1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
//! Virtual pipes.
//!
//! These types provide easy implementations of `WasiFile` that mimic much of the behavior of Unix
//! pipes. These are particularly helpful for redirecting WASI stdio handles to destinations other
//! than OS files.
//!
//! Some convenience constructors are included for common backing types like `Vec<u8>` and `String`,
//! but the virtual pipes can be instantiated with any `Read` or `Write` type.
//!
use crate::poll::Subscribe;
use crate::{HostInputStream, HostOutputStream, StreamError};
use anyhow::anyhow;
use bytes::Bytes;
use std::sync::{Arc, Mutex};
use tokio::sync::mpsc;
pub use crate::write_stream::AsyncWriteStream;
#[derive(Debug, Clone)]
pub struct MemoryInputPipe {
buffer: Arc<Mutex<Bytes>>,
}
impl MemoryInputPipe {
pub fn new(bytes: impl Into<Bytes>) -> Self {
Self {
buffer: Arc::new(Mutex::new(bytes.into())),
}
}
pub fn is_empty(&self) -> bool {
self.buffer.lock().unwrap().is_empty()
}
}
#[async_trait::async_trait]
impl HostInputStream for MemoryInputPipe {
fn read(&mut self, size: usize) -> Result<Bytes, StreamError> {
let mut buffer = self.buffer.lock().unwrap();
if buffer.is_empty() {
return Err(StreamError::Closed);
}
let size = size.min(buffer.len());
let read = buffer.split_to(size);
Ok(read)
}
}
#[async_trait::async_trait]
impl Subscribe for MemoryInputPipe {
async fn ready(&mut self) {}
}
#[derive(Debug, Clone)]
pub struct MemoryOutputPipe {
capacity: usize,
buffer: Arc<Mutex<bytes::BytesMut>>,
}
impl MemoryOutputPipe {
pub fn new(capacity: usize) -> Self {
MemoryOutputPipe {
capacity,
buffer: std::sync::Arc::new(std::sync::Mutex::new(bytes::BytesMut::new())),
}
}
pub fn contents(&self) -> bytes::Bytes {
self.buffer.lock().unwrap().clone().freeze()
}
pub fn try_into_inner(self) -> Option<bytes::BytesMut> {
std::sync::Arc::into_inner(self.buffer).map(|m| m.into_inner().unwrap())
}
}
impl HostOutputStream for MemoryOutputPipe {
fn write(&mut self, bytes: Bytes) -> Result<(), StreamError> {
let mut buf = self.buffer.lock().unwrap();
if bytes.len() > self.capacity - buf.len() {
return Err(StreamError::Trap(anyhow!(
"write beyond capacity of MemoryOutputPipe"
)));
}
buf.extend_from_slice(bytes.as_ref());
// Always ready for writing
Ok(())
}
fn flush(&mut self) -> Result<(), StreamError> {
// This stream is always flushed
Ok(())
}
fn check_write(&mut self) -> Result<usize, StreamError> {
let consumed = self.buffer.lock().unwrap().len();
if consumed < self.capacity {
Ok(self.capacity - consumed)
} else {
// Since the buffer is full, no more bytes will ever be written
Err(StreamError::Closed)
}
}
}
#[async_trait::async_trait]
impl Subscribe for MemoryOutputPipe {
async fn ready(&mut self) {}
}
/// Provides a [`HostInputStream`] impl from a [`tokio::io::AsyncRead`] impl
pub struct AsyncReadStream {
closed: bool,
buffer: Option<Result<Bytes, StreamError>>,
receiver: mpsc::Receiver<Result<Bytes, StreamError>>,
_join_handle: crate::runtime::AbortOnDropJoinHandle<()>,
}
impl AsyncReadStream {
/// Create a [`AsyncReadStream`]. In order to use the [`HostInputStream`] impl
/// provided by this struct, the argument must impl [`tokio::io::AsyncRead`].
