1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
//! A very simple, uniformly-typed slab arena that supports deallocation and
//! reusing deallocated entries' space.
//!
//! The free list of vacant entries in the slab are stored inline in the slab's
//! existing storage.
//!
//! # Example
//!
//! ```
//! use wasmtime_slab::{Id, Slab};
//!
//! let mut slab = Slab::new();
//!
//! // Insert some values into the slab.
//! let rza = slab.alloc("Robert Fitzgerald Diggs");
//! let gza = slab.alloc("Gary Grice");
//! let bill = slab.alloc("Bill Gates");
//!
//! // Alloced elements can be accessed infallibly via indexing (and missing and
//! // deallocated entries will panic).
//! assert_eq!(slab[rza], "Robert Fitzgerald Diggs");
//!
//! // Alternatively, the `get` and `get_mut` methods provide fallible lookup.
//! if let Some(genius) = slab.get(gza) {
//! println!("The gza gza genius: {}", genius);
//! }
//! if let Some(val) = slab.get_mut(bill) {
//! *val = "Bill Gates doesn't belong in this set...";
//! }
//!
//! // We can remove values from the slab.
//! slab.dealloc(bill);
//!
//! // Allocate a new entry.
//! let bill = slab.alloc("Bill Murray");
//! ```
//!
//! # Using `Id`s with the Wrong `Slab`
//!
//! `Slab` does NOT check that `Id`s used to access previously-allocated values
//! came from the current `Slab` instance (as opposed to a different `Slab`
//! instance). Using `Id`s from a different `Slab` is safe, but will yield an
//! unrelated value, if any at all.
//!
//! If you desire checking that an `Id` came from the correct `Slab` instance,
//! it should be easy to layer that functionality on top of this crate by
//! wrapping `Slab` and `Id` in types that additionally maintain a slab instance
//! identifier.
//!
//! # The ABA Problem
//!
//! This `Slab` type does NOT protect against ABA bugs, such as the following
//! sequence:
//!
//! * Value `A` is allocated into the slab, yielding id `i`.
//!
//! * `A` is deallocated, and so `i`'s associated entry is added to the slab's
//! free list.
//!
//! * Value `B` is allocated into the slab, reusing `i`'s associated entry,
//! yielding id `i`.
//!
//! * The "original" id `i` is used to access the arena, expecting the
//! deallocated value `A`, but getting the new value `B`.
//!
//! That is, it does not detect and prevent against the memory-safe version of
//! use-after-free bugs.
//!
//! If you need to protect against ABA bugs, it should be easy to layer that
//! functionality on top of this crate by wrapping `Slab` with something like
//! the following:
//!
//! ```rust
//! pub struct GenerationalId {
//! id: wasmtime_slab::Id,
//! generation: u32,
//! }
//!
//! struct GenerationalEntry<T> {
//! value: T,
//! generation: u32,
//! }
//!
//! pub struct GenerationalSlab<T> {
//! slab: wasmtime_slab::Slab<GenerationalEntry<T>>,
//! generation: u32,
//! }
//!
//! impl<T> GenerationalSlab<T> {
//! pub fn alloc(&mut self, value: T) -> GenerationalId {
//! let generation = self.generation;
//! let id = self.slab.alloc(GenerationalEntry { value, generation });
//! GenerationalId { id, generation }
//! }
//!
//! pub fn get(&self, id: GenerationalId) -> Option<&T> {
//! let entry = self.slab.get(id.id)?;
//!
//! // Check that the entry's generation matches the id's generation,
//! // else we have an ABA bug. (Alternatively, return `None` instead
//! // of panicking.)
//! assert_eq!(id.generation, entry.generation);
//!
//! Some(&entry.value)
//! }
//!
//! pub fn dealloc(&mut self, id: GenerationalId) {
//! // Check that the entry's generation matches the id's generation,
//! // else we have an ABA bug. (Alternatively, silently return on
//! // double-free instead of panicking.)
//! assert_eq!(id.generation, self.slab[id.id].generation);
//!
//! self.slab.dealloc(id.id);
//!
//! // Increment our generation whenever we deallocate so that any new
//! // value placed in this same entry will have a different generation
//! // and we can detect ABA bugs.
//! self.generation += 1;
//! }
//! }
//! ```
#![forbid(unsafe_code)]
#![deny(missing_docs, missing_debug_implementations)]
use std::num::NonZeroU32;
/// An identifier for an allocated value inside a `slab`.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct Id(EntryIndex);
impl std::fmt::Debug for Id {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("Id").field(&self.0.index()).finish()
}
}
impl Id {
/// Get the raw underlying representation of this `Id`.
