1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use std::any::Any;
use std::collections::{BTreeSet, HashMap};
use wasmtime::component::Resource;

#[derive(thiserror::Error, Debug)]
pub enum TableError {
    #[error("table has no free keys")]
    Full,
    #[error("value not present")]
    NotPresent,
    #[error("value is of another type")]
    WrongType,
    #[error("entry still has children")]
    HasChildren,
}

/// The `Table` type is designed to map u32 handles to resources. The table is now part of the
/// public interface to a `WasiCtx` - it is reference counted so that it can be shared beyond a
/// `WasiCtx` with other WASI proposals (e.g. `wasi-crypto` and `wasi-nn`) to manage their
/// resources. Elements in the `Table` are `Any` typed.
///
/// The `Table` type is intended to model how the Interface Types concept of Resources is shaping
/// up. Right now it is just an approximation.
#[derive(Debug)]
pub struct Table {
    map: HashMap<u32, TableEntry>,
    next_key: u32,
}

/// This structure tracks parent and child relationships for a given table entry.
///
/// Parents and children are referred to by table index. We maintain the
/// following invariants to prevent orphans and cycles:
/// * parent can only be assigned on creating the entry.
/// * parent, if some, must exist when creating the entry.
/// * whenever a child is created, its index is added to children.
/// * whenever a child is deleted, its index is removed from children.
/// * an entry with children may not be deleted.
#[derive(Debug)]
struct TableEntry {
    /// The entry in the table, as a boxed dynamically-typed object
    entry: Box<dyn Any + Send + Sync>,
    /// The index of the parent of this entry, if it has one.
    parent: Option<u32>,
    /// The indicies of any children of this entry.
    children: BTreeSet<u32>,
}

impl TableEntry {
    fn new(entry: Box<dyn Any + Send + Sync>, parent: Option<u32>) -> Self {
        Self {
            entry,
            parent,
            children: BTreeSet::new(),
        }
    }
    fn add_child(&mut self, child: u32) {
        debug_assert!(!self.children.contains(&child));
        self.children.insert(child);
    }
    fn remove_child(&mut self, child: u32) {
        let was_removed = self.children.remove(&child);
        debug_assert!(was_removed);
    }
}

impl Table {
    /// Create an empty table
    pub fn new() -> Self {
        Table {
            map: HashMap::new(),
            // 0, 1 and 2 are formerly (preview 1) for stdio. To prevent users from assuming these
            // indicies are still valid ways to access stdio, they are deliberately left empty.
            // Once we have a full implementation of resources, this confusion should hopefully be
            // impossible :)
            next_key: 3,
        }
    }

    /// Inserts a new value `T` into this table, returning a corresponding
    /// `Resource<T>` which can be used to refer to it after it was inserted.
    pub fn push<T>(&mut self, entry: T) -> Result<Resource<T>, TableError>
    where
        T: Send + Sync + 'static,
    {
        let idx = self.push_(TableEntry::new(Box::new(entry), None))?;
        Ok(Resource::new_own(idx))
    }

    fn push_(&mut self, e: TableEntry) -> Result<u32, TableError> {
        // NOTE: The performance of this new key calculation could be very bad once keys wrap
        // around.
        if self.map.len() == u32::MAX as usize {
            return Err(TableError::Full);
        }
        loop {
            let key = self.next_key;
            self.next_key = self.next_key.wrapping_add(1);
            if self.map.contains_key(&key) {
                continue;
            }
            self.map.insert(key, e);
            return Ok(key);
        }
    }

    /// Insert a resource at the next available index, and track that it has a
    /// parent resource.
    ///
    /// The parent must exist to create a child. All children resources must
    /// be destroyed before a parent can be destroyed - otherwise [`Table::delete`]
    /// will fail with [`TableError::HasChildren`].
    ///
    /// Parent-child relationships are tracked inside the table to ensure that
    /// a parent resource is not deleted while it has live children. This
    /// allows child resources to hold "references" to a parent by table
    /// index, to avoid needing e.g. an `Arc<Mutex<parent>>` and the associated
    /// locking overhead and design issues, such as child existence extending
    /// lifetime of parent referent even after parent resource is destroyed,
    /// possibility for deadlocks.
    ///
    /// Parent-child relationships may not be modified once created. There
    /// is no way to observe these relationships through the [`Table`] methods
    /// except for erroring on deletion, or the [`std::fmt::Debug`] impl.
    pub fn push_child<T, U>(
        &mut self,
        entry: T,
        parent: &Resource<U>,
    ) -> Result<Resource<T>, TableError>
    where
        T: Send + Sync + 'static,
        U: 'static,
    {
        let idx = self.push_child_(Box::new(entry), parent.rep())?;
        Ok(Resource::new_own(idx))
    }