pub fn new<T: tokio::io::AsyncRead + Send + Unpin + 'static>(mut reader: T) -> Self {
let (sender, receiver) = mpsc::channel(1);
let join_handle = crate::runtime::spawn(async move {
loop {
use tokio::io::AsyncReadExt;
let mut buf = bytes::BytesMut::with_capacity(4096);
let sent = match reader.read_buf(&mut buf).await {
Ok(nbytes) if nbytes == 0 => sender.send(Err(StreamError::Closed)).await,
Ok(_) => sender.send(Ok(buf.freeze())).await,
Err(e) => {
sender
.send(Err(StreamError::LastOperationFailed(e.into())))
.await
}
};
if sent.is_err() {
// no more receiver - stop trying to read
break;
}
}
});
AsyncReadStream {
closed: false,
buffer: None,
receiver,
_join_handle: join_handle,
}
}
}
#[async_trait::async_trait]
impl HostInputStream for AsyncReadStream {
fn read(&mut self, size: usize) -> Result<Bytes, StreamError> {
use mpsc::error::TryRecvError;
match self.buffer.take() {
Some(Ok(mut bytes)) => {
// TODO: de-duplicate the buffer management with the case below
let len = bytes.len().min(size);
let rest = bytes.split_off(len);
if !rest.is_empty() {
self.buffer = Some(Ok(rest));
}
return Ok(bytes);
}
Some(Err(e)) => {
self.closed = true;
return Err(e);
}
None => {}
}
match self.receiver.try_recv() {
Ok(Ok(mut bytes)) => {
let len = bytes.len().min(size);
let rest = bytes.split_off(len);
if !rest.is_empty() {
self.buffer = Some(Ok(rest));
}
Ok(bytes)
}
Ok(Err(e)) => {
self.closed = true;
Err(e)
}
Err(TryRecvError::Empty) => Ok(Bytes::new()),
Err(TryRecvError::Disconnected) => Err(StreamError::Trap(anyhow!(
"AsyncReadStream sender died - should be impossible"
))),
}
}
}
#[async_trait::async_trait]
impl Subscribe for AsyncReadStream {
async fn ready(&mut self) {
if self.buffer.is_some() || self.closed {
return;
}
match self.receiver.recv().await {
Some(res) => self.buffer = Some(res),
None => {
panic!("no more sender for an open AsyncReadStream - should be impossible")
}
}
}
}
/// An output stream that consumes all input written to it, and is always ready.
#[derive(Copy, Clone)]
pub struct SinkOutputStream;
impl HostOutputStream for SinkOutputStream {
fn write(&mut self, _buf: Bytes) -> Result<(), StreamError> {
Ok(())
}
fn flush(&mut self) -> Result<(), StreamError> {
// This stream is always flushed
Ok(())
}
fn check_write(&mut self) -> Result<usize, StreamError> {
// This stream is always ready for writing.
Ok(usize::MAX)
}
}
#[async_trait::async_trait]
impl Subscribe for SinkOutputStream {
async fn ready(&mut self) {}
}
/// A stream that is ready immediately, but will always report that it's closed.
#[derive(Copy, Clone)]
pub struct ClosedInputStream;
#[async_trait::async_trait]
impl HostInputStream for ClosedInputStream {
fn read(&mut self, _size: usize) -> Result<Bytes, StreamError> {
Err(StreamError::Closed)
}
}
#[async_trait::async_trait]
impl Subscribe for ClosedInputStream {
async fn ready(&mut self) {}
}
/// An output stream that is always closed.
#[derive(Copy, Clone)]
pub struct ClosedOutputStream;
impl HostOutputStream for ClosedOutputStream {
fn write(&mut self, _: Bytes) -> Result<(), StreamError> {
Err(StreamError::Closed)
}
fn flush(&mut self) -> Result<(), StreamError> {
Err(StreamError::Closed)
}
fn check_write(&mut self) -> Result<usize, StreamError> {
Err(StreamError::Closed)
}
}
#[async_trait::async_trait]
impl Subscribe for ClosedOutputStream {
async fn ready(&mut self) {}
}
#[cfg(test)]
mod test {
use super::*;
use std::time::Duration;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};
// This is a gross way to handle CI running under qemu for non-x86 architectures.
