1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
//! Runtime library calls.
//!
//! Note that Wasm compilers may sometimes perform these inline rather than
//! calling them, particularly when CPUs have special instructions which compute
//! them directly.
//!
//! These functions are called by compiled Wasm code, and therefore must take
//! certain care about some things:
//!
//! * They must only contain basic, raw i32/i64/f32/f64/pointer parameters that
//! are safe to pass across the system ABI.
//!
//! * If any nested function propagates an `Err(trap)` out to the library
//! function frame, we need to raise it. This involves some nasty and quite
//! unsafe code under the covers! Notably, after raising the trap, drops
//! **will not** be run for local variables! This can lead to things like
//! leaking `InstanceHandle`s which leads to never deallocating JIT code,
//! instances, and modules if we are not careful!
//!
//! * The libcall must be entered via a Wasm-to-libcall trampoline that saves
//! the last Wasm FP and PC for stack walking purposes. (For more details, see
//! `crates/runtime/src/backtrace.rs`.)
//!
//! To make it easier to correctly handle all these things, **all** libcalls
//! must be defined via the `libcall!` helper macro! See its doc comments below
//! for an example, or just look at the rest of the file.
//!
//! ## Dealing with `externref`s
//!
//! When receiving a raw `*mut u8` that is actually a `VMExternRef` reference,
//! convert it into a proper `VMExternRef` with `VMExternRef::clone_from_raw` as
//! soon as apossible. Any GC before raw pointer is converted into a reference
//! can potentially collect the referenced object, which could lead to use after
//! free.
//!
//! Avoid this by eagerly converting into a proper `VMExternRef`! (Unfortunately
//! there is no macro to help us automatically get this correct, so stay
//! vigilant!)
//!
//! ```ignore
//! pub unsafe extern "C" my_libcall_takes_ref(raw_extern_ref: *mut u8) {
//! // Before `clone_from_raw`, `raw_extern_ref` is potentially unrooted,
//! // and doing GC here could lead to use after free!
//!
//! let my_extern_ref = if raw_extern_ref.is_null() {
//! None
//! } else {
//! Some(VMExternRef::clone_from_raw(raw_extern_ref))
//! };
//!
//! // Now that we did `clone_from_raw`, it is safe to do a GC (or do
//! // anything else that might transitively GC, like call back into
//! // Wasm!)
//! }
//! ```
use crate::table::{Table, TableElementType};
use crate::vmcontext::VMFuncRef;
use crate::{Instance, TrapReason, VMGcRef};
#[cfg(feature = "wmemcheck")]
use anyhow::bail;
use anyhow::Result;
#[cfg(feature = "threads")]
use std::time::{Duration, Instant};
use wasmtime_environ::{DataIndex, ElemIndex, FuncIndex, MemoryIndex, TableIndex, Trap, Unsigned};
#[cfg(feature = "wmemcheck")]
use wasmtime_wmemcheck::AccessError::{
DoubleMalloc, InvalidFree, InvalidRead, InvalidWrite, OutOfBounds,
};
/// Raw functions which are actually called from compiled code.
///
/// Invocation of a builtin currently looks like:
///
/// * A wasm function calls a cranelift-compiled trampoline that's generated
/// once-per-builtin.
/// * The cranelift-compiled trampoline performs any necessary actions to exit
/// wasm, such as dealing with fp/pc/etc.
/// * The cranelift-compiled trampoline loads a function pointer from an array
/// stored in `VMContext` That function pointer is defined in this module.
/// * This module runs, handling things like `catch_unwind` and `Result` and
/// such.
/// * This module delegates to the outer module (this file) which has the actual
/// implementation.
pub mod raw {
// Allow these things because of the macro and how we can't differentiate
// between doc comments and `cfg`s.
#![allow(unused_doc_comments, unused_attributes)]
use crate::{Instance, TrapReason, VMContext};
macro_rules! libcall {
(
$(
$( #[cfg($attr:meta)] )?
$name:ident( vmctx: vmctx $(, $pname:ident: $param:ident )* ) $( -> $result:ident )?;
)*
) => {
$(
// This is the direct entrypoint from the compiled module which
// still has the raw signature.