#[inline]
pub fn into_raw(self) -> u32 {
u32::try_from(self.0.index()).unwrap()
}
/// Construct an `Id` from its raw underlying representation.
///
/// `raw` should be a value that was previously created via
/// `Id::into_raw`. May panic if given arbitrary values.
#[inline]
pub fn from_raw(raw: u32) -> Self {
let raw = usize::try_from(raw).unwrap();
Self(EntryIndex::new(raw))
}
}
/// A simple, uni-typed slab arena.
pub struct Slab<T> {
/// The slab's entries, each is either occupied and holding a `T` or vacant
/// and is a link the free list.
entries: Vec<Entry<T>>,
/// The index of the first free entry in the free list.
free: Option<EntryIndex>,
/// The number of occupied entries is this slab.
len: u32,
}
impl<T> std::fmt::Debug for Slab<T>
where
T: std::fmt::Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
}
enum Entry<T> {
/// An occupied entry holding a `T`.
Occupied(T),
/// A vacant entry.
Free {
/// A link in the slab's free list, pointing to the next free entry, if
/// any.
next_free: Option<EntryIndex>,
},
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
struct EntryIndex(NonZeroU32);
impl EntryIndex {
#[inline]
fn new(index: usize) -> Self {
assert!(index <= Slab::<()>::MAX_CAPACITY);
let x = u32::try_from(index + 1).unwrap();
Self(NonZeroU32::new(x).unwrap())
}
#[inline]
fn index(&self) -> usize {
let index = self.0.get() - 1;
usize::try_from(index).unwrap()
}
}
impl<T> Default for Slab<T> {
#[inline]
fn default() -> Self {
Self {
entries: Vec::default(),
free: None,
len: 0,
}
}
}
impl<T> std::ops::Index<Id> for Slab<T> {
type Output = T;
#[inline]
fn index(&self, id: Id) -> &Self::Output {
self.get(id)
.expect("id from different slab or value was deallocated")
}
}
impl<T> std::ops::IndexMut<Id> for Slab<T> {
#[inline]
fn index_mut(&mut self, id: Id) -> &mut Self::Output {
self.get_mut(id)
.expect("id from different slab or value was deallocated")
}
}
impl<T> Slab<T> {
/// The maximum capacity any `Slab` can have: `u32::MAX - 1`.
pub const MAX_CAPACITY: usize = (u32::MAX - 1) as usize;
/// Construct a new, empty slab.
#[inline]
pub fn new() -> Self {
Slab::default()
}
/// Construct a new, empty slab, pre-reserving space for at least `capacity`
/// elements.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
let mut slab = Self::new();
slab.reserve(capacity);
slab
}
/// Ensure that there is space for at least `additional` elements in this
/// slab.
///
/// # Panics
///
/// Panics if the new capacity exceeds `Self::MAX_CAPACITY`.
pub fn reserve(&mut self, additional: usize) {
let cap = self.capacity();
let len = self.len();
assert!(cap >= len);
if cap - len >= additional {
// Already have `additional` capacity available.
return;
}
self.entries.reserve(additional);
// Maintain the invariant that `i <= MAX_CAPACITY` for all indices `i`
// in `self.entries`.
assert!(self.entries.capacity() <= Self::MAX_CAPACITY);
}
fn double_capacity(&mut self) {
// Double our capacity to amortize the cost of resizing. But make sure
// we add some amount of minimum additional capacity, since doubling
// zero capacity isn't useful.
const MIN_CAPACITY: usize = 16;
let additional = std::cmp::max(self.entries.capacity(), MIN_CAPACITY);
self.reserve(additional);
}
/// What is the capacity of this slab? That is, how many entries can it
/// contain within its current underlying storage?
#[inline]
pub fn capacity(&self) -> usize {
self.entries.capacity()
}
/// How many values are currently allocated within this slab?
#[inline]
pub fn len(&self) -> usize {
usize::try_from(self.len).unwrap()
}
/// Are there zero allocated values within this slab?
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Try to allocate a `T` value within this slab.
///
/// If there is no available capacity, ownership of the given value is
/// returned via `Err(value)`.
#[inline]
pub fn try_alloc(&mut self, value: T) -> Result<Id, T> {
if let Some(index) = self.try_alloc_index() {
let next_free = match self.entries[index.index()] {
Entry::Free { next_free } => next_free,
Entry::Occupied { .. } => unreachable!(),
};
self.free = next_free;
self.entries[index.index()] = Entry::Occupied(value);
self.len += 1;
Ok(Id(index))
} else {
Err(value)
}
}
#[inline]
fn try_alloc_index(&mut self) -> Option<EntryIndex> {
self.free.take().or_else(|| {
if self.entries.len() < self.entries.capacity() {
let index = EntryIndex::new(self.entries.len());
self.entries.push(Entry::Free { next_free: None });
Some(index)
} else {
None
}
})
}
/// Allocate a `T` value within this slab, allocating additional underlying
/// storage if there is no available capacity.
