wasmtime/runtime/module.rs
1use crate::prelude::*;
2#[cfg(feature = "std")]
3use crate::runtime::vm::open_file_for_mmap;
4use crate::runtime::vm::{CompiledModuleId, ModuleMemoryImages, VMWasmCallFunction};
5use crate::sync::OnceLock;
6use crate::{
7 code::CodeObject,
8 code_memory::CodeMemory,
9 instantiate::CompiledModule,
10 resources::ResourcesRequired,
11 type_registry::TypeCollection,
12 types::{ExportType, ExternType, ImportType},
13 Engine,
14};
15use alloc::sync::Arc;
16use core::fmt;
17use core::ops::Range;
18use core::ptr::NonNull;
19#[cfg(feature = "std")]
20use std::{fs::File, path::Path};
21use wasmparser::{Parser, ValidPayload, Validator};
22use wasmtime_environ::{
23 CompiledModuleInfo, EntityIndex, HostPtr, ModuleTypes, ObjectKind, TypeTrace, VMOffsets,
24 VMSharedTypeIndex,
25};
26mod registry;
27
28pub use registry::*;
29
30/// A compiled WebAssembly module, ready to be instantiated.
31///
32/// A `Module` is a compiled in-memory representation of an input WebAssembly
33/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
34/// through an instantiation process. You cannot call functions or fetch
35/// globals, for example, on a `Module` because it's purely a code
36/// representation. Instead you'll need to create an
37/// [`Instance`](crate::Instance) to interact with the wasm module.
38///
39/// A `Module` can be created by compiling WebAssembly code through APIs such as
40/// [`Module::new`]. This would be a JIT-style use case where code is compiled
41/// just before it's used. Alternatively a `Module` can be compiled in one
42/// process and [`Module::serialize`] can be used to save it to storage. A later
43/// call to [`Module::deserialize`] will quickly load the module to execute and
44/// does not need to compile any code, representing a more AOT-style use case.
45///
46/// Currently a `Module` does not implement any form of tiering or dynamic
47/// optimization of compiled code. Creation of a `Module` via [`Module::new`] or
48/// related APIs will perform the entire compilation step synchronously. When
49/// finished no further compilation will happen at runtime or later during
50/// execution of WebAssembly instances for example.
51///
52/// Compilation of WebAssembly by default goes through Cranelift and is
53/// recommended to be done once-per-module. The same WebAssembly binary need not
54/// be compiled multiple times and can instead used an embedder-cached result of
55/// the first call.
56///
57/// `Module` is thread-safe and safe to share across threads.
58///
59/// ## Modules and `Clone`
60///
61/// Using `clone` on a `Module` is a cheap operation. It will not create an
62/// entirely new module, but rather just a new reference to the existing module.
63/// In other words it's a shallow copy, not a deep copy.
64///
65/// ## Examples
66///
67/// There are a number of ways you can create a `Module`, for example pulling
68/// the bytes from a number of locations. One example is loading a module from
69/// the filesystem:
70///
71/// ```no_run
72/// # use wasmtime::*;
73/// # fn main() -> anyhow::Result<()> {
74/// let engine = Engine::default();
75/// let module = Module::from_file(&engine, "path/to/foo.wasm")?;
76/// # Ok(())
77/// # }
78/// ```
79///
80/// You can also load the wasm text format if more convenient too:
81///
82/// ```no_run
83/// # use wasmtime::*;
84/// # fn main() -> anyhow::Result<()> {
85/// let engine = Engine::default();
86/// // Now we're using the WebAssembly text extension: `.wat`!
87/// let module = Module::from_file(&engine, "path/to/foo.wat")?;
88/// # Ok(())
89/// # }
90/// ```
91///
92/// And if you've already got the bytes in-memory you can use the
93/// [`Module::new`] constructor:
94///
95/// ```no_run
96/// # use wasmtime::*;
97/// # fn main() -> anyhow::Result<()> {
98/// let engine = Engine::default();
99/// # let wasm_bytes: Vec<u8> = Vec::new();
100/// let module = Module::new(&engine, &wasm_bytes)?;
101///
102/// // It also works with the text format!
103/// let module = Module::new(&engine, "(module (func))")?;
104/// # Ok(())
105/// # }
106/// ```
107///
108/// Serializing and deserializing a module looks like:
109///
110/// ```no_run
111/// # use wasmtime::*;
112/// # fn main() -> anyhow::Result<()> {
113/// let engine = Engine::default();
114/// # let wasm_bytes: Vec<u8> = Vec::new();
115/// let module = Module::new(&engine, &wasm_bytes)?;
116/// let module_bytes = module.serialize()?;
117///
118/// // ... can save `module_bytes` to disk or other storage ...
119///
120/// // recreate the module from the serialized bytes. For the `unsafe` bits
121/// // see the documentation of `deserialize`.
122/// let module = unsafe { Module::deserialize(&engine, &module_bytes)? };
123/// # Ok(())
124/// # }
125/// ```
126///
127/// [`Config`]: crate::Config
128#[derive(Clone)]
129pub struct Module {
130 inner: Arc<ModuleInner>,
131}
132
133struct ModuleInner {
134 engine: Engine,
135 /// The compiled artifacts for this module that will be instantiated and
136 /// executed.
137 module: CompiledModule,
138
139 /// Runtime information such as the underlying mmap, type information, etc.
140 ///
141 /// Note that this `Arc` is used to share information between compiled
142 /// modules within a component. For bare core wasm modules created with
143 /// `Module::new`, for example, this is a uniquely owned `Arc`.
144 code: Arc<CodeObject>,
145
146 /// A set of initialization images for memories, if any.