//
// This will delegate to the outer module to the actual
// implementation and automatically perform `catch_unwind` along
// with conversion of the return value in the face of traps.
#[allow(unused_variables, missing_docs)]
pub unsafe extern "C" fn $name(
vmctx: *mut VMContext,
$( $pname : libcall!(@ty $param), )*
) $( -> libcall!(@ty $result))? {
$(#[cfg($attr)])?
{
let ret = crate::traphandlers::catch_unwind_and_longjmp(|| {
Instance::from_vmctx(vmctx, |instance| {
{
super::$name(instance, $($pname),*)
}
})
});
LibcallResult::convert(ret)
}
$(
#[cfg(not($attr))]
std::process::abort();
)?
}
// This works around a `rustc` bug where compiling with LTO
// will sometimes strip out some of these symbols resulting
// in a linking failure.
#[allow(non_upper_case_globals)]
const _: () = {
#[used]
static I_AM_USED: unsafe extern "C" fn(
*mut VMContext,
$( $pname : libcall!(@ty $param), )*
) $( -> libcall!(@ty $result))? = $name;
};
)*
};
(@ty i32) => (u32);
(@ty i64) => (u64);
(@ty reference) => (*mut u8);
(@ty pointer) => (*mut u8);
(@ty vmctx) => (*mut VMContext);
}
wasmtime_environ::foreach_builtin_function!(libcall);
// Helper trait to convert results of libcalls below into the ABI of what
// the libcall expects.
//
// This basically entirely exists for the `Result` implementation which
// "unwraps" via a throwing of a trap.
trait LibcallResult {
type Abi;
unsafe fn convert(self) -> Self::Abi;
}
impl LibcallResult for () {
type Abi = ();
unsafe fn convert(self) {}
}
impl<T, E> LibcallResult for Result<T, E>
where
E: Into<TrapReason>,
{
type Abi = T;
unsafe fn convert(self) -> T {
match self {
Ok(t) => t,
Err(e) => crate::traphandlers::raise_trap(e.into()),
}
}
}
impl LibcallResult for *mut u8 {
type Abi = *mut u8;
unsafe fn convert(self) -> *mut u8 {
self
}
}
}
fn memory32_grow(
instance: &mut Instance,
delta: u64,
memory_index: u32,
) -> Result<*mut u8, TrapReason> {
let memory_index = MemoryIndex::from_u32(memory_index);
let result =
match instance
.memory_grow(memory_index, delta)
.map_err(|error| TrapReason::User {
error,
needs_backtrace: true,
})? {
Some(size_in_bytes) => size_in_bytes / (wasmtime_environ::WASM_PAGE_SIZE as usize),
None => usize::max_value(),
};
Ok(result as *mut _)
}
// Implementation of `table.grow`.
unsafe fn table_grow(
instance: &mut Instance,
table_index: u32,
delta: u32,
// NB: we don't know whether this is a pointer to a `VMFuncRef` or is an
// `r64` that represents a `VMGcRef` until we look at the table type.
init_value: *mut u8,
) -> Result<u32> {
let table_index = TableIndex::from_u32(table_index);
let element = match instance.table_element_type(table_index) {
TableElementType::Func => (init_value as *mut VMFuncRef).into(),
TableElementType::GcRef => VMGcRef::from_r64(u64::try_from(init_value as usize).unwrap())
.unwrap()
.map(|r| (*instance.store()).gc_store().clone_gc_ref(&r))
.into(),
};
Ok(match instance.table_grow(table_index, delta, element)? {
Some(r) => r,
None => (-1_i32).unsigned(),
})
}
use table_grow as table_grow_func_ref;
#[cfg(feature = "gc")]
use table_grow as table_grow_gc_ref;
// Implementation of `table.fill`.
unsafe fn table_fill(
instance: &mut Instance,
table_index: u32,
dst: u32,
// NB: we don't know whether this is an `r64` that represents a `VMGcRef` or
// a pointer to a `VMFuncRef` until we look at the table's element type.