#[cfg(not(target_arch = "x86_64"))]
const TEST_ITERATIONS: usize = 10;
#[cfg(target_arch = "x86_64")]
const TEST_ITERATIONS: usize = 100;
async fn resolves_immediately<F, O>(fut: F) -> O
where
F: futures::Future<Output = O>,
{
// The input `fut` should resolve immediately, but in case it
// accidentally doesn't don't hang the test indefinitely. Provide a
// generous timeout to account for CI sensitivity and various systems.
tokio::time::timeout(Duration::from_secs(2), fut)
.await
.expect("operation timed out")
}
async fn never_resolves<F: futures::Future>(fut: F) {
// The input `fut` should never resolve, so only give it a small window
// of budget before we time out. If `fut` is actually resolved this
// should show up as a flaky test.
tokio::time::timeout(Duration::from_millis(10), fut)
.await
.err()
.expect("operation should time out");
}
pub fn simplex(size: usize) -> (impl AsyncRead, impl AsyncWrite) {
let (a, b) = tokio::io::duplex(size);
let (_read_half, write_half) = tokio::io::split(a);
let (read_half, _write_half) = tokio::io::split(b);
(read_half, write_half)
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn empty_read_stream() {
let mut reader = AsyncReadStream::new(tokio::io::empty());
// In a multi-threaded context, the value of state is not deterministic -- the spawned
// reader task may run on a different thread.
match reader.read(10) {
// The reader task ran before we tried to read, and noticed that the input was empty.
Err(StreamError::Closed) => {}
// The reader task hasn't run yet. Call `ready` to await and fill the buffer.
Ok(bs) => {
assert!(bs.is_empty());
resolves_immediately(reader.ready()).await;
assert!(matches!(reader.read(0), Err(StreamError::Closed)));
}
res => panic!("unexpected: {res:?}"),
}
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn infinite_read_stream() {
let mut reader = AsyncReadStream::new(tokio::io::repeat(0));
let bs = reader.read(10).unwrap();
if bs.is_empty() {
// Reader task hasn't run yet. Call `ready` to await and fill the buffer.
resolves_immediately(reader.ready()).await;
// Now a read should succeed
let bs = reader.read(10).unwrap();
assert_eq!(bs.len(), 10);
} else {
assert_eq!(bs.len(), 10);
}
// Subsequent reads should succeed
let bs = reader.read(10).unwrap();
assert_eq!(bs.len(), 10);
// Even 0-length reads should succeed and show its open
let bs = reader.read(0).unwrap();
assert_eq!(bs.len(), 0);
}
async fn finite_async_reader(contents: &[u8]) -> impl AsyncRead + Send + 'static {
let (r, mut w) = simplex(contents.len());
w.write_all(contents).await.unwrap();
r
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn finite_read_stream() {
let mut reader = AsyncReadStream::new(finite_async_reader(&[1; 123]).await);
let bs = reader.read(123).unwrap();
if bs.is_empty() {
// Reader task hasn't run yet. Call `ready` to await and fill the buffer.
resolves_immediately(reader.ready()).await;
// Now a read should succeed
let bs = reader.read(123).unwrap();
assert_eq!(bs.len(), 123);
} else {
assert_eq!(bs.len(), 123);
}
// The AsyncRead's should be empty now, but we have a race where the reader task hasn't
// yet send that to the AsyncReadStream.
match reader.read(0) {
Err(StreamError::Closed) => {} // Correct!
Ok(bs) => {
assert!(bs.is_empty());
// Need to await to give this side time to catch up
resolves_immediately(reader.ready()).await;
// Now a read should show closed
assert!(matches!(reader.read(0), Err(StreamError::Closed)));
}
res => panic!("unexpected: {res:?}"),
}
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
// Test that you can write items into the stream, and they get read out in the order they were
// written, with the proper indications of readiness for reading:
async fn multiple_chunks_read_stream() {
let (r, mut w) = simplex(1024);
let mut reader = AsyncReadStream::new(r);
w.write_all(&[123]).await.unwrap();
let bs = reader.read(1).unwrap();
if bs.is_empty() {
// Reader task hasn't run yet. Call `ready` to await and fill the buffer.