147 ///
148 /// Note that this is behind a `OnceCell` to lazily create this image. On
149 /// Linux where `memfd_create` may be used to create the backing memory
150 /// image this is a pretty expensive operation, so by deferring it this
151 /// improves memory usage for modules that are created but may not ever be
152 /// instantiated.
153 memory_images: OnceLock<Option<ModuleMemoryImages>>,
154
155 /// Flag indicating whether this module can be serialized or not.
156 #[cfg(any(feature = "cranelift", feature = "winch"))]
157 serializable: bool,
158
159 /// Runtime offset information for `VMContext`.
160 offsets: VMOffsets<HostPtr>,
161}
162
163impl fmt::Debug for Module {
164 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165 f.debug_struct("Module")
166 .field("name", &self.name())
167 .finish_non_exhaustive()
168 }
169}
170
171impl fmt::Debug for ModuleInner {
172 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
173 f.debug_struct("ModuleInner")
174 .field("name", &self.module.module().name.as_ref())
175 .finish_non_exhaustive()
176 }
177}
178
179impl Module {
180 /// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
181 ///
182 /// The `bytes` provided must be in one of the following formats:
183 ///
184 /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
185 /// * A [text-encoded][text] instance of the WebAssembly text format.
186 /// This is only supported when the `wat` feature of this crate is enabled.
187 /// If this is supplied then the text format will be parsed before validation.
188 /// Note that the `wat` feature is enabled by default.
189 ///
190 /// The data for the wasm module must be loaded in-memory if it's present
191 /// elsewhere, for example on disk. This requires that the entire binary is
192 /// loaded into memory all at once, this API does not support streaming
193 /// compilation of a module.
194 ///
195 /// The WebAssembly binary will be decoded and validated. It will also be
196 /// compiled according to the configuration of the provided `engine`.
197 ///
198 /// # Errors
199 ///
200 /// This function may fail and return an error. Errors may include
201 /// situations such as:
202 ///
203 /// * The binary provided could not be decoded because it's not a valid
204 /// WebAssembly binary
205 /// * The WebAssembly binary may not validate (e.g. contains type errors)
206 /// * Implementation-specific limits were exceeded with a valid binary (for
207 /// example too many locals)
208 /// * The wasm binary may use features that are not enabled in the
209 /// configuration of `engine`
210 /// * If the `wat` feature is enabled and the input is text, then it may be
211 /// rejected if it fails to parse.
212 ///
213 /// The error returned should contain full information about why module
214 /// creation failed if one is returned.
215 ///
216 /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
217 /// [text]: https://webassembly.github.io/spec/core/text/index.html
218 ///
219 /// # Examples
220 ///
221 /// The `new` function can be invoked with a in-memory array of bytes:
222 ///
223 /// ```no_run
224 /// # use wasmtime::*;
225 /// # fn main() -> anyhow::Result<()> {
226 /// # let engine = Engine::default();
227 /// # let wasm_bytes: Vec<u8> = Vec::new();
228 /// let module = Module::new(&engine, &wasm_bytes)?;
229 /// # Ok(())
230 /// # }
231 /// ```
232 ///
233 /// Or you can also pass in a string to be parsed as the wasm text
234 /// format:
235 ///
236 /// ```
237 /// # use wasmtime::*;
238 /// # fn main() -> anyhow::Result<()> {
239 /// # let engine = Engine::default();
240 /// let module = Module::new(&engine, "(module (func))")?;
241 /// # Ok(())
242 /// # }
243 /// ```
244 #[cfg(any(feature = "cranelift", feature = "winch"))]
245 pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
246 crate::CodeBuilder::new(engine)
247 .wasm_binary_or_text(bytes.as_ref(), None)?
248 .compile_module()
249 }
250
251 /// Creates a new WebAssembly `Module` from the contents of the given
252 /// `file` on disk.
253 ///
254 /// This is a convenience function that will read the `file` provided and
255 /// pass the bytes to the [`Module::new`] function. For more information
256 /// see [`Module::new`]
257 ///
258 /// # Examples
259 ///
260 /// ```no_run
261 /// # use wasmtime::*;
262 /// # fn main() -> anyhow::Result<()> {
263 /// let engine = Engine::default();
264 /// let module = Module::from_file(&engine, "./path/to/foo.wasm")?;
265 /// # Ok(())
266 /// # }
267 /// ```
268 ///
269 /// The `.wat` text format is also supported:
270 ///
271 /// ```no_run
272 /// # use wasmtime::*;
273 /// # fn main() -> anyhow::Result<()> {
274 /// # let engine = Engine::default();
275 /// let module = Module::from_file(&engine, "./path/to/foo.wat")?;
276 /// # Ok(())
277 /// # }
278 /// ```
279 #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
280 pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
281 crate::CodeBuilder::new(engine)
282 .wasm_binary_or_text_file(file.as_ref())?
283 .compile_module()
284 }
285
286 /// Creates a new WebAssembly `Module` from the given in-memory `binary`
287 /// data.
288 ///
289 /// This is similar to [`Module::new`] except that it requires that the
290 /// `binary` input is a WebAssembly binary, the text format is not supported
291 /// by this function. It's generally recommended to use [`Module::new`], but
292 /// if it's required to not support the text format this function can be
293 /// used instead.
