1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
use crate::bindings::cli::{
    stderr, stdin, stdout, terminal_input, terminal_output, terminal_stderr, terminal_stdin,
    terminal_stdout,
};
use crate::bindings::io::streams;
use crate::pipe;
use crate::{HostInputStream, HostOutputStream, StreamError, StreamResult, Subscribe, WasiView};
use bytes::Bytes;
use std::future::Future;
use std::io::IsTerminal;
use std::pin::Pin;
use std::sync::{Arc, Mutex};
use std::task::{Context, Poll};
use wasmtime::component::Resource;

/// A trait used to represent the standard input to a guest program.
///
/// This is used to implement various WASI APIs via the method implementations
/// below.
///
/// Built-in implementations are provided for [`Stdin`],
/// [`pipe::MemoryInputPipe`], and [`pipe::ClosedInputStream`].
pub trait StdinStream: Send {
    /// Creates a fresh stream which is reading stdin.
    ///
    /// Note that the returned stream must share state with all other streams
    /// previously created. Guests may create multiple handles to the same stdin
    /// and they should all be synchronized in their progress through the
    /// program's input.
    ///
    /// Note that this means that if one handle becomes ready for reading they
    /// all become ready for reading. Subsequently if one is read from it may
    /// mean that all the others are no longer ready for reading. This is
    /// basically a consequence of the way the WIT APIs are designed today.
    fn stream(&self) -> Box<dyn HostInputStream>;

    /// Returns whether this stream is backed by a TTY.
    fn isatty(&self) -> bool;
}

impl StdinStream for pipe::MemoryInputPipe {
    fn stream(&self) -> Box<dyn HostInputStream> {
        Box::new(self.clone())
    }

    fn isatty(&self) -> bool {
        false
    }
}

impl StdinStream for pipe::ClosedInputStream {
    fn stream(&self) -> Box<dyn HostInputStream> {
        Box::new(self.clone())
    }

    fn isatty(&self) -> bool {
        false
    }
}

/// An impl of [`StdinStream`] built on top of [`crate::pipe::AsyncReadStream`].
pub struct AsyncStdinStream(Arc<Mutex<crate::pipe::AsyncReadStream>>);

impl AsyncStdinStream {
    pub fn new(s: crate::pipe::AsyncReadStream) -> Self {
        Self(Arc::new(Mutex::new(s)))
    }
}

impl StdinStream for AsyncStdinStream {
    fn stream(&self) -> Box<dyn HostInputStream> {
        Box::new(Self(self.0.clone()))
    }
    fn isatty(&self) -> bool {
        false
    }
}

impl HostInputStream for AsyncStdinStream {
    fn read(&mut self, size: usize) -> Result<bytes::Bytes, crate::StreamError> {
        self.0.lock().unwrap().read(size)
    }
    fn skip(&mut self, size: usize) -> Result<usize, crate::StreamError> {
        self.0.lock().unwrap().skip(size)
    }
}

impl Subscribe for AsyncStdinStream {
    fn ready<'a, 'b>(&'a mut self) -> Pin<Box<dyn Future<Output = ()> + Send + 'b>>
    where
        Self: 'b,
        'a: 'b,
    {
        struct F(AsyncStdinStream);
        impl Future for F {
            type Output = ();
            fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                let mut inner = self.0 .0.lock().unwrap();
                let mut fut = inner.ready();
                fut.as_mut().poll(cx)
            }
        }
        Box::pin(F(Self(self.0.clone())))
    }
}

mod worker_thread_stdin;
pub use self::worker_thread_stdin::{stdin, Stdin};

/// Similar to [`StdinStream`], except for output.
pub trait StdoutStream: Send {
    /// Returns a fresh new stream which can write to this output stream.
    ///
    /// Note that all output streams should output to the same logical source.
    /// This means that it's possible for each independent stream to acquire a
    /// separate "permit" to write and then act on that permit. Note that
    /// additionally at this time once a permit is "acquired" there's no way to
    /// release it, for example you can wait for readiness and then never
    /// actually write in WASI. This means that acquisition of a permit for one
    /// stream cannot discount the size of a permit another stream could
    /// obtain.
    ///
    /// Implementations must be able to handle this
    fn stream(&self) -> Box<dyn HostOutputStream>;