val: *mut u8,
len: u32,
) -> Result<(), Trap> {
let table_index = TableIndex::from_u32(table_index);
let table = &mut *instance.get_table(table_index);
match table.element_type() {
TableElementType::Func => {
let val = val.cast::<VMFuncRef>();
table.fill((*instance.store()).gc_store(), dst, val.into(), len)
}
TableElementType::GcRef => {
let gc_store = (*instance.store()).gc_store();
let gc_ref = VMGcRef::from_r64(u64::try_from(val as usize).unwrap()).unwrap();
let gc_ref = gc_ref.map(|r| gc_store.clone_gc_ref(&r));
table.fill(gc_store, dst, gc_ref.into(), len)
}
}
}
use table_fill as table_fill_func_ref;
#[cfg(feature = "gc")]
use table_fill as table_fill_gc_ref;
// Implementation of `table.copy`.
unsafe fn table_copy(
instance: &mut Instance,
dst_table_index: u32,
src_table_index: u32,
dst: u32,
src: u32,
len: u32,
) -> Result<(), Trap> {
let dst_table_index = TableIndex::from_u32(dst_table_index);
let src_table_index = TableIndex::from_u32(src_table_index);
let dst_table = instance.get_table(dst_table_index);
// Lazy-initialize the whole range in the source table first.
let src_range = src..(src.checked_add(len).unwrap_or(u32::MAX));
let src_table = instance.get_table_with_lazy_init(src_table_index, src_range);
let gc_store = (*instance.store()).gc_store();
Table::copy(gc_store, dst_table, src_table, dst, src, len)
}
// Implementation of `table.init`.
fn table_init(
instance: &mut Instance,
table_index: u32,
elem_index: u32,
dst: u32,
src: u32,
len: u32,
) -> Result<(), Trap> {
let table_index = TableIndex::from_u32(table_index);
let elem_index = ElemIndex::from_u32(elem_index);
instance.table_init(table_index, elem_index, dst, src, len)
}
// Implementation of `elem.drop`.
fn elem_drop(instance: &mut Instance, elem_index: u32) {
let elem_index = ElemIndex::from_u32(elem_index);
instance.elem_drop(elem_index)
}
// Implementation of `memory.copy`.
fn memory_copy(
instance: &mut Instance,
dst_index: u32,
dst: u64,
src_index: u32,
src: u64,
len: u64,
) -> Result<(), Trap> {
let src_index = MemoryIndex::from_u32(src_index);
let dst_index = MemoryIndex::from_u32(dst_index);
instance.memory_copy(dst_index, dst, src_index, src, len)
}
// Implementation of `memory.fill` for locally defined memories.
fn memory_fill(
instance: &mut Instance,
memory_index: u32,
dst: u64,
val: u32,
len: u64,
) -> Result<(), Trap> {
let memory_index = MemoryIndex::from_u32(memory_index);
instance.memory_fill(memory_index, dst, val as u8, len)
}
// Implementation of `memory.init`.
fn memory_init(
instance: &mut Instance,
memory_index: u32,
data_index: u32,
dst: u64,
src: u32,
len: u32,
) -> Result<(), Trap> {
let memory_index = MemoryIndex::from_u32(memory_index);
let data_index = DataIndex::from_u32(data_index);
instance.memory_init(memory_index, data_index, dst, src, len)
}
// Implementation of `ref.func`.
fn ref_func(instance: &mut Instance, func_index: u32) -> *mut u8 {
instance
.get_func_ref(FuncIndex::from_u32(func_index))
.expect("ref_func: funcref should always be available for given func index")
.cast()
}
// Implementation of `data.drop`.
fn data_drop(instance: &mut Instance, data_index: u32) {
let data_index = DataIndex::from_u32(data_index);
instance.data_drop(data_index)
}
// Returns a table entry after lazily initializing it.
unsafe fn table_get_lazy_init_func_ref(
instance: &mut Instance,
table_index: u32,
index: u32,
) -> *mut u8 {
let table_index = TableIndex::from_u32(table_index);
let table = instance.get_table_with_lazy_init(table_index, std::iter::once(index));
let gc_store = (*instance.store()).gc_store();
let elem = (*table)
.get(gc_store, index)
.expect("table access already bounds-checked");
elem.into_func_ref_asserting_initialized().cast()
}
// Drop a GC reference.