294 ///
295 /// # Examples
296 ///
297 /// ```
298 /// # use wasmtime::*;
299 /// # fn main() -> anyhow::Result<()> {
300 /// # let engine = Engine::default();
301 /// let wasm = b"\0asm\x01\0\0\0";
302 /// let module = Module::from_binary(&engine, wasm)?;
303 /// # Ok(())
304 /// # }
305 /// ```
306 ///
307 /// Note that the text format is **not** accepted by this function:
308 ///
309 /// ```
310 /// # use wasmtime::*;
311 /// # fn main() -> anyhow::Result<()> {
312 /// # let engine = Engine::default();
313 /// assert!(Module::from_binary(&engine, b"(module)").is_err());
314 /// # Ok(())
315 /// # }
316 /// ```
317 #[cfg(any(feature = "cranelift", feature = "winch"))]
318 pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Module> {
319 crate::CodeBuilder::new(engine)
320 .wasm_binary(binary, None)?
321 .compile_module()
322 }
323
324 /// Creates a new WebAssembly `Module` from the contents of the given `file`
325 /// on disk, but with assumptions that the file is from a trusted source.
326 /// The file should be a binary- or text-format WebAssembly module, or a
327 /// precompiled artifact generated by the same version of Wasmtime.
328 ///
329 /// # Unsafety
330 ///
331 /// All of the reasons that [`deserialize`] is `unsafe` apply to this
332 /// function as well. Arbitrary data loaded from a file may trick Wasmtime
333 /// into arbitrary code execution since the contents of the file are not
334 /// validated to be a valid precompiled module.
335 ///
336 /// [`deserialize`]: Module::deserialize
337 ///
338 /// Additionally though this function is also `unsafe` because the file
339 /// referenced must remain unchanged and a valid precompiled module for the
340 /// entire lifetime of the [`Module`] returned. Any changes to the file on
341 /// disk may change future instantiations of the module to be incorrect.
342 /// This is because the file is mapped into memory and lazily loaded pages
343 /// reflect the current state of the file, not necessarily the original
344 /// state of the file.
345 #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
346 pub unsafe fn from_trusted_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
347 let open_file = open_file_for_mmap(file.as_ref())?;
348 let mmap = crate::runtime::vm::MmapVec::from_file(open_file)?;
349 if &mmap[0..4] == b"\x7fELF" {
350 let code = engine.load_code(mmap, ObjectKind::Module)?;
351 return Module::from_parts(engine, code, None);
352 }
353
354 crate::CodeBuilder::new(engine)
355 .wasm_binary_or_text(&mmap[..], Some(file.as_ref()))?
356 .compile_module()
357 }
358
359 /// Deserializes an in-memory compiled module previously created with
360 /// [`Module::serialize`] or [`Engine::precompile_module`].
361 ///
362 /// This function will deserialize the binary blobs emitted by
363 /// [`Module::serialize`] and [`Engine::precompile_module`] back into an
364 /// in-memory [`Module`] that's ready to be instantiated.
365 ///
366 /// Note that the [`Module::deserialize_file`] method is more optimized than
367 /// this function, so if the serialized module is already present in a file
368 /// it's recommended to use that method instead.
369 ///
370 /// # Unsafety
371 ///
372 /// This function is marked as `unsafe` because if fed invalid input or used
373 /// improperly this could lead to memory safety vulnerabilities. This method
374 /// should not, for example, be exposed to arbitrary user input.
375 ///
376 /// The structure of the binary blob read here is only lightly validated
377 /// internally in `wasmtime`. This is intended to be an efficient
378 /// "rehydration" for a [`Module`] which has very few runtime checks beyond
379 /// deserialization. Arbitrary input could, for example, replace valid
380 /// compiled code with any other valid compiled code, meaning that this can
381 /// trivially be used to execute arbitrary code otherwise.
382 ///
383 /// For these reasons this function is `unsafe`. This function is only
384 /// designed to receive the previous input from [`Module::serialize`] and
385 /// [`Engine::precompile_module`]. If the exact output of those functions
386 /// (unmodified) is passed to this function then calls to this function can
387 /// be considered safe. It is the caller's responsibility to provide the
388 /// guarantee that only previously-serialized bytes are being passed in
389 /// here.
390 ///
391 /// Note that this function is designed to be safe receiving output from
392 /// *any* compiled version of `wasmtime` itself. This means that it is safe
393 /// to feed output from older versions of Wasmtime into this function, in
394 /// addition to newer versions of wasmtime (from the future!). These inputs
395 /// will deterministically and safely produce an `Err`. This function only
396 /// successfully accepts inputs from the same version of `wasmtime`, but the
397 /// safety guarantee only applies to externally-defined blobs of bytes, not
398 /// those defined by any version of wasmtime. (this means that if you cache
399 /// blobs across versions of wasmtime you can be safely guaranteed that
400 /// future versions of wasmtime will reject old cache entries).
401 pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
402 let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Module)?;
403 Module::from_parts(engine, code, None)
404 }
405
406 /// Same as [`deserialize`], except that the contents of `path` are read to
407 /// deserialize into a [`Module`].
408 ///
409 /// This method is provided because it can be faster than [`deserialize`]
410 /// since the data doesn't need to be copied around, but rather the module
411 /// can be used directly from an mmap'd view of the file provided.
412 ///
413 /// [`deserialize`]: Module::deserialize
414 ///
415 /// # Unsafety
416 ///
417 /// All of the reasons that [`deserialize`] is `unsafe` applies to this
418 /// function as well. Arbitrary data loaded from a file may trick Wasmtime
419 /// into arbitrary code execution since the contents of the file are not
420 /// validated to be a valid precompiled module.
421 ///
422 /// Additionally though this function is also `unsafe` because the file
423 /// referenced must remain unchanged and a valid precompiled module for the
424 /// entire lifetime of the [`Module`] returned. Any changes to the file on
425 /// disk may change future instantiations of the module to be incorrect.
426 /// This is because the file is mapped into memory and lazily loaded pages
427 /// reflect the current state of the file, not necessarily the original
428 /// state of the file.