    /// Returns whether this stream is backed by a TTY.
    fn isatty(&self) -> bool;
}

impl StdoutStream for pipe::MemoryOutputPipe {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(self.clone())
    }

    fn isatty(&self) -> bool {
        false
    }
}

impl StdoutStream for pipe::SinkOutputStream {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(self.clone())
    }

    fn isatty(&self) -> bool {
        false
    }
}

impl StdoutStream for pipe::ClosedOutputStream {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(self.clone())
    }

    fn isatty(&self) -> bool {
        false
    }
}

/// This implementation will yield output streams that block on writes, and
/// output directly to a file. If truly async output is required, [`AsyncStdoutStream`]
/// should be used instead.
pub struct OutputFile {
    file: Arc<std::fs::File>,
}

impl OutputFile {
    pub fn new(file: std::fs::File) -> Self {
        Self {
            file: Arc::new(file),
        }
    }
}

impl StdoutStream for OutputFile {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(OutputFileStream {
            file: Arc::clone(&self.file),
        })
    }

    fn isatty(&self) -> bool {
        false
    }
}

struct OutputFileStream {
    file: Arc<std::fs::File>,
}

#[async_trait::async_trait]
impl Subscribe for OutputFileStream {
    async fn ready(&mut self) {}
}

impl HostOutputStream for OutputFileStream {
    fn write(&mut self, bytes: Bytes) -> StreamResult<()> {
        use std::io::Write;
        self.file
            .write_all(&bytes)
            .map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
    }

    fn flush(&mut self) -> StreamResult<()> {
        use std::io::Write;
        self.file
            .flush()
            .map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
    }

    fn check_write(&mut self) -> StreamResult<usize> {
        Ok(1024 * 1024)
    }
}

/// This implementation will yield output streams that block on writes, as they
/// inherit the implementation directly from the rust std library. A different
/// implementation of [`StdoutStream`] will be necessary if truly async output
/// streams are required.
pub struct Stdout;

/// Returns a stream that represents the host's standard out.
///
/// Suitable for passing to
/// [`WasiCtxBuilder::stdout`](crate::WasiCtxBuilder::stdout).
pub fn stdout() -> Stdout {
    Stdout
}

impl StdoutStream for Stdout {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(OutputStream::Stdout)
    }

    fn isatty(&self) -> bool {
        std::io::stdout().is_terminal()
    }
}

/// This implementation will yield output streams that block on writes, as they
/// inherit the implementation directly from the rust std library. A different
/// implementation of [`StdoutStream`] will be necessary if truly async output
/// streams are required.
pub struct Stderr;

/// Returns a stream that represents the host's standard err.
///
/// Suitable for passing to
/// [`WasiCtxBuilder::stderr`](crate::WasiCtxBuilder::stderr).
pub fn stderr() -> Stderr {
    Stderr
}

impl StdoutStream for Stderr {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(OutputStream::Stderr)
    }

    fn isatty(&self) -> bool {
        std::io::stderr().is_terminal()
    }
}

enum OutputStream {
    Stdout,
    Stderr,
}

impl HostOutputStream for OutputStream {
    fn write(&mut self, bytes: Bytes) -> StreamResult<()> {
        use std::io::Write;
        match self {
            OutputStream::Stdout => std::io::stdout().write_all(&bytes),
            OutputStream::Stderr => std::io::stderr().write_all(&bytes),
        }
        .map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
    }

    fn flush(&mut self) -> StreamResult<()> {
        use std::io::Write;
        match self {
            OutputStream::Stdout => std::io::stdout().flush(),
            OutputStream::Stderr => std::io::stderr().flush(),
        }
        .map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
    }

    fn check_write(&mut self) -> StreamResult<usize> {
        Ok(1024 * 1024)
    }
}