#[cfg(feature = "gc")]
unsafe fn drop_gc_ref(instance: &mut Instance, gc_ref: *mut u8) {
let gc_ref = VMGcRef::from_r64(u64::try_from(gc_ref as usize).unwrap())
.expect("valid r64")
.expect("non-null VMGcRef");
log::trace!("libcalls::drop_gc_ref({gc_ref:?})");
(*instance.store()).gc_store().drop_gc_ref(gc_ref);
}
// Do a GC, keeping `gc_ref` rooted and returning the updated `gc_ref`
// reference.
#[cfg(feature = "gc")]
unsafe fn gc(instance: &mut Instance, gc_ref: *mut u8) -> Result<*mut u8> {
let gc_ref = u64::try_from(gc_ref as usize).unwrap();
let gc_ref = VMGcRef::from_r64(gc_ref).expect("valid r64");
let gc_ref = gc_ref.map(|r| (*instance.store()).gc_store().clone_gc_ref(&r));
if let Some(gc_ref) = &gc_ref {
// It is possible that we are GC'ing because the DRC's activation
// table's bump region is full, and we failed to insert `gc_ref` into
// the bump region. But it is an invariant for DRC collection that all
// GC references on the stack are in the DRC's activations table at the
// time of a GC. So make sure to "expose" this GC reference to Wasm (aka
// insert it into the DRC's activation table) before we do the actual
// GC.
let gc_store = (*instance.store()).gc_store();
let gc_ref = gc_store.clone_gc_ref(gc_ref);
gc_store.expose_gc_ref_to_wasm(gc_ref);
}
match (*instance.store()).gc(gc_ref)? {
None => Ok(std::ptr::null_mut()),
Some(r) => {
let r64 = r.as_r64();
(*instance.store()).gc_store().expose_gc_ref_to_wasm(r);
Ok(usize::try_from(r64).unwrap() as *mut u8)
}
}
}
// Perform a Wasm `global.get` for GC reference globals.
#[cfg(feature = "gc")]
unsafe fn gc_ref_global_get(instance: &mut Instance, index: u32) -> Result<*mut u8> {
use std::num::NonZeroUsize;
let index = wasmtime_environ::GlobalIndex::from_u32(index);
let global = instance.defined_or_imported_global_ptr(index);
let gc_store = (*instance.store()).gc_store();
if gc_store
.gc_heap
.need_gc_before_entering_wasm(NonZeroUsize::new(1).unwrap())
{
(*instance.store()).gc(None)?;
}
match (*global).as_gc_ref() {
None => Ok(std::ptr::null_mut()),
Some(gc_ref) => {
let gc_ref = gc_store.clone_gc_ref(gc_ref);
let ret = usize::try_from(gc_ref.as_r64()).unwrap() as *mut u8;
gc_store.expose_gc_ref_to_wasm(gc_ref);
Ok(ret)
}
}
}
// Perform a Wasm `global.set` for GC reference globals.
#[cfg(feature = "gc")]
unsafe fn gc_ref_global_set(instance: &mut Instance, index: u32, gc_ref: *mut u8) {
let index = wasmtime_environ::GlobalIndex::from_u32(index);
let global = instance.defined_or_imported_global_ptr(index);
let gc_ref = VMGcRef::from_r64(u64::try_from(gc_ref as usize).unwrap()).expect("valid r64");
let gc_store = (*instance.store()).gc_store();
(*global).write_gc_ref(gc_store, gc_ref.as_ref());
}
// Implementation of `memory.atomic.notify` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_notify(
instance: &mut Instance,
memory_index: u32,
addr_index: u64,
count: u32,
) -> Result<u32, Trap> {
let memory = MemoryIndex::from_u32(memory_index);
instance
.get_runtime_memory(memory)
.atomic_notify(addr_index, count)
}
// Implementation of `memory.atomic.wait32` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_wait32(
instance: &mut Instance,
memory_index: u32,
addr_index: u64,
expected: u32,
timeout: u64,
) -> Result<u32, Trap> {
// convert timeout to Instant, before any wait happens on locking
let timeout = (timeout as i64 >= 0).then(|| Instant::now() + Duration::from_nanos(timeout));
let memory = MemoryIndex::from_u32(memory_index);
Ok(instance
.get_runtime_memory(memory)
.atomic_wait32(addr_index, expected, timeout)? as u32)
}
// Implementation of `memory.atomic.wait64` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_wait64(
instance: &mut Instance,
memory_index: u32,
addr_index: u64,
expected: u64,
timeout: u64,
) -> Result<u32, Trap> {
// convert timeout to Instant, before any wait happens on locking
let timeout = (timeout as i64 >= 0).then(|| Instant::now() + Duration::from_nanos(timeout));
let memory = MemoryIndex::from_u32(memory_index);
Ok(instance
.get_runtime_memory(memory)
.atomic_wait64(addr_index, expected, timeout)? as u32)
}
// Hook for when an instance runs out of fuel.