429 #[cfg(feature = "std")]
430 pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Module> {
431 let file = open_file_for_mmap(path.as_ref())?;
432 Self::deserialize_open_file(engine, file)
433 .with_context(|| format!("failed deserialization for: {}", path.as_ref().display()))
434 }
435
436 /// Same as [`deserialize_file`], except that it takes an open `File`
437 /// instead of a path.
438 ///
439 /// This method is provided because it can be used instead of
440 /// [`deserialize_file`] in situations where `wasmtime` is running with
441 /// limited file system permissions. In that case a process
442 /// with file system access can pass already opened files to `wasmtime`.
443 ///
444 /// [`deserialize_file`]: Module::deserialize_file
445 ///
446 /// Note that the corresponding will be mapped as private writeable
447 /// (copy-on-write) and executable. For `windows` this means the file needs
448 /// to be opened with at least `FILE_GENERIC_READ | FILE_GENERIC_EXECUTE`
449 /// [`access_mode`].
450 ///
451 /// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode
452 ///
453 /// # Unsafety
454 ///
455 /// All of the reasons that [`deserialize_file`] is `unsafe` applies to this
456 /// function as well.
457 #[cfg(feature = "std")]
458 pub unsafe fn deserialize_open_file(engine: &Engine, file: File) -> Result<Module> {
459 let code = engine.load_code_file(file, ObjectKind::Module)?;
460 Module::from_parts(engine, code, None)
461 }
462
463 /// Entrypoint for creating a `Module` for all above functions, both
464 /// of the AOT and jit-compiled categories.
465 ///
466 /// In all cases the compilation artifact, `code_memory`, is provided here.
467 /// The `info_and_types` argument is `None` when a module is being
468 /// deserialized from a precompiled artifact or it's `Some` if it was just
469 /// compiled and the values are already available.
470 pub(crate) fn from_parts(
471 engine: &Engine,
472 code_memory: Arc<CodeMemory>,
473 info_and_types: Option<(CompiledModuleInfo, ModuleTypes)>,
474 ) -> Result<Self> {
475 // Acquire this module's metadata and type information, deserializing
476 // it from the provided artifact if it wasn't otherwise provided
477 // already.
478 let (info, types) = match info_and_types {
479 Some((info, types)) => (info, types),
480 None => postcard::from_bytes(code_memory.wasmtime_info())?,
481 };
482
483 // Register function type signatures into the engine for the lifetime
484 // of the `Module` that will be returned. This notably also builds up
485 // maps for trampolines to be used for this module when inserted into
486 // stores.
487 //
488 // Note that the unsafety here should be ok since the `trampolines`
489 // field should only point to valid trampoline function pointers
490 // within the text section.
491 let signatures = TypeCollection::new_for_module(engine, &types);
492
493 // Package up all our data into a `CodeObject` and delegate to the final
494 // step of module compilation.
495 let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
496 Module::from_parts_raw(engine, code, info, true)
497 }
498
499 pub(crate) fn from_parts_raw(
500 engine: &Engine,
501 code: Arc<CodeObject>,
502 info: CompiledModuleInfo,
503 serializable: bool,
504 ) -> Result<Self> {
505 let module =
506 CompiledModule::from_artifacts(code.code_memory().clone(), info, engine.profiler())?;
507
508 // Validate the module can be used with the current instance allocator.
509 let offsets = VMOffsets::new(HostPtr, module.module());
510 engine
511 .allocator()
512 .validate_module(module.module(), &offsets)?;
513
514 let _ = serializable;
515
516 Ok(Self {
517 inner: Arc::new(ModuleInner {
518 engine: engine.clone(),
519 code,
520 memory_images: OnceLock::new(),
521 module,
522 #[cfg(any(feature = "cranelift", feature = "winch"))]
523 serializable,
524 offsets,
525 }),
526 })
527 }
528
529 /// Validates `binary` input data as a WebAssembly binary given the
530 /// configuration in `engine`.
531 ///
532 /// This function will perform a speedy validation of the `binary` input
533 /// WebAssembly module (which is in [binary form][binary], the text format
534 /// is not accepted by this function) and return either `Ok` or `Err`
535 /// depending on the results of validation. The `engine` argument indicates
536 /// configuration for WebAssembly features, for example, which are used to
537 /// indicate what should be valid and what shouldn't be.
538 ///
539 /// Validation automatically happens as part of [`Module::new`].
540 ///
541 /// # Errors
542 ///
543 /// If validation fails for any reason (type check error, usage of a feature
544 /// that wasn't enabled, etc) then an error with a description of the
545 /// validation issue will be returned.
546 ///
547 /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
548 pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> {
549 let mut validator = Validator::new_with_features(engine.features());
550
551 let mut functions = Vec::new();
552 for payload in Parser::new(0).parse_all(binary) {
553 let payload = payload?;
554 if let ValidPayload::Func(a, b) = validator.payload(&payload)? {
555 functions.push((a, b));
556 }
557 if let wasmparser::Payload::Version { encoding, .. } = &payload {
558 if let wasmparser::Encoding::Component = encoding {
559 bail!("component passed to module validation");
560 }
561 }
562 }
563
564 engine.run_maybe_parallel(functions, |(validator, body)| {
565 // FIXME: it would be best here to use a rayon-specific parallel
566 // iterator that maintains state-per-thread to share the function
567 // validator allocations (`Default::default` here) across multiple
568 // functions.
569 validator.into_validator(Default::default()).validate(&body)
570 })?;
571 Ok(())
572 }
573
574 /// Serializes this module to a vector of bytes.
