1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
//! A very simple, uniformly-typed slab arena that supports deallocation and
//! reusing deallocated entries' space.
//!
//! The free list of vacant entries in the slab are stored inline in the slab's
//! existing storage.
//!
//! # Example
//!
//! ```
//! use wasmtime_slab::{Id, Slab};
//!
//! let mut slab = Slab::new();
//!
//! // Insert some values into the slab.
//! let rza = slab.alloc("Robert Fitzgerald Diggs");
//! let gza = slab.alloc("Gary Grice");
//! let bill = slab.alloc("Bill Gates");
//!
//! // Alloced elements can be accessed infallibly via indexing (and missing and
//! // deallocated entries will panic).
//! assert_eq!(slab[rza], "Robert Fitzgerald Diggs");
//!
//! // Alternatively, the `get` and `get_mut` methods provide fallible lookup.
//! if let Some(genius) = slab.get(gza) {
//!     println!("The gza gza genius: {}", genius);
//! }
//! if let Some(val) = slab.get_mut(bill) {
//!     *val = "Bill Gates doesn't belong in this set...";
//! }
//!
//! // We can remove values from the slab.
//! slab.dealloc(bill);
//!
//! // Allocate a new entry.
//! let bill = slab.alloc("Bill Murray");
//! ```
//!
//! # Using `Id`s with the Wrong `Slab`
//!
//! `Slab` does NOT check that `Id`s used to access previously-allocated values
//! came from the current `Slab` instance (as opposed to a different `Slab`
//! instance). Using `Id`s from a different `Slab` is safe, but will yield an
//! unrelated value, if any at all.
//!
//! If you desire checking that an `Id` came from the correct `Slab` instance,
//! it should be easy to layer that functionality on top of this crate by
//! wrapping `Slab` and `Id` in types that additionally maintain a slab instance
//! identifier.
//!
//! # The ABA Problem
//!
//! This `Slab` type does NOT protect against ABA bugs, such as the following
//! sequence:
//!
//! * Value `A` is allocated into the slab, yielding id `i`.
//!
//! * `A` is deallocated, and so `i`'s associated entry is added to the slab's
//! free list.
//!
//! * Value `B` is allocated into the slab, reusing `i`'s associated entry,
//! yielding id `i`.
//!
//! * The "original" id `i` is used to access the arena, expecting the
//! deallocated value `A`, but getting the new value `B`.
//!
//! That is, it does not detect and prevent against the memory-safe version of
//! use-after-free bugs.
//!
//! If you need to protect against ABA bugs, it should be easy to layer that
//! functionality on top of this crate by wrapping `Slab` with something like
//! the following:
//!
//! ```rust
//! pub struct GenerationalId {
//!     id: wasmtime_slab::Id,
//!     generation: u32,
//! }
//!
//! struct GenerationalEntry<T> {
//!     value: T,
//!     generation: u32,
//! }
//!
//! pub struct GenerationalSlab<T> {
//!     slab: wasmtime_slab::Slab<GenerationalEntry<T>>,
//!     generation: u32,
//! }
//!
//! impl<T> GenerationalSlab<T> {
//!     pub fn alloc(&mut self, value: T) -> GenerationalId {
//!         let generation = self.generation;
//!         let id = self.slab.alloc(GenerationalEntry { value, generation });
//!         GenerationalId { id, generation }
//!     }
//!
//!     pub fn get(&self, id: GenerationalId) -> Option<&T> {
//!         let entry = self.slab.get(id.id)?;
//!
//!         // Check that the entry's generation matches the id's generation,
//!         // else we have an ABA bug. (Alternatively, return `None` instead
//!         // of panicking.)
//!         assert_eq!(id.generation, entry.generation);
//!
//!         Some(&entry.value)
//!     }
//!
//!     pub fn dealloc(&mut self, id: GenerationalId) {
//!         // Check that the entry's generation matches the id's generation,
//!         // else we have an ABA bug. (Alternatively, silently return on
//!         // double-free instead of panicking.)
//!         assert_eq!(id.generation, self.slab[id.id].generation);
//!
//!         self.slab.dealloc(id.id);
//!
//!         // Increment our generation whenever we deallocate so that any new
//!         // value placed in this same entry will have a different generation
//!         // and we can detect ABA bugs.
//!         self.generation += 1;
//!     }
//! }
//! ```

#![forbid(unsafe_code)]
#![deny(missing_docs, missing_debug_implementations)]

use std::num::NonZeroU32;

/// An identifier for an allocated value inside a `slab`.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct Id(EntryIndex);

impl std::fmt::Debug for Id {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_tuple("Id").field(&self.0.index()).finish()
    }
}

impl Id {
    /// Get the raw underlying representation of this `Id`.
    #[inline]
    pub fn into_raw(self) -> u32 {
        u32::try_from(self.0.index()).unwrap()
    }