#[async_trait::async_trait]
impl Subscribe for OutputStream {
    async fn ready(&mut self) {}
}

/// A wrapper of [`crate::pipe::AsyncWriteStream`] that implements
/// [`StdoutStream`]. Note that the [`HostOutputStream`] impl for this is not
/// correct when used for interleaved async IO.
pub struct AsyncStdoutStream(Arc<Mutex<crate::pipe::AsyncWriteStream>>);

impl AsyncStdoutStream {
    pub fn new(s: crate::pipe::AsyncWriteStream) -> Self {
        Self(Arc::new(Mutex::new(s)))
    }
}

impl StdoutStream for AsyncStdoutStream {
    fn stream(&self) -> Box<dyn HostOutputStream> {
        Box::new(Self(self.0.clone()))
    }
    fn isatty(&self) -> bool {
        false
    }
}

// This implementation is known to be bogus. All check-writes and writes are
// directed at the same underlying stream. The check-write/write protocol does
// require the size returned by a check-write to be accepted by write, even if
// other side-effects happen between those calls, and this implementation
// permits another view (created by StdoutStream::stream()) of the same
// underlying stream to accept a write which will invalidate a prior
// check-write of another view.
// Ultimately, the Std{in,out}Stream::stream() methods exist because many
// different places in a linked component (which may itself contain many
// modules) may need to access stdio without any coordination to keep those
// accesses all using pointing to the same resource. So, we allow many
// resources to be created. We have the reasonable expectation that programs
// won't attempt to interleave async IO from these disparate uses of stdio.
// If that expectation doesn't turn out to be true, and you find yourself at
// this comment to correct it: sorry about that.
impl HostOutputStream for AsyncStdoutStream {
    fn check_write(&mut self) -> Result<usize, StreamError> {
        self.0.lock().unwrap().check_write()
    }
    fn write(&mut self, bytes: Bytes) -> Result<(), StreamError> {
        self.0.lock().unwrap().write(bytes)
    }
    fn flush(&mut self) -> Result<(), StreamError> {
        self.0.lock().unwrap().flush()
    }
}

impl Subscribe for AsyncStdoutStream {
    fn ready<'a, 'b>(&'a mut self) -> Pin<Box<dyn Future<Output = ()> + Send + 'b>>
    where
        Self: 'b,
        'a: 'b,
    {
        struct F(AsyncStdoutStream);
        impl Future for F {
            type Output = ();
            fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                let mut inner = self.0 .0.lock().unwrap();
                let mut fut = inner.ready();
                fut.as_mut().poll(cx)
            }
        }
        Box::pin(F(Self(self.0.clone())))
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum IsATTY {
    Yes,
    No,
}

impl<T: WasiView> stdin::Host for T {
    fn get_stdin(&mut self) -> Result<Resource<streams::InputStream>, anyhow::Error> {
        let stream = self.ctx().stdin.stream();
        Ok(self.table().push(streams::InputStream::Host(stream))?)
    }
}

impl<T: WasiView> stdout::Host for T {
    fn get_stdout(&mut self) -> Result<Resource<streams::OutputStream>, anyhow::Error> {
        let stream = self.ctx().stdout.stream();
        Ok(self.table().push(stream)?)
    }
}

impl<T: WasiView> stderr::Host for T {
    fn get_stderr(&mut self) -> Result<Resource<streams::OutputStream>, anyhow::Error> {
        let stream = self.ctx().stderr.stream();
        Ok(self.table().push(stream)?)
    }
}

pub struct TerminalInput;
pub struct TerminalOutput;