575 ///
576 /// This function is similar to the [`Engine::precompile_module`] method
577 /// where it produces an artifact of Wasmtime which is suitable to later
578 /// pass into [`Module::deserialize`]. If a module is never instantiated
579 /// then it's recommended to use [`Engine::precompile_module`] instead of
580 /// this method, but if a module is both instantiated and serialized then
581 /// this method can be useful to get the serialized version without
582 /// compiling twice.
583 #[cfg(any(feature = "cranelift", feature = "winch"))]
584 pub fn serialize(&self) -> Result<Vec<u8>> {
585 // The current representation of compiled modules within a compiled
586 // component means that it cannot be serialized. The mmap returned here
587 // is the mmap for the entire component and while it contains all
588 // necessary data to deserialize this particular module it's all
589 // embedded within component-specific information.
590 //
591 // It's not the hardest thing in the world to support this but it's
592 // expected that there's not much of a use case at this time. In theory
593 // all that needs to be done is to edit the `.wasmtime.info` section
594 // to contains this module's metadata instead of the metadata for the
595 // whole component. The metadata itself is fairly trivially
596 // recreateable here it's more that there's no easy one-off API for
597 // editing the sections of an ELF object to use here.
598 //
599 // Overall for now this simply always returns an error in this
600 // situation. If you're reading this and feel that the situation should
601 // be different please feel free to open an issue.
602 if !self.inner.serializable {
603 bail!("cannot serialize a module exported from a component");
604 }
605 Ok(self.compiled_module().mmap().to_vec())
606 }
607
608 pub(crate) fn compiled_module(&self) -> &CompiledModule {
609 &self.inner.module
610 }
611
612 pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
613 &self.inner.code
614 }
615
616 pub(crate) fn env_module(&self) -> &Arc<wasmtime_environ::Module> {
617 self.compiled_module().module()
618 }
619
620 pub(crate) fn types(&self) -> &ModuleTypes {
621 self.inner.code.module_types()
622 }
623
624 pub(crate) fn signatures(&self) -> &TypeCollection {
625 self.inner.code.signatures()
626 }
627
628 /// Returns identifier/name that this [`Module`] has. This name
629 /// is used in traps/backtrace details.
630 ///
631 /// Note that most LLVM/clang/Rust-produced modules do not have a name
632 /// associated with them, but other wasm tooling can be used to inject or
633 /// add a name.
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// # use wasmtime::*;
639 /// # fn main() -> anyhow::Result<()> {
640 /// # let engine = Engine::default();
641 /// let module = Module::new(&engine, "(module $foo)")?;
642 /// assert_eq!(module.name(), Some("foo"));
643 ///
644 /// let module = Module::new(&engine, "(module)")?;
645 /// assert_eq!(module.name(), None);
646 ///
647 /// # Ok(())
648 /// # }
649 /// ```
650 pub fn name(&self) -> Option<&str> {
651 self.compiled_module().module().name.as_deref()
652 }
653
654 /// Returns the list of imports that this [`Module`] has and must be
655 /// satisfied.
656 ///
657 /// This function returns the list of imports that the wasm module has, but
658 /// only the types of each import. The type of each import is used to
659 /// typecheck the [`Instance::new`](crate::Instance::new) method's `imports`
660 /// argument. The arguments to that function must match up 1-to-1 with the
661 /// entries in the array returned here.
662 ///
663 /// The imports returned reflect the order of the imports in the wasm module
664 /// itself, and note that no form of deduplication happens.
665 ///
666 /// # Examples
667 ///
668 /// Modules with no imports return an empty list here:
669 ///
670 /// ```
671 /// # use wasmtime::*;
672 /// # fn main() -> anyhow::Result<()> {
673 /// # let engine = Engine::default();
674 /// let module = Module::new(&engine, "(module)")?;
675 /// assert_eq!(module.imports().len(), 0);
676 /// # Ok(())
677 /// # }
678 /// ```
679 ///
680 /// and modules with imports will have a non-empty list:
681 ///
682 /// ```
683 /// # use wasmtime::*;
684 /// # fn main() -> anyhow::Result<()> {
685 /// # let engine = Engine::default();
686 /// let wat = r#"
687 /// (module
688 /// (import "host" "foo" (func))
689 /// )
690 /// "#;
691 /// let module = Module::new(&engine, wat)?;
692 /// assert_eq!(module.imports().len(), 1);
693 /// let import = module.imports().next().unwrap();
694 /// assert_eq!(import.module(), "host");
695 /// assert_eq!(import.name(), "foo");
696 /// match import.ty() {
697 /// ExternType::Func(_) => { /* ... */ }
698 /// _ => panic!("unexpected import type!"),
699 /// }
700 /// # Ok(())
701 /// # }
702 /// ```
703 pub fn imports<'module>(
704 &'module self,
705 ) -> impl ExactSizeIterator<Item = ImportType<'module>> + 'module {
706 let module = self.compiled_module().module();
707 let types = self.types();
708 let engine = self.engine();
709 module
710 .imports()
711 .map(move |(imp_mod, imp_field, mut ty)| {
712 ty.canonicalize_for_runtime_usage(&mut |i| {
713 self.signatures().shared_type(i).unwrap()
714 });
715 ImportType::new(imp_mod, imp_field, ty, types, engine)
716 })
717 .collect::<Vec<_>>()
718 .into_iter()
719 }
720
721 /// Returns the list of exports that this [`Module`] has and will be
722 /// available after instantiation.
723 ///
724 /// This function will return the type of each item that will be returned
725 /// from [`Instance::exports`](crate::Instance::exports). Each entry in this
726 /// list corresponds 1-to-1 with that list, and the entries here will
727 /// indicate the name of the export along with the type of the export.