unsafe fn out_of_gas(instance: &mut Instance) -> Result<()> {
(*instance.store()).out_of_gas()
}
// Hook for when an instance observes that the epoch has changed.
unsafe fn new_epoch(instance: &mut Instance) -> Result<u64> {
(*instance.store()).new_epoch()
}
// Hook for validating malloc using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
unsafe fn check_malloc(instance: &mut Instance, addr: u32, len: u32) -> Result<u32> {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
let result = wmemcheck_state.malloc(addr as usize, len as usize);
wmemcheck_state.memcheck_on();
match result {
Ok(()) => {
return Ok(0);
}
Err(DoubleMalloc { addr, len }) => {
bail!("Double malloc at addr {:#x} of size {}", addr, len)
}
Err(OutOfBounds { addr, len }) => {
bail!("Malloc out of bounds at addr {:#x} of size {}", addr, len);
}
_ => {
panic!("unreachable")
}
}
}
Ok(0)
}
// Hook for validating free using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
unsafe fn check_free(instance: &mut Instance, addr: u32) -> Result<u32> {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
let result = wmemcheck_state.free(addr as usize);
wmemcheck_state.memcheck_on();
match result {
Ok(()) => {
return Ok(0);
}
Err(InvalidFree { addr }) => {
bail!("Invalid free at addr {:#x}", addr)
}
_ => {
panic!("unreachable")
}
}
}
Ok(0)
}
// Hook for validating load using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn check_load(instance: &mut Instance, num_bytes: u32, addr: u32, offset: u32) -> Result<u32> {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
let result = wmemcheck_state.read(addr as usize + offset as usize, num_bytes as usize);
match result {
Ok(()) => {
return Ok(0);
}
Err(InvalidRead { addr, len }) => {
bail!("Invalid load at addr {:#x} of size {}", addr, len);
}
Err(OutOfBounds { addr, len }) => {
bail!("Load out of bounds at addr {:#x} of size {}", addr, len);
}
_ => {
panic!("unreachable")
}
}
}
Ok(0)
}
// Hook for validating store using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn check_store(instance: &mut Instance, num_bytes: u32, addr: u32, offset: u32) -> Result<u32> {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
let result = wmemcheck_state.write(addr as usize + offset as usize, num_bytes as usize);
match result {
Ok(()) => {
return Ok(0);
}
Err(InvalidWrite { addr, len }) => {
bail!("Invalid store at addr {:#x} of size {}", addr, len)
}
Err(OutOfBounds { addr, len }) => {
bail!("Store out of bounds at addr {:#x} of size {}", addr, len)
}
_ => {
panic!("unreachable")
}
}
}
Ok(0)
}
// Hook for turning wmemcheck load/store validation off when entering a malloc function.
#[cfg(feature = "wmemcheck")]
fn malloc_start(instance: &mut Instance) {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
wmemcheck_state.memcheck_off();
}
}
// Hook for turning wmemcheck load/store validation off when entering a free function.
#[cfg(feature = "wmemcheck")]
fn free_start(instance: &mut Instance) {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
wmemcheck_state.memcheck_off();
}
}
// Hook for tracking wasm stack updates using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn update_stack_pointer(_instance: &mut Instance, _value: u32) {
// TODO: stack-tracing has yet to be finalized. All memory below
// the address of the top of the stack is marked as valid for
// loads and stores.
// if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
// instance.wmemcheck_state.update_stack_pointer(value as usize);
// }
}
// Hook updating wmemcheck_state memory state vector every time memory.grow is called.
