1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
use super::network::SocketAddressFamily;
use super::{HostInputStream, HostOutputStream, StreamError};
use crate::preview2::host::network::util;
use crate::preview2::{
with_ambient_tokio_runtime, AbortOnDropJoinHandle, InputStream, OutputStream, Subscribe,
};
use anyhow::{Error, Result};
use cap_net_ext::{AddressFamily, Blocking};
use io_lifetimes::raw::{FromRawSocketlike, IntoRawSocketlike};
use rustix::net::sockopt;
use std::io;
use std::mem;
use std::sync::Arc;
use tokio::io::Interest;
/// The state of a TCP socket.
///
/// This represents the various states a socket can be in during the
/// activities of binding, listening, accepting, and connecting.
pub(crate) enum TcpState {
/// The initial state for a newly-created socket.
Default,
/// Binding started via `start_bind`.
BindStarted,
/// Binding finished via `finish_bind`. The socket has an address but
/// is not yet listening for connections.
Bound,
/// Listening started via `listen_start`.
ListenStarted,
/// The socket is now listening and waiting for an incoming connection.
Listening,
/// An outgoing connection is started via `start_connect`.
Connecting,
/// An outgoing connection is ready to be established.
ConnectReady,
/// An outgoing connection was attempted but failed.
ConnectFailed,
/// An outgoing connection has been established.
Connected,
}
/// A host TCP socket, plus associated bookkeeping.
///
/// The inner state is wrapped in an Arc because the same underlying socket is
/// used for implementing the stream types.
pub struct TcpSocket {
/// The part of a `TcpSocket` which is reference-counted so that we
/// can pass it to async tasks.
pub(crate) inner: Arc<tokio::net::TcpStream>,
/// The current state in the bind/listen/accept/connect progression.
pub(crate) tcp_state: TcpState,
/// The desired listen queue size. Set to None to use the system's default.
pub(crate) listen_backlog_size: Option<i32>,
pub(crate) family: SocketAddressFamily,
// The socket options below are not automatically inherited from the listener
// on all platforms. So we keep track of which options have been explicitly
// set and manually apply those values to newly accepted clients.
#[cfg(target_os = "macos")]
pub(crate) receive_buffer_size: Option<usize>,
#[cfg(target_os = "macos")]
pub(crate) send_buffer_size: Option<usize>,
#[cfg(target_os = "macos")]
pub(crate) hop_limit: Option<u8>,
#[cfg(target_os = "macos")]
pub(crate) keep_alive_idle_time: Option<std::time::Duration>,
}
pub(crate) struct TcpReadStream {
stream: Arc<tokio::net::TcpStream>,
closed: bool,
}
impl TcpReadStream {
fn new(stream: Arc<tokio::net::TcpStream>) -> Self {
Self {
stream,
closed: false,
}
}
}
#[async_trait::async_trait]
impl HostInputStream for TcpReadStream {
fn read(&mut self, size: usize) -> Result<bytes::Bytes, StreamError> {
if self.closed {
return Err(StreamError::Closed);
}
if size == 0 {
return Ok(bytes::Bytes::new());
}
let mut buf = bytes::BytesMut::with_capacity(size);
let n = match self.stream.try_read_buf(&mut buf) {
// A 0-byte read indicates that the stream has closed.
Ok(0) => {
self.closed = true;
0
}
Ok(n) => n,
// Failing with `EWOULDBLOCK` is how we differentiate between a closed channel and no
// data to read right now.
Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => 0,
Err(e) => {
self.closed = true;
return Err(StreamError::LastOperationFailed(e.into()));
}
};
buf.truncate(n);
Ok(buf.freeze())
}
}
#[async_trait::async_trait]
impl Subscribe for TcpReadStream {
async fn ready(&mut self) {
if self.closed {
return;
}
self.stream.readable().await.unwrap();
}
}
const SOCKET_READY_SIZE: usize = 1024 * 1024 * 1024;
pub(crate) struct TcpWriteStream {
stream: Arc<tokio::net::TcpStream>,
last_write: LastWrite,
}
enum LastWrite {
Waiting(AbortOnDropJoinHandle<Result<()>>),
Error(Error),
Done,
}
impl TcpWriteStream {
pub(crate) fn new(stream: Arc<tokio::net::TcpStream>) -> Self {
Self {
stream,
last_write: LastWrite::Done,
}
}
/// Write `bytes` in a background task, remembering the task handle for use in a future call to
/// `write_ready`
fn background_write(&mut self, mut bytes: bytes::Bytes) {
assert!(matches!(self.last_write, LastWrite::Done));
let stream = self.stream.clone();
self.last_write = LastWrite::Waiting(crate::preview2::spawn(async move {
// Note: we are not using the AsyncWrite impl here, and instead using the TcpStream
// primitive try_write, which goes directly to attempt a write with mio. This has
// two advantages: 1. this operation takes a &TcpStream instead of a &mut TcpStream
// required to AsyncWrite, and 2. it eliminates any buffering in tokio we may need
// to flush.