728 ///
729 /// # Examples
730 ///
731 /// Modules might not have any exports:
732 ///
733 /// ```
734 /// # use wasmtime::*;
735 /// # fn main() -> anyhow::Result<()> {
736 /// # let engine = Engine::default();
737 /// let module = Module::new(&engine, "(module)")?;
738 /// assert!(module.exports().next().is_none());
739 /// # Ok(())
740 /// # }
741 /// ```
742 ///
743 /// When the exports are not empty, you can inspect each export:
744 ///
745 /// ```
746 /// # use wasmtime::*;
747 /// # fn main() -> anyhow::Result<()> {
748 /// # let engine = Engine::default();
749 /// let wat = r#"
750 /// (module
751 /// (func (export "foo"))
752 /// (memory (export "memory") 1)
753 /// )
754 /// "#;
755 /// let module = Module::new(&engine, wat)?;
756 /// assert_eq!(module.exports().len(), 2);
757 ///
758 /// let mut exports = module.exports();
759 /// let foo = exports.next().unwrap();
760 /// assert_eq!(foo.name(), "foo");
761 /// match foo.ty() {
762 /// ExternType::Func(_) => { /* ... */ }
763 /// _ => panic!("unexpected export type!"),
764 /// }
765 ///
766 /// let memory = exports.next().unwrap();
767 /// assert_eq!(memory.name(), "memory");
768 /// match memory.ty() {
769 /// ExternType::Memory(_) => { /* ... */ }
770 /// _ => panic!("unexpected export type!"),
771 /// }
772 /// # Ok(())
773 /// # }
774 /// ```
775 pub fn exports<'module>(
776 &'module self,
777 ) -> impl ExactSizeIterator<Item = ExportType<'module>> + 'module {
778 let module = self.compiled_module().module();
779 let types = self.types();
780 let engine = self.engine();
781 module.exports.iter().map(move |(name, entity_index)| {
782 ExportType::new(name, module.type_of(*entity_index), types, engine)
783 })
784 }
785
786 /// Looks up an export in this [`Module`] by name.
787 ///
788 /// This function will return the type of an export with the given name.
789 ///
790 /// # Examples
791 ///
792 /// There may be no export with that name:
793 ///
794 /// ```
795 /// # use wasmtime::*;
796 /// # fn main() -> anyhow::Result<()> {
797 /// # let engine = Engine::default();
798 /// let module = Module::new(&engine, "(module)")?;
799 /// assert!(module.get_export("foo").is_none());
800 /// # Ok(())
801 /// # }
802 /// ```
803 ///
804 /// When there is an export with that name, it is returned:
805 ///
806 /// ```
807 /// # use wasmtime::*;
808 /// # fn main() -> anyhow::Result<()> {
809 /// # let engine = Engine::default();
810 /// let wat = r#"
811 /// (module
812 /// (func (export "foo"))
813 /// (memory (export "memory") 1)
814 /// )
815 /// "#;
816 /// let module = Module::new(&engine, wat)?;
817 /// let foo = module.get_export("foo");
818 /// assert!(foo.is_some());
819 ///
820 /// let foo = foo.unwrap();
821 /// match foo {
822 /// ExternType::Func(_) => { /* ... */ }
823 /// _ => panic!("unexpected export type!"),
824 /// }
825 ///
826 /// # Ok(())
827 /// # }
828 /// ```
829 pub fn get_export(&self, name: &str) -> Option<ExternType> {
830 let module = self.compiled_module().module();
831 let entity_index = module.exports.get(name)?;
832 Some(ExternType::from_wasmtime(
833 self.engine(),
834 self.types(),
835 &module.type_of(*entity_index),
836 ))
837 }
838
839 /// Looks up an export in this [`Module`] by name to get its index.
840 ///
841 /// This function will return the index of an export with the given name. This can be useful
842 /// to avoid the cost of looking up the export by name multiple times. Instead the
843 /// [`ModuleExport`] can be stored and used to look up the export on the
844 /// [`Instance`](crate::Instance) later.
845 pub fn get_export_index(&self, name: &str) -> Option<ModuleExport> {
846 let compiled_module = self.compiled_module();
847 let module = compiled_module.module();
848 module
849 .exports
850 .get_full(name)
851 .map(|(export_name_index, _, &entity)| ModuleExport {
852 module: self.id(),
853 entity,
854 export_name_index,
855 })
856 }
857
858 /// Returns the [`Engine`] that this [`Module`] was compiled by.
859 pub fn engine(&self) -> &Engine {
860 &self.inner.engine
861 }
862
863 /// Returns a summary of the resources required to instantiate this
864 /// [`Module`].
865 ///
866 /// Potential uses of the returned information:
867 ///
868 /// * Determining whether your pooling allocator configuration supports
869 /// instantiating this module.
870 ///
871 /// * Deciding how many of which `Module` you want to instantiate within a
872 /// fixed amount of resources, e.g. determining whether to create 5
873 /// instances of module X or 10 instances of module Y.
874 ///
875 /// # Example
876 ///
877 /// ```
878 /// # fn main() -> wasmtime::Result<()> {
879 /// use wasmtime::{Config, Engine, Module};
880 ///
881 /// let mut config = Config::new();
882 /// config.wasm_multi_memory(true);
883 /// let engine = Engine::new(&config)?;
884 ///
885 /// let module = Module::new(&engine, r#"
886 /// (module
887 /// ;; Import a memory. Doesn't count towards required resources.
888 /// (import "a" "b" (memory 10))
889 /// ;; Define two local memories. These count towards the required
890 /// ;; resources.