resolves_immediately(reader.ready()).await;
// Now a read should succeed
let bs = reader.read(1).unwrap();
assert_eq!(*bs, [123u8]);
} else {
assert_eq!(*bs, [123u8]);
}
// The stream should be empty and open now:
let bs = reader.read(1).unwrap();
assert!(bs.is_empty());
// We can wait on readiness and it will time out:
never_resolves(reader.ready()).await;
// Still open and empty:
let bs = reader.read(1).unwrap();
assert!(bs.is_empty());
// Put something else in the stream:
w.write_all(&[45]).await.unwrap();
// Wait readiness (yes we could possibly win the race and read it out faster, leaving that
// out of the test for simplicity)
resolves_immediately(reader.ready()).await;
// read the something else back out:
let bs = reader.read(1).unwrap();
assert_eq!(*bs, [45u8]);
// nothing else in there:
let bs = reader.read(1).unwrap();
assert!(bs.is_empty());
// We can wait on readiness and it will time out:
never_resolves(reader.ready()).await;
// nothing else in there:
let bs = reader.read(1).unwrap();
assert!(bs.is_empty());
// Now close the pipe:
drop(w);
// Wait readiness (yes we could possibly win the race and read it out faster, leaving that
// out of the test for simplicity)
resolves_immediately(reader.ready()).await;
// empty and now closed:
assert!(matches!(reader.read(1), Err(StreamError::Closed)));
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
// At the moment we are restricting AsyncReadStream from buffering more than 4k. This isn't a
// suitable design for all applications, and we will probably make a knob or change the
// behavior at some point, but this test shows the behavior as it is implemented:
async fn backpressure_read_stream() {
let (r, mut w) = simplex(16 * 1024); // Make sure this buffer isnt a bottleneck
let mut reader = AsyncReadStream::new(r);
let writer_task = tokio::task::spawn(async move {
// Write twice as much as we can buffer up in an AsyncReadStream:
w.write_all(&[123; 8192]).await.unwrap();
w
});
resolves_immediately(reader.ready()).await;
// Now we expect the reader task has sent 4k from the stream to the reader.
// Try to read out one bigger than the buffer available:
let bs = reader.read(4097).unwrap();
assert_eq!(bs.len(), 4096);
// Allow the crank to turn more:
resolves_immediately(reader.ready()).await;
// Again we expect the reader task has sent 4k from the stream to the reader.
// Try to read out one bigger than the buffer available:
let bs = reader.read(4097).unwrap();
assert_eq!(bs.len(), 4096);
// The writer task is now finished - join with it:
let w = resolves_immediately(writer_task).await;
// And close the pipe:
drop(w);
// Allow the crank to turn more:
resolves_immediately(reader.ready()).await;
// Now we expect the reader to be empty, and the stream closed:
assert!(matches!(reader.read(4097), Err(StreamError::Closed)));
}
#[test_log::test(test_log::test(tokio::test(flavor = "multi_thread")))]
async fn sink_write_stream() {
let mut writer = AsyncWriteStream::new(2048, tokio::io::sink());
let chunk = Bytes::from_static(&[0; 1024]);
let readiness = resolves_immediately(writer.write_ready())
.await
.expect("write_ready does not trap");
assert_eq!(readiness, 2048);
// I can write whatever:
writer.write(chunk.clone()).expect("write does not error");
// This may consume 1k of the buffer:
let readiness = resolves_immediately(writer.write_ready())
.await
.expect("write_ready does not trap");
assert!(
readiness == 1024 || readiness == 2048,
"readiness should be 1024 or 2048, got {readiness}"
);
if readiness == 1024 {
writer.write(chunk.clone()).expect("write does not error");
let readiness = resolves_immediately(writer.write_ready())
.await
.expect("write_ready does not trap");
assert!(
readiness == 1024 || readiness == 2048,
"readiness should be 1024 or 2048, got {readiness}"
);
}
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn closed_write_stream() {
// Run many times because the test is nondeterministic:
for n in 0..TEST_ITERATIONS {
closed_write_stream_(n).await
}
}
#[tracing::instrument]
async fn closed_write_stream_(n: usize) {
let (reader, writer) = simplex(1);
let mut writer = AsyncWriteStream::new(1024, writer);
// Drop the reader to allow the worker to transition to the closed state eventually.
