let memory = MemoryIndex::from_u32(memory_index);
    let instance = (*vmctx).instance_mut();
    Ok(instance
        .get_runtime_memory(memory)
        .atomic_wait32(addr_index, expected, timeout)? as u32)
}

// Implementation of `memory.atomic.wait64` for locally defined memories.
unsafe fn memory_atomic_wait64(
    vmctx: *mut VMContext,
    memory_index: u32,
    addr_index: u64,
    expected: u64,
    timeout: u64,
) -> Result<u32, Trap> {
    // convert timeout to Instant, before any wait happens on locking
    let timeout = (timeout as i64 >= 0).then(|| Instant::now() + Duration::from_nanos(timeout));
    let memory = MemoryIndex::from_u32(memory_index);
    let instance = (*vmctx).instance_mut();
    Ok(instance
        .get_runtime_memory(memory)
        .atomic_wait64(addr_index, expected, timeout)? as u32)
}

// Hook for when an instance runs out of fuel.
unsafe fn out_of_gas(vmctx: *mut VMContext) -> Result<()> {
    (*(*vmctx).instance().store()).out_of_gas()
}

// Hook for when an instance observes that the epoch has changed.
unsafe fn new_epoch(vmctx: *mut VMContext) -> Result<u64> {
    (*(*vmctx).instance().store()).new_epoch()
}