891 /// (memory 1)
892 /// (memory 6)
893 /// )
894 /// "#)?;
895 ///
896 /// let resources = module.resources_required();
897 ///
898 /// // Instantiating the module will require allocating two memories, and
899 /// // the maximum initial memory size is six Wasm pages.
900 /// assert_eq!(resources.num_memories, 2);
901 /// assert_eq!(resources.max_initial_memory_size, Some(6));
902 ///
903 /// // The module doesn't need any tables.
904 /// assert_eq!(resources.num_tables, 0);
905 /// assert_eq!(resources.max_initial_table_size, None);
906 /// # Ok(()) }
907 /// ```
908 pub fn resources_required(&self) -> ResourcesRequired {
909 let em = self.env_module();
910 let num_memories = u32::try_from(em.num_defined_memories()).unwrap();
911 let max_initial_memory_size = em
912 .memories
913 .values()
914 .skip(em.num_imported_memories)
915 .map(|memory| memory.limits.min)
916 .max();
917 let num_tables = u32::try_from(em.num_defined_tables()).unwrap();
918 let max_initial_table_size = em
919 .tables
920 .values()
921 .skip(em.num_imported_tables)
922 .map(|table| table.limits.min)
923 .max();
924 ResourcesRequired {
925 num_memories,
926 max_initial_memory_size,
927 num_tables,
928 max_initial_table_size,
929 }
930 }
931
932 /// Returns the range of bytes in memory where this module's compilation
933 /// image resides.
934 ///
935 /// The compilation image for a module contains executable code, data, debug
936 /// information, etc. This is roughly the same as the `Module::serialize`
937 /// but not the exact same.
938 ///
939 /// The range of memory reported here is exposed to allow low-level
940 /// manipulation of the memory in platform-specific manners such as using
941 /// `mlock` to force the contents to be paged in immediately or keep them
942 /// paged in after they're loaded.
943 ///
944 /// It is not safe to modify the memory in this range, nor is it safe to
945 /// modify the protections of memory in this range.
946 pub fn image_range(&self) -> Range<*const u8> {
947 self.compiled_module().mmap().image_range()
948 }
949
950 /// Force initialization of copy-on-write images to happen here-and-now
951 /// instead of when they're requested during first instantiation.
952 ///
953 /// When [copy-on-write memory
954 /// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
955 /// will lazily create the initialization image for a module. This method
956 /// can be used to explicitly dictate when this initialization happens.
957 ///
958 /// Note that this largely only matters on Linux when memfd is used.
959 /// Otherwise the copy-on-write image typically comes from disk and in that
960 /// situation the creation of the image is trivial as the image is always
961 /// sourced from disk. On Linux, though, when memfd is used a memfd is
962 /// created and the initialization image is written to it.
963 ///
964 /// Also note that this method is not required to be called, it's available
965 /// as a performance optimization if required but is otherwise handled
966 /// automatically.
967 pub fn initialize_copy_on_write_image(&self) -> Result<()> {
968 self.memory_images()?;
969 Ok(())
970 }
971
972 /// Get the map from `.text` section offsets to Wasm binary offsets for this
973 /// module.
974 ///
975 /// Each entry is a (`.text` section offset, Wasm binary offset) pair.
976 ///
977 /// Entries are yielded in order of `.text` section offset.
978 ///
979 /// Some entries are missing a Wasm binary offset. This is for code that is
980 /// not associated with any single location in the Wasm binary, or for when
981 /// source information was optimized away.
982 ///
983 /// Not every module has an address map, since address map generation can be
984 /// turned off on `Config`.
985 ///
986 /// There is not an entry for every `.text` section offset. Every offset
987 /// after an entry's offset, but before the next entry's offset, is
988 /// considered to map to the same Wasm binary offset as the original
989 /// entry. For example, the address map will not contain the following
990 /// sequence of entries:
991 ///
992 /// ```ignore
993 /// [
994 /// // ...
995 /// (10, Some(42)),
996 /// (11, Some(42)),
997 /// (12, Some(42)),
998 /// (13, Some(43)),
999 /// // ...
1000 /// ]
1001 /// ```
1002 ///
1003 /// Instead, it will drop the entries for offsets `11` and `12` since they
1004 /// are the same as the entry for offset `10`:
1005 ///
1006 /// ```ignore
1007 /// [
1008 /// // ...
1009 /// (10, Some(42)),
1010 /// (13, Some(43)),
1011 /// // ...
1012 /// ]
1013 /// ```
1014 pub fn address_map<'a>(&'a self) -> Option<impl Iterator<Item = (usize, Option<u32>)> + 'a> {
1015 Some(
1016 wasmtime_environ::iterate_address_map(
1017 self.code_object().code_memory().address_map_data(),
1018 )?
1019 .map(|(offset, file_pos)| (offset as usize, file_pos.file_offset())),
1020 )
1021 }
1022
1023 /// Get this module's code object's `.text` section, containing its compiled
1024 /// executable code.
1025 pub fn text(&self) -> &[u8] {
1026 self.code_object().code_memory().text()
1027 }
1028
1029 /// Get information about functions in this module's `.text` section: their
1030 /// index, name, and offset+length.
1031 ///
1032 /// Results are yielded in a ModuleFunction struct.
1033 pub fn functions<'a>(&'a self) -> impl ExactSizeIterator<Item = ModuleFunction> + 'a {
1034 let module = self.compiled_module();
1035 module.finished_functions().map(|(idx, _)| {
1036 let loc = module.func_loc(idx);
1037 let idx = module.module().func_index(idx);
1038 ModuleFunction {
1039 index: idx,
1040 name: module.func_name(idx).map(|n| n.to_string()),
1041 offset: loc.start as usize,
1042 len: loc.length as usize,
1043 }
1044 })
1045 }
1046
1047 pub(crate) fn id(&self) -> CompiledModuleId {
1048 self.inner.module.unique_id()
1049 }
1050
1051 pub(crate) fn offsets(&self) -> &VMOffsets<HostPtr> {
1052 &self.inner.offsets
1053 }
1054
1055 /// Return the address, in memory, of the trampoline that allows Wasm to
1056 /// call a array function of the given signature.