impl<T: WasiView> terminal_input::Host for T {}
impl<T: WasiView> terminal_input::HostTerminalInput for T {
    fn drop(&mut self, r: Resource<TerminalInput>) -> anyhow::Result<()> {
        self.table().delete(r)?;
        Ok(())
    }
}
impl<T: WasiView> terminal_output::Host for T {}
impl<T: WasiView> terminal_output::HostTerminalOutput for T {
    fn drop(&mut self, r: Resource<TerminalOutput>) -> anyhow::Result<()> {
        self.table().delete(r)?;
        Ok(())
    }
}
impl<T: WasiView> terminal_stdin::Host for T {
    fn get_terminal_stdin(&mut self) -> anyhow::Result<Option<Resource<TerminalInput>>> {
        if self.ctx().stdin.isatty() {
            let fd = self.table().push(TerminalInput)?;
            Ok(Some(fd))
        } else {
            Ok(None)
        }
    }
}
impl<T: WasiView> terminal_stdout::Host for T {
    fn get_terminal_stdout(&mut self) -> anyhow::Result<Option<Resource<TerminalOutput>>> {
        if self.ctx().stdout.isatty() {
            let fd = self.table().push(TerminalOutput)?;
            Ok(Some(fd))
        } else {
            Ok(None)
        }
    }
}
impl<T: WasiView> terminal_stderr::Host for T {
    fn get_terminal_stderr(&mut self) -> anyhow::Result<Option<Resource<TerminalOutput>>> {
        if self.ctx().stderr.isatty() {
            let fd = self.table().push(TerminalOutput)?;
            Ok(Some(fd))
        } else {
            Ok(None)
        }
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn memory_stdin_stream() {
        // A StdinStream has the property that there are multiple
        // HostInputStreams created, using the stream() method which are each
        // views on the same shared state underneath. Consuming input on one
        // stream results in consuming that input on all streams.
        //
        // The simplest way to measure this is to check if the MemoryInputPipe
        // impl of StdinStream follows this property.

        let pipe = super::pipe::MemoryInputPipe::new(
            "the quick brown fox jumped over the three lazy dogs",
        );

        use super::StdinStream;

        let mut view1 = pipe.stream();
        let mut view2 = pipe.stream();

        let read1 = view1.read(10).expect("read first 10 bytes");
        assert_eq!(read1, "the quick ".as_bytes(), "first 10 bytes");
        let read2 = view2.read(10).expect("read second 10 bytes");
        assert_eq!(read2, "brown fox ".as_bytes(), "second 10 bytes");
        let read3 = view1.read(10).expect("read third 10 bytes");
        assert_eq!(read3, "jumped ove".as_bytes(), "third 10 bytes");
        let read4 = view2.read(10).expect("read fourth 10 bytes");
        assert_eq!(read4, "r the thre".as_bytes(), "fourth 10 bytes");
    }
    #[tokio::test]
    async fn async_stdin_stream() {
        // A StdinStream has the property that there are multiple
        // HostInputStreams created, using the stream() method which are each
        // views on the same shared state underneath. Consuming input on one
        // stream results in consuming that input on all streams.
        //
        // AsyncStdinStream is a slightly more complex impl of StdinStream
        // than the MemoryInputPipe above. We can create an AsyncReadStream
        // from a file on the disk, and an AsyncStdinStream from that common
        // stream, then check that the same property holds as above.

        let dir = tempfile::tempdir().unwrap();
        let mut path = std::path::PathBuf::from(dir.path());
        path.push("file");
        std::fs::write(&path, "the quick brown fox jumped over the three lazy dogs").unwrap();

        let file = tokio::fs::File::open(&path)
            .await
            .expect("open created file");
        let stdin_stream = super::AsyncStdinStream::new(crate::pipe::AsyncReadStream::new(file));

        use super::StdinStream;

        let mut view1 = stdin_stream.stream();
        let mut view2 = stdin_stream.stream();

        view1.ready().await;

        let read1 = view1.read(10).expect("read first 10 bytes");
        assert_eq!(read1, "the quick ".as_bytes(), "first 10 bytes");
        let read2 = view2.read(10).expect("read second 10 bytes");
        assert_eq!(read2, "brown fox ".as_bytes(), "second 10 bytes");
        let read3 = view1.read(10).expect("read third 10 bytes");
        assert_eq!(read3, "jumped ove".as_bytes(), "third 10 bytes");
        let read4 = view2.read(10).expect("read fourth 10 bytes");
        assert_eq!(read4, "r the thre".as_bytes(), "fourth 10 bytes");
    }
}