#[cfg(feature = "wmemcheck")]
fn update_mem_size(instance: &mut Instance, num_pages: u32) {
if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
const KIB: usize = 1024;
let num_bytes = num_pages as usize * 64 * KIB;
wmemcheck_state.update_mem_size(num_bytes);
}
}
/// This module contains functions which are used for resolving relocations at
/// runtime if necessary.
///
/// These functions are not used by default and currently the only platform
/// they're used for is on x86_64 when SIMD is disabled and then SSE features
/// are further disabled. In these configurations Cranelift isn't allowed to use
/// native CPU instructions so it falls back to libcalls and we rely on the Rust
/// standard library generally for implementing these.
#[allow(missing_docs)]
pub mod relocs {
pub extern "C" fn floorf32(f: f32) -> f32 {
f.floor()
}
pub extern "C" fn floorf64(f: f64) -> f64 {
f.floor()
}
pub extern "C" fn ceilf32(f: f32) -> f32 {
f.ceil()
}
pub extern "C" fn ceilf64(f: f64) -> f64 {
f.ceil()
}
pub extern "C" fn truncf32(f: f32) -> f32 {
f.trunc()
}
pub extern "C" fn truncf64(f: f64) -> f64 {
f.trunc()
}
const TOINT_32: f32 = 1.0 / f32::EPSILON;
const TOINT_64: f64 = 1.0 / f64::EPSILON;
// NB: replace with `round_ties_even` from libstd when it's stable as
// tracked by rust-lang/rust#96710
pub extern "C" fn nearestf32(x: f32) -> f32 {
// Rust doesn't have a nearest function; there's nearbyint, but it's not
// stabilized, so do it manually.
// Nearest is either ceil or floor depending on which is nearest or even.
// This approach exploited round half to even default mode.
let i = x.to_bits();
let e = i >> 23 & 0xff;
if e >= 0x7f_u32 + 23 {
// Check for NaNs.
if e == 0xff {
// Read the 23-bits significand.
if i & 0x7fffff != 0 {
// Ensure it's arithmetic by setting the significand's most
// significant bit to 1; it also works for canonical NaNs.
return f32::from_bits(i | (1 << 22));
}
}
x
} else {
(x.abs() + TOINT_32 - TOINT_32).copysign(x)
}
}
pub extern "C" fn nearestf64(x: f64) -> f64 {
let i = x.to_bits();
let e = i >> 52 & 0x7ff;
if e >= 0x3ff_u64 + 52 {
// Check for NaNs.
if e == 0x7ff {
// Read the 52-bits significand.
if i & 0xfffffffffffff != 0 {
// Ensure it's arithmetic by setting the significand's most
// significant bit to 1; it also works for canonical NaNs.
return f64::from_bits(i | (1 << 51));
}
}
x
} else {
(x.abs() + TOINT_64 - TOINT_64).copysign(x)
}
}
pub extern "C" fn fmaf32(a: f32, b: f32, c: f32) -> f32 {
a.mul_add(b, c)
}
pub extern "C" fn fmaf64(a: f64, b: f64, c: f64) -> f64 {
a.mul_add(b, c)
}
// This intrinsic is only used on x86_64 platforms as an implementation of
// the `pshufb` instruction when SSSE3 is not available.
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::__m128i;
#[cfg(target_arch = "x86_64")]
#[allow(improper_ctypes_definitions)]
pub extern "C" fn x86_pshufb(a: __m128i, b: __m128i) -> __m128i {
union U {
reg: __m128i,
mem: [u8; 16],
}
unsafe {
let a = U { reg: a }.mem;
let b = U { reg: b }.mem;
let select = |arr: &[u8; 16], byte: u8| {
if byte & 0x80 != 0 {
0x00
} else {
arr[(byte & 0xf) as usize]
}
};
U {
mem: [
select(&a, b[0]),
select(&a, b[1]),
select(&a, b[2]),
select(&a, b[3]),
select(&a, b[4]),
select(&a, b[5]),
select(&a, b[6]),
select(&a, b[7]),
select(&a, b[8]),
select(&a, b[9]),
select(&a, b[10]),
select(&a, b[11]),
select(&a, b[12]),
select(&a, b[13]),
select(&a, b[14]),
select(&a, b[15]),
],
}
.reg
}
}
}