1057 pub(crate) fn wasm_to_array_trampoline(
1058 &self,
1059 signature: VMSharedTypeIndex,
1060 ) -> Option<NonNull<VMWasmCallFunction>> {
1061 log::trace!("Looking up trampoline for {signature:?}");
1062 let trampoline_shared_ty = self.inner.engine.signatures().trampoline_type(signature);
1063 let trampoline_module_ty = self
1064 .inner
1065 .code
1066 .signatures()
1067 .trampoline_type(trampoline_shared_ty)?;
1068 debug_assert!(self
1069 .inner
1070 .engine
1071 .signatures()
1072 .borrow(
1073 self.inner
1074 .code
1075 .signatures()
1076 .shared_type(trampoline_module_ty)
1077 .unwrap()
1078 )
1079 .unwrap()
1080 .unwrap_func()
1081 .is_trampoline_type());
1082
1083 let ptr = self
1084 .compiled_module()
1085 .wasm_to_array_trampoline(trampoline_module_ty)
1086 .as_ptr()
1087 .cast::<VMWasmCallFunction>()
1088 .cast_mut();
1089 Some(NonNull::new(ptr).unwrap())
1090 }
1091
1092 pub(crate) fn memory_images(&self) -> Result<Option<&ModuleMemoryImages>> {
1093 let images = self
1094 .inner
1095 .memory_images
1096 .get_or_try_init(|| memory_images(&self.inner.engine, &self.inner.module))?
1097 .as_ref();
1098 Ok(images)
1099 }
1100
1101 /// Lookup the stack map at a program counter value.
1102 #[cfg(feature = "gc")]
1103 pub(crate) fn lookup_stack_map(&self, pc: usize) -> Option<&wasmtime_environ::StackMap> {
1104 let text_offset = pc - self.inner.module.text().as_ptr() as usize;
1105 let (index, func_offset) = self.inner.module.func_by_text_offset(text_offset)?;
1106 let info = self.inner.module.wasm_func_info(index);
1107
1108 // Do a binary search to find the stack map for the given offset.
1109 let index = match info
1110 .stack_maps
1111 .binary_search_by_key(&func_offset, |i| i.code_offset)
1112 {
1113 // Found it.
1114 Ok(i) => i,
1115
1116 // No stack map associated with this PC.
1117 //
1118 // Because we know we are in Wasm code, and we must be at some kind
1119 // of call/safepoint, then the Cranelift backend must have avoided
1120 // emitting a stack map for this location because no refs were live.
1121 Err(_) => return None,
1122 };
1123
1124 Some(&info.stack_maps[index].stack_map)
1125 }
1126}
1127
1128/// Describes a function for a given module.
1129pub struct ModuleFunction {
1130 pub index: wasmtime_environ::FuncIndex,
1131 pub name: Option<String>,
1132 pub offset: usize,
1133 pub len: usize,
1134}
1135
1136impl Drop for ModuleInner {
1137 fn drop(&mut self) {
1138 // When a `Module` is being dropped that means that it's no longer
1139 // present in any `Store` and it's additionally not longer held by any
1140 // embedder. Take this opportunity to purge any lingering instantiations
1141 // within a pooling instance allocator, if applicable.
1142 self.engine
1143 .allocator()
1144 .purge_module(self.module.unique_id());
1145 }
1146}
1147
1148/// Describes the location of an export in a module.
1149#[derive(Copy, Clone)]
1150pub struct ModuleExport {
1151 /// The module that this export is defined in.
1152 pub(crate) module: CompiledModuleId,
1153 /// A raw index into the wasm module.
1154 pub(crate) entity: EntityIndex,
1155 /// The index of the export name.
1156 pub(crate) export_name_index: usize,
1157}
1158
1159fn _assert_send_sync() {
1160 fn _assert<T: Send + Sync>() {}
1161 _assert::<Module>();
1162}
1163
1164/// Helper method to construct a `ModuleMemoryImages` for an associated
1165/// `CompiledModule`.
1166fn memory_images(engine: &Engine, module: &CompiledModule) -> Result<Option<ModuleMemoryImages>> {
1167 // If initialization via copy-on-write is explicitly disabled in
1168 // configuration then this path is skipped entirely.
1169 if !engine.tunables().memory_init_cow {
1170 return Ok(None);
1171 }
1172
1173 // ... otherwise logic is delegated to the `ModuleMemoryImages::new`
1174 // constructor.
1175 let mmap = if engine.config().force_memory_init_memfd {
1176 None
1177 } else {
1178 Some(module.mmap())
1179 };
1180 ModuleMemoryImages::new(module.module(), module.code_memory().wasm_data(), mmap)
1181}
1182
1183#[cfg(test)]
1184mod tests {
1185 use crate::{Engine, Module};
1186 use wasmtime_environ::MemoryInitialization;
1187
1188 #[test]
1189 fn cow_on_by_default() {
1190 let engine = Engine::default();
1191 let module = Module::new(
1192 &engine,
1193 r#"
1194 (module
1195 (memory 1)
1196 (data (i32.const 100) "abcd")
1197 )
1198 "#,
1199 )
1200 .unwrap();
1201
1202 let init = &module.env_module().memory_initialization;
1203 assert!(matches!(init, MemoryInitialization::Static { .. }));
1204 }
1205}