    fn push_child_(
        &mut self,
        entry: Box<dyn Any + Send + Sync>,
        parent: u32,
    ) -> Result<u32, TableError> {
        if !self.map.contains_key(&parent) {
            return Err(TableError::NotPresent);
        }
        let child = self.push_(TableEntry::new(entry, Some(parent)))?;
        self.map
            .get_mut(&parent)
            .expect("parent existence assured above")
            .add_child(child);
        Ok(child)
    }

    /// Get an immutable reference to a resource of a given type at a given
    /// index.
    ///
    /// Multiple shared references can be borrowed at any given time.
    pub fn get<T: Any + Sized>(&self, key: &Resource<T>) -> Result<&T, TableError> {
        self.get_(key.rep())?
            .downcast_ref()
            .ok_or(TableError::WrongType)
    }

    fn get_(&self, key: u32) -> Result<&dyn Any, TableError> {
        let r = self.map.get(&key).ok_or(TableError::NotPresent)?;
        Ok(&*r.entry)
    }

    /// Get an mutable reference to a resource of a given type at a given
    /// index.
    pub fn get_mut<T: Any + Sized>(&mut self, key: &Resource<T>) -> Result<&mut T, TableError> {
        self.get_any_mut(key.rep())?
            .downcast_mut()
            .ok_or(TableError::WrongType)
    }

    /// Returns the raw `Any` at the `key` index provided.
    pub fn get_any_mut(&mut self, key: u32) -> Result<&mut dyn Any, TableError> {
        let r = self.map.get_mut(&key).ok_or(TableError::NotPresent)?;
        Ok(&mut *r.entry)
    }

    /// Same as `delete`, but typed
    pub fn delete<T>(&mut self, resource: Resource<T>) -> Result<T, TableError>
    where
        T: Any,
    {
        debug_assert!(resource.owned());
        let entry = self.delete_entry(resource.rep())?;
        match entry.entry.downcast() {
            Ok(t) => Ok(*t),
            Err(_e) => Err(TableError::WrongType),
        }
    }

    fn delete_entry(&mut self, key: u32) -> Result<TableEntry, TableError> {
        if !self
            .map
            .get(&key)
            .ok_or(TableError::NotPresent)?
            .children
            .is_empty()
        {
            return Err(TableError::HasChildren);
        }
        let e = self.map.remove(&key).unwrap();
        if let Some(parent) = e.parent {
            // Remove deleted resource from parent's child list.
            // Parent must still be present because it cant be deleted while still having
            // children:
            self.map
                .get_mut(&parent)
                .expect("missing parent")
                .remove_child(key);
        }
        Ok(e)
    }

    /// Zip the values of the map with mutable references to table entries corresponding to each
    /// key. As the keys in the [HashMap] are unique, this iterator can give mutable references
    /// with the same lifetime as the mutable reference to the [Table].
    pub fn iter_entries<'a, T>(
        &'a mut self,
        map: HashMap<u32, T>,
    ) -> impl Iterator<Item = (Result<&'a mut dyn Any, TableError>, T)> {
        map.into_iter().map(move |(k, v)| {
            let item = self
                .map
                .get_mut(&k)
                .map(|e| Box::as_mut(&mut e.entry))
                // Safety: extending the lifetime of the mutable reference.
                .map(|item| unsafe { &mut *(item as *mut dyn Any) })
                .ok_or(TableError::NotPresent);
            (item, v)
        })
    }

    /// Iterate over all children belonging to the provided parent
    pub fn iter_children<T>(
        &self,
        parent: &Resource<T>,
    ) -> Result<impl Iterator<Item = &(dyn Any + Send + Sync)>, TableError>
    where
        T: 'static,
    {
        let parent_entry = self.map.get(&parent.rep()).ok_or(TableError::NotPresent)?;
        Ok(parent_entry.children.iter().map(|child_index| {
            let child = self.map.get(child_index).expect("missing child");
            child.entry.as_ref()
        }))
    }
}

impl Default for Table {
    fn default() -> Self {
        Table::new()
    }
}