drop(reader);
// First the api is going to report the last operation failed, then subsequently
// it will be reported as closed. We set this flag once we see LastOperationFailed.
let mut should_be_closed = false;
// Write some data to the stream to ensure we have data that cannot be flushed.
let chunk = Bytes::from_static(&[0; 1]);
writer
.write(chunk.clone())
.expect("first write should succeed");
// The rest of this test should be valid whether or not we check write readiness:
let mut write_ready_res = None;
if n % 2 == 0 {
let r = resolves_immediately(writer.write_ready()).await;
// Check write readiness:
match r {
// worker hasn't processed write yet:
Ok(1023) => {}
// worker reports failure:
Err(StreamError::LastOperationFailed(_)) => {
tracing::debug!("discovered stream failure in first write_ready");
should_be_closed = true;
}
r => panic!("unexpected write_ready: {r:?}"),
}
write_ready_res = Some(r);
}
// When we drop the simplex reader, that causes the simplex writer to return BrokenPipe on
// its write. Now that the buffering crank has turned, our next write will give BrokenPipe.
let flush_res = writer.flush();
match flush_res {
// worker reports failure:
Err(StreamError::LastOperationFailed(_)) => {
tracing::debug!("discovered stream failure trying to flush");
assert!(!should_be_closed);
should_be_closed = true;
}
// Already reported failure, now closed
Err(StreamError::Closed) => {
assert!(
should_be_closed,
"expected a LastOperationFailed before we see Closed. {write_ready_res:?}"
);
}
// Also possible the worker hasnt processed write yet:
Ok(()) => {}
Err(e) => panic!("unexpected flush error: {e:?} {write_ready_res:?}"),
}
// Waiting for the flush to complete should always indicate that the channel has been
// closed.
match resolves_immediately(writer.write_ready()).await {
// worker reports failure:
Err(StreamError::LastOperationFailed(_)) => {
tracing::debug!("discovered stream failure trying to flush");
assert!(!should_be_closed);
}
// Already reported failure, now closed
Err(StreamError::Closed) => {
assert!(should_be_closed);
}
r => {
panic!("stream should be reported closed by the end of write_ready after flush, got {r:?}. {write_ready_res:?} {flush_res:?}")
}
}
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn multiple_chunks_write_stream() {
// Run many times because the test is nondeterministic:
for n in 0..TEST_ITERATIONS {
multiple_chunks_write_stream_aux(n).await
}
}
#[tracing::instrument]
async fn multiple_chunks_write_stream_aux(_: usize) {
use std::ops::Deref;
let (mut reader, writer) = simplex(1024);
let mut writer = AsyncWriteStream::new(1024, writer);
// Write a chunk:
let chunk = Bytes::from_static(&[123; 1]);
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
writer.write(chunk.clone()).expect("write does not trap");
// At this point the message will either be waiting for the worker to process the write, or
// it will be buffered in the simplex channel.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert!(matches!(permit, 1023 | 1024));
let mut read_buf = vec![0; chunk.len()];
let read_len = reader.read_exact(&mut read_buf).await.unwrap();
assert_eq!(read_len, chunk.len());
assert_eq!(read_buf.as_slice(), chunk.deref());
// Write a second, different chunk:
let chunk2 = Bytes::from_static(&[45; 1]);
// We're only guaranteed to see a consistent write budget if we flush.
writer.flush().expect("channel is still alive");
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
writer.write(chunk2.clone()).expect("write does not trap");
// At this point the message will either be waiting for the worker to process the write, or
// it will be buffered in the simplex channel.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert!(matches!(permit, 1023 | 1024));
let mut read2_buf = vec![0; chunk2.len()];
let read2_len = reader.read_exact(&mut read2_buf).await.unwrap();
assert_eq!(read2_len, chunk2.len());
assert_eq!(read2_buf.as_slice(), chunk2.deref());
// We're only guaranteed to see a consistent write budget if we flush.