    /// Construct an `Id` from its raw underlying representation.
    ///
    /// `raw` should be a value that was previously created via
    /// `Id::into_raw`. May panic if given arbitrary values.
    #[inline]
    pub fn from_raw(raw: u32) -> Self {
        let raw = usize::try_from(raw).unwrap();
        Self(EntryIndex::new(raw))
    }
}

/// A simple, uni-typed slab arena.
pub struct Slab<T> {
    /// The slab's entries, each is either occupied and holding a `T` or vacant
    /// and is a link the free list.
    entries: Vec<Entry<T>>,

    /// The index of the first free entry in the free list.
    free: Option<EntryIndex>,

    /// The number of occupied entries is this slab.
    len: u32,
}

impl<T> std::fmt::Debug for Slab<T>
where
    T: std::fmt::Debug,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_map().entries(self.iter()).finish()
    }
}

enum Entry<T> {
    /// An occupied entry holding a `T`.
    Occupied(T),

    /// A vacant entry.
    Free {
        /// A link in the slab's free list, pointing to the next free entry, if
        /// any.
        next_free: Option<EntryIndex>,
    },
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
struct EntryIndex(NonZeroU32);

impl EntryIndex {
    #[inline]
    fn new(index: usize) -> Self {
        assert!(index <= Slab::<()>::MAX_CAPACITY);
        let x = u32::try_from(index + 1).unwrap();
        Self(NonZeroU32::new(x).unwrap())
    }

    #[inline]
    fn index(&self) -> usize {
        let index = self.0.get() - 1;
        usize::try_from(index).unwrap()
    }
}

impl<T> Default for Slab<T> {
    #[inline]
    fn default() -> Self {
        Self {
            entries: Vec::default(),
            free: None,
            len: 0,
        }
    }
}

impl<T> std::ops::Index<Id> for Slab<T> {
    type Output = T;

    #[inline]
    fn index(&self, id: Id) -> &Self::Output {
        self.get(id)
            .expect("id from different slab or value was deallocated")
    }
}

impl<T> std::ops::IndexMut<Id> for Slab<T> {
    #[inline]
    fn index_mut(&mut self, id: Id) -> &mut Self::Output {
        self.get_mut(id)
            .expect("id from different slab or value was deallocated")
    }
}

impl<T> Slab<T> {
    /// The maximum capacity any `Slab` can have: `u32::MAX - 1`.
    pub const MAX_CAPACITY: usize = (u32::MAX - 1) as usize;

    /// Construct a new, empty slab.
    #[inline]
    pub fn new() -> Self {
        Slab::default()
    }

    /// Construct a new, empty slab, pre-reserving space for at least `capacity`
    /// elements.
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        let mut slab = Self::new();
        slab.reserve(capacity);
        slab
    }

    /// Ensure that there is space for at least `additional` elements in this
    /// slab.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `Self::MAX_CAPACITY`.
    pub fn reserve(&mut self, additional: usize) {
        let cap = self.capacity();
        let len = self.len();
        assert!(cap >= len);
        if cap - len >= additional {
            // Already have `additional` capacity available.
            return;
        }

        self.entries.reserve(additional);

        // Maintain the invariant that `i <= MAX_CAPACITY` for all indices `i`
        // in `self.entries`.
        assert!(self.entries.capacity() <= Self::MAX_CAPACITY);
    }

    fn double_capacity(&mut self) {
        // Double our capacity to amortize the cost of resizing. But make sure
        // we add some amount of minimum additional capacity, since doubling
        // zero capacity isn't useful.
        const MIN_CAPACITY: usize = 16;
        let additional = std::cmp::max(self.entries.capacity(), MIN_CAPACITY);
        self.reserve(additional);
    }

    /// What is the capacity of this slab? That is, how many entries can it
    /// contain within its current underlying storage?
    #[inline]
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// How many values are currently allocated within this slab?
    #[inline]
    pub fn len(&self) -> usize {
        usize::try_from(self.len).unwrap()
    }

    /// Are there zero allocated values within this slab?
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Try to allocate a `T` value within this slab.
    ///
    /// If there is no available capacity, ownership of the given value is
    /// returned via `Err(value)`.
    #[inline]
    pub fn try_alloc(&mut self, value: T) -> Result<Id, T> {
        if let Some(index) = self.try_alloc_index() {
            let next_free = match self.entries[index.index()] {
                Entry::Free { next_free } => next_free,
                Entry::Occupied { .. } => unreachable!(),
            };
            self.free = next_free;
            self.entries[index.index()] = Entry::Occupied(value);
            self.len += 1;
            Ok(Id(index))
        } else {
            Err(value)
        }
    }

    #[inline]
    fn try_alloc_index(&mut self) -> Option<EntryIndex> {
        self.free.take().or_else(|| {
            if self.entries.len() < self.entries.capacity() {
                let index = EntryIndex::new(self.entries.len());
                self.entries.push(Entry::Free { next_free: None });
                Some(index)
            } else {
                None
            }
        })
    }