///
/// # Panics
///
/// Panics if allocating this value requires reallocating the underlying
/// storage, and the new capacity exceeds `Slab::MAX_CAPACITY`.
#[inline]
pub fn alloc(&mut self, value: T) -> Id {
self.try_alloc(value)
.unwrap_or_else(|value| self.alloc_slow(value))
}
/// Get the `Id` that will be returned for the next allocation in this slab.
#[inline]
pub fn next_id(&self) -> Id {
let index = self.free.unwrap_or_else(|| EntryIndex::new(self.len()));
Id(index)
}
#[inline(never)]
#[cold]
fn alloc_slow(&mut self, value: T) -> Id {
// Reserve additional capacity, since we didn't have space for the
// allocation.
self.double_capacity();
// After which the allocation will succeed.
self.try_alloc(value).ok().unwrap()
}
/// Get a shared borrow of the value associated with `id`.
///
/// Returns `None` if the value has since been deallocated.
///
/// If `id` comes from a different `Slab` instance, this method may panic,
/// return `None`, or return an arbitrary value.
#[inline]
pub fn get(&self, id: Id) -> Option<&T> {
match self
.entries
.get(id.0.index())
.expect("id from different slab")
{
Entry::Occupied(x) => Some(x),
Entry::Free { .. } => None,
}
}
/// Get an exclusive borrow of the value associated with `id`.
///
/// Returns `None` if the value has since been deallocated.
///
/// If `id` comes from a different `Slab` instance, this method may panic,
/// return `None`, or return an arbitrary value.
#[inline]
pub fn get_mut(&mut self, id: Id) -> Option<&mut T> {
match self
.entries
.get_mut(id.0.index())
.expect("id from different slab")
{
Entry::Occupied(x) => Some(x),
Entry::Free { .. } => None,
}
}
/// Does this slab contain an allocated value for `id`?
#[inline]
pub fn contains(&self, id: Id) -> bool {
match self.entries.get(id.0.index()) {
Some(Entry::Occupied(_)) => true,
None | Some(Entry::Free { .. }) => false,
}
}
/// Deallocate the value associated with the given `id`.
///
/// If `id` comes from a different `Slab` instance, this method may panic or
/// deallocate an arbitrary value.
#[inline]
pub fn dealloc(&mut self, id: Id) -> T {
let entry = std::mem::replace(
self.entries
.get_mut(id.0.index())
.expect("id from a different slab"),
Entry::Free { next_free: None },
);
match entry {
Entry::Free { .. } => panic!("attempt to deallocate an entry that is already vacant"),
Entry::Occupied(value) => {
let next_free = std::mem::replace(&mut self.free, Some(id.0));
self.entries[id.0.index()] = Entry::Free { next_free };
self.len -= 1;
value
}
}
}
/// Iterate over all values currently allocated within this `Slab`.
///
/// Yields pairs of an `Id` and the `Id`'s associated value.
///
/// Iteration order is undefined.
#[inline]
pub fn iter(&self) -> impl Iterator<Item = (Id, &T)> + '_ {
assert!(self.entries.len() <= Self::MAX_CAPACITY);
self.entries
.iter()
.enumerate()
.filter_map(|(i, e)| match e {
Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
Entry::Free { .. } => None,
})
}
/// Mutably iterate over all values currently allocated within this `Slab`.
///
/// Yields pairs of an `Id` and the `Id`'s associated value.
///
/// Iteration order is undefined.
#[inline]
pub fn iter_mut(&mut self) -> impl Iterator<Item = (Id, &mut T)> + '_ {
assert!(self.entries.len() <= Self::MAX_CAPACITY);
self.entries
.iter_mut()
.enumerate()
.filter_map(|(i, e)| match e {
Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
Entry::Free { .. } => None,
})
}
/// Iterate over and remove all entries in this slab.
///
/// The slab will be empty after calling this method.
///
/// Yields pairs of an `Id` and the `Id`'s associated value.
///
/// Iteration order is undefined.
#[inline]
pub fn drain(&mut self) -> impl Iterator<Item = (Id, T)> + '_ {
assert!(self.entries.len() <= Self::MAX_CAPACITY);
self.len = 0;
self.free = None;
self.entries
.drain(..)
.enumerate()
.filter_map(|(i, e)| match e {
Entry::Occupied(x) => Some((Id(EntryIndex::new(i)), x)),
Entry::Free { .. } => None,
})
}
}