writer.flush().expect("channel is still alive");
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn backpressure_write_stream() {
// Run many times because the test is nondeterministic:
for n in 0..TEST_ITERATIONS {
backpressure_write_stream_aux(n).await
}
}
#[tracing::instrument]
async fn backpressure_write_stream_aux(_: usize) {
use futures::future::poll_immediate;
// The channel can buffer up to 1k, plus another 1k in the stream, before not
// accepting more input:
let (mut reader, writer) = simplex(1024);
let mut writer = AsyncWriteStream::new(1024, writer);
let chunk = Bytes::from_static(&[0; 1024]);
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
writer.write(chunk.clone()).expect("write succeeds");
// We might still be waiting for the worker to process the message, or the worker may have
// processed it and released all the budget back to us.
let permit = poll_immediate(writer.write_ready()).await;
assert!(matches!(permit, None | Some(Ok(1024))));
// Given a little time, the worker will process the message and release all the budget
// back.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
// Now fill the buffer between here and the writer task. This should always indicate
// back-pressure because now both buffers (simplex and worker) are full.
writer.write(chunk.clone()).expect("write does not trap");
// Try shoving even more down there, and it shouldnt accept more input:
writer
.write(chunk.clone())
.err()
.expect("unpermitted write does trap");
// No amount of waiting will resolve the situation, as nothing is emptying the simplex
// buffer.
never_resolves(writer.write_ready()).await;
// There is 2k buffered between the simplex and worker buffers. I should be able to read
// all of it out:
let mut buf = [0; 2048];
reader.read_exact(&mut buf).await.unwrap();
// and no more:
never_resolves(reader.read(&mut buf)).await;
// Now the backpressure should be cleared, and an additional write should be accepted.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("ready is ok");
assert_eq!(permit, 1024);
// and the write succeeds:
writer.write(chunk.clone()).expect("write does not trap");
}
#[test_log::test(tokio::test(flavor = "multi_thread"))]
async fn backpressure_write_stream_with_flush() {
for n in 0..TEST_ITERATIONS {
backpressure_write_stream_with_flush_aux(n).await;
}
}
async fn backpressure_write_stream_with_flush_aux(_: usize) {
// The channel can buffer up to 1k, plus another 1k in the stream, before not
// accepting more input:
let (mut reader, writer) = simplex(1024);
let mut writer = AsyncWriteStream::new(1024, writer);
let chunk = Bytes::from_static(&[0; 1024]);
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write should be ready");
assert_eq!(permit, 1024);
writer.write(chunk.clone()).expect("write succeeds");
writer.flush().expect("flush succeeds");
// Waiting for write_ready to resolve after a flush should always show that we have the
// full budget available, as the message will have flushed to the simplex channel.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("write_ready succeeds");
assert_eq!(permit, 1024);
// Write enough to fill the simplex buffer:
writer.write(chunk.clone()).expect("write does not trap");
// Writes should be refused until this flush succeeds.
writer.flush().expect("flush succeeds");
// Try shoving even more down there, and it shouldnt accept more input:
writer
.write(chunk.clone())
.err()
.expect("unpermitted write does trap");
// No amount of waiting will resolve the situation, as nothing is emptying the simplex
// buffer.
never_resolves(writer.write_ready()).await;
// There is 2k buffered between the simplex and worker buffers. I should be able to read
// all of it out:
let mut buf = [0; 2048];
reader.read_exact(&mut buf).await.unwrap();
// and no more:
never_resolves(reader.read(&mut buf)).await;
// Now the backpressure should be cleared, and an additional write should be accepted.
let permit = resolves_immediately(writer.write_ready())
.await
.expect("ready is ok");
assert_eq!(permit, 1024);
// and the write succeeds:
writer.write(chunk.clone()).expect("write does not trap");
writer.flush().expect("flush succeeds");
let permit = resolves_immediately(writer.write_ready())
.await
.expect("ready is ok");
assert_eq!(permit, 1024);
}
}