    /// Allocate a `T` value within this slab, allocating additional underlying
    /// storage if there is no available capacity.
    ///
    /// # Panics
    ///
    /// Panics if allocating this value requires reallocating the underlying
    /// storage, and the new capacity exceeds `Slab::MAX_CAPACITY`.
    #[inline]
    pub fn alloc(&mut self, value: T) -> Id {
        self.try_alloc(value)
            .unwrap_or_else(|value| self.alloc_slow(value))
    }

    /// Get the `Id` that will be returned for the next allocation in this slab.
    #[inline]
    pub fn next_id(&self) -> Id {
        let index = self.free.unwrap_or_else(|| EntryIndex::new(self.len()));
        Id(index)
    }

    #[inline(never)]
    #[cold]
    fn alloc_slow(&mut self, value: T) -> Id {
        // Reserve additional capacity, since we didn't have space for the
        // allocation.
        self.double_capacity();
        // After which the allocation will succeed.
        self.try_alloc(value).ok().unwrap()
    }

    /// Get a shared borrow of the value associated with `id`.
    ///
    /// Returns `None` if the value has since been deallocated.
    ///
    /// If `id` comes from a different `Slab` instance, this method may panic,
    /// return `None`, or return an arbitrary value.
    #[inline]
    pub fn get(&self, id: Id) -> Option<&T> {
        match self
            .entries
            .get(id.0.index())
            .expect("id from different slab")
        {
            Entry::Occupied(x) => Some(x),
            Entry::Free { .. } => None,
        }
    }

    /// Get an exclusive borrow of the value associated with `id`.
    ///
    /// Returns `None` if the value has since been deallocated.
    ///
    /// If `id` comes from a different `Slab` instance, this method may panic,
    /// return `None`, or return an arbitrary value.
    #[inline]
    pub fn get_mut(&mut self, id: Id) -> Option<&mut T> {
        match self
            .entries
            .get_mut(id.0.index())
            .expect("id from different slab")
        {
            Entry::Occupied(x) => Some(x),
            Entry::Free { .. } => None,
        }
    }

    /// Does this slab contain an allocated value for `id`?
    #[inline]
    pub fn contains(&self, id: Id) -> bool {
        match self.entries.get(id.0.index()) {
            Some(Entry::Occupied(_)) => true,
            None | Some(Entry::Free { .. }) => false,
        }
    }

    /// Deallocate the value associated with the given `id`.
    ///
    /// If `id` comes from a different `Slab` instance, this method may panic or
    /// deallocate an arbitrary value.
    #[inline]
    pub fn dealloc(&mut self, id: Id) -> T {
        let entry = std::mem::replace(
            self.entries
                .get_mut(id.0.index())
                .expect("id from a different slab"),
            Entry::Free { next_free: None },
        );
        match entry {
            Entry::Free { .. } => panic!("attempt to deallocate an entry that is already vacant"),
            Entry::Occupied(value) => {
                let next_free = std::mem::replace(&mut self.free, Some(id.0));
                self.entries[id.0.index()] = Entry::Free { next_free };
                self.len -= 1;
                value
            }
        }
    }

    /// Iterate over all values currently allocated within this `Slab`.
    ///
    /// Yields pairs of an `Id` and the `Id`'s associated value.
    ///
    /// Iteration order is undefined.
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item = (Id, &T)> + '_ {
        assert!(self.entries.len() <= Self::MAX_CAPACITY);
        self.entries
            .iter()
            .enumerate()
            .filter_map(|(i, e)| match e {
                Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
                Entry::Free { .. } => None,
            })
    }

    /// Mutably iterate over all values currently allocated within this `Slab`.
    ///
    /// Yields pairs of an `Id` and the `Id`'s associated value.
    ///
    /// Iteration order is undefined.
    #[inline]
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (Id, &mut T)> + '_ {
        assert!(self.entries.len() <= Self::MAX_CAPACITY);
        self.entries
            .iter_mut()
            .enumerate()
            .filter_map(|(i, e)| match e {
                Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
                Entry::Free { .. } => None,
            })
    }

    /// Iterate over and remove all entries in this slab.
    ///
    /// The slab will be empty after calling this method.
    ///
    /// Yields pairs of an `Id` and the `Id`'s associated value.
    ///
    /// Iteration order is undefined.
    #[inline]
    pub fn drain(&mut self) -> impl Iterator<Item = (Id, T)> + '_ {
        assert!(self.entries.len() <= Self::MAX_CAPACITY);
        self.len = 0;
        self.free = None;
        self.entries
            .drain(..)
            .enumerate()
            .filter_map(|(i, e)| match e {
                Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
                Entry::Free { .. } => None,
            })
    }
}