while !bytes.is_empty() {
stream.writable().await?;
match stream.try_write(&bytes) {
Ok(n) => {
let _ = bytes.split_to(n);
}
Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => continue,
Err(e) => return Err(e.into()),
}
}
Ok(())
}));
}
}
impl HostOutputStream for TcpWriteStream {
fn write(&mut self, mut bytes: bytes::Bytes) -> Result<(), StreamError> {
match self.last_write {
LastWrite::Done => {}
LastWrite::Waiting(_) | LastWrite::Error(_) => {
return Err(StreamError::Trap(anyhow::anyhow!(
"unpermitted: must call check_write first"
)));
}
}
while !bytes.is_empty() {
match self.stream.try_write(&bytes) {
Ok(n) => {
let _ = bytes.split_to(n);
}
Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => {
// As `try_write` indicated that it would have blocked, we'll perform the write
// in the background to allow us to return immediately.
self.background_write(bytes);
return Ok(());
}
Err(e) => return Err(StreamError::LastOperationFailed(e.into())),
}
}
Ok(())
}
fn flush(&mut self) -> Result<(), StreamError> {
// `flush` is a no-op here, as we're not managing any internal buffer. Additionally,
// `write_ready` will join the background write task if it's active, so following `flush`
// with `write_ready` will have the desired effect.
Ok(())
}
fn check_write(&mut self) -> Result<usize, StreamError> {
match mem::replace(&mut self.last_write, LastWrite::Done) {
LastWrite::Waiting(task) => {
self.last_write = LastWrite::Waiting(task);
return Ok(0);
}
LastWrite::Done => {}
LastWrite::Error(e) => return Err(StreamError::LastOperationFailed(e.into())),
}
let writable = self.stream.writable();
futures::pin_mut!(writable);
if super::poll_noop(writable).is_none() {
return Ok(0);
}
Ok(SOCKET_READY_SIZE)
}
}
#[async_trait::async_trait]
impl Subscribe for TcpWriteStream {
async fn ready(&mut self) {
if let LastWrite::Waiting(task) = &mut self.last_write {
self.last_write = match task.await {
Ok(()) => LastWrite::Done,
Err(e) => LastWrite::Error(e),
};
}
if let LastWrite::Done = self.last_write {
self.stream.writable().await.unwrap();
}
}
}
impl TcpSocket {
/// Create a new socket in the given family.
pub fn new(family: AddressFamily) -> io::Result<Self> {
// Create a new host socket and set it to non-blocking, which is needed
// by our async implementation.
let fd = util::tcp_socket(family, Blocking::No)?;
let socket_address_family = match family {
AddressFamily::Ipv4 => SocketAddressFamily::Ipv4,
AddressFamily::Ipv6 => {
sockopt::set_ipv6_v6only(&fd, true)?;
SocketAddressFamily::Ipv6
}
};
Self::from_fd(fd, socket_address_family)
}
/// Create a `TcpSocket` from an existing socket.
///
/// The socket must be in non-blocking mode.
pub(crate) fn from_fd(
fd: rustix::fd::OwnedFd,
family: SocketAddressFamily,
) -> io::Result<Self> {
let stream = Self::setup_tokio_tcp_stream(fd)?;
Ok(Self {
inner: Arc::new(stream),
tcp_state: TcpState::Default,
listen_backlog_size: None,
family,
#[cfg(target_os = "macos")]
receive_buffer_size: None,
#[cfg(target_os = "macos")]
send_buffer_size: None,
#[cfg(target_os = "macos")]
hop_limit: None,
#[cfg(target_os = "macos")]
keep_alive_idle_time: None,
})
}
fn setup_tokio_tcp_stream(fd: rustix::fd::OwnedFd) -> io::Result<tokio::net::TcpStream> {
let std_stream =
unsafe { std::net::TcpStream::from_raw_socketlike(fd.into_raw_socketlike()) };
with_ambient_tokio_runtime(|| tokio::net::TcpStream::try_from(std_stream))
}
pub fn tcp_socket(&self) -> &tokio::net::TcpStream {
&self.inner
}
/// Create the input/output stream pair for a tcp socket.
pub fn as_split(&self) -> (InputStream, OutputStream) {
let input = Box::new(TcpReadStream::new(self.inner.clone()));
let output = Box::new(TcpWriteStream::new(self.inner.clone()));
(InputStream::Host(input), output)
}
}
#[async_trait::async_trait]
impl Subscribe for TcpSocket {
async fn ready(&mut self) {
// Some states are ready immediately.
match self.tcp_state {
TcpState::BindStarted | TcpState::ListenStarted | TcpState::ConnectReady => return,
_ => {}
}
// FIXME: Add `Interest::ERROR` when we update to tokio 1.32.
self.inner
.ready(Interest::READABLE | Interest::WRITABLE)
.await
.unwrap();
}
}