wast/core/table.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
use crate::core::*;
use crate::kw;
use crate::parser::{Parse, Parser, Peek, Result};
use crate::token::{Id, Index, LParen, NameAnnotation, Span};
/// A WebAssembly `table` directive in a module.
#[derive(Debug)]
pub struct Table<'a> {
/// Where this table was defined.
pub span: Span,
/// An optional name to refer to this table by.
pub id: Option<Id<'a>>,
/// An optional name for this function stored in the custom `name` section.
pub name: Option<NameAnnotation<'a>>,
/// If present, inline export annotations which indicate names this
/// definition should be exported under.
pub exports: InlineExport<'a>,
/// How this table is textually defined in the module.
pub kind: TableKind<'a>,
}
/// Different ways to textually define a table.
#[derive(Debug)]
pub enum TableKind<'a> {
/// This table is actually an inlined import definition.
#[allow(missing_docs)]
Import {
import: InlineImport<'a>,
ty: TableType<'a>,
},
/// A typical memory definition which simply says the limits of the table.
Normal {
/// Table type.
ty: TableType<'a>,
/// Optional items initializer expression.
init_expr: Option<Expression<'a>>,
},
/// The elem segments of this table, starting from 0, explicitly listed.
Inline {
/// The element type of this table.
elem: RefType<'a>,
/// Whether or not this will be creating a 64-bit table.
is64: bool,
/// Whether this table is shared or not.
shared: bool,
/// The element table entries to have, and the length of this list is
/// the limits of the table as well.
payload: ElemPayload<'a>,
},
}
impl<'a> Parse<'a> for Table<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
let span = parser.parse::<kw::table>()?.0;
let id = parser.parse()?;
let name = parser.parse()?;
let exports = parser.parse()?;
// Afterwards figure out which style this is, either:
//
// * inline: `elemtype (elem ...)`
// * normal: `tabletype`
// * import: `(import "a" "b") tabletype`
//
// Where `tabletype := shared? index_type limits reftype`
let mut l = parser.lookahead1();
let is_shared = l.peek::<kw::shared>()?;
let has_index_type = l.peek::<kw::i32>()? | l.peek::<kw::i64>()?;
let kind = if l.peek::<RefType>()?
|| ((is_shared || has_index_type) && parser.peek2::<RefType>()?)
{
let shared = parser.parse::<Option<kw::shared>>()?.is_some();
let is64 = if parser.parse::<Option<kw::i32>>()?.is_some() {
false
} else {
parser.parse::<Option<kw::i64>>()?.is_some()
};
let elem = parser.parse()?;
let payload = parser.parens(|p| {
p.parse::<kw::elem>()?;
if p.peek::<LParen>()? {
ElemPayload::parse_exprs(p, elem)
} else {
ElemPayload::parse_indices(p, Some(elem))
}
})?;
TableKind::Inline {
elem,
is64,
shared,
payload,
}
} else if is_shared || has_index_type || l.peek::<u64>()? {
TableKind::Normal {
ty: parser.parse()?,
init_expr: if !parser.is_empty() {
Some(parser.parse::<Expression>()?)
} else {
None
},
}
} else if let Some(import) = parser.parse()? {
TableKind::Import {
import,
ty: parser.parse()?,
}
} else {
return Err(l.error());
};
Ok(Table {
span,
id,
name,
exports,
kind,
})
}
}
/// An `elem` segment in a WebAssembly module.
#[derive(Debug)]
pub struct Elem<'a> {
/// Where this `elem` was defined.
pub span: Span,
/// An optional name by which to refer to this segment.
pub id: Option<Id<'a>>,
/// An optional name for this element stored in the custom `name` section.
pub name: Option<NameAnnotation<'a>>,
/// The way this segment was defined in the module.
pub kind: ElemKind<'a>,
/// The payload of this element segment, typically a list of functions.
pub payload: ElemPayload<'a>,
}
/// Different ways to define an element segment in an mdoule.
#[derive(Debug)]
pub enum ElemKind<'a> {
/// A passive segment that isn't associated with a table and can be used in
/// various bulk-memory instructions.
Passive,
/// A declared element segment that is purely used to declare function
/// references.
Declared,
/// An active segment associated with a table.
Active {
/// The table this `elem` is initializing.
table: Option<Index<'a>>,
/// The offset within `table` that we'll initialize at.
offset: Expression<'a>,
},
}
/// Different ways to define the element segment payload in a module.
#[derive(Debug)]
pub enum ElemPayload<'a> {
/// This element segment has a contiguous list of function indices
Indices(Vec<Index<'a>>),
/// This element segment has a list of optional function indices,
/// represented as expressions using `ref.func` and `ref.null`.
Exprs {
/// The desired type of each expression below.
ty: RefType<'a>,
/// The expressions in this segment.
exprs: Vec<Expression<'a>>,
},
}
impl<'a> Parse<'a> for Elem<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
let span = parser.parse::<kw::elem>()?.0;
let id = parser.parse()?;
let name = parser.parse()?;
// Element segments can start in a number of different ways:
//
// * `(elem ...`
// * `(elem declare ...`
// * `(elem (table ...`
// * `(elem (offset ...`
// * `(elem (<instr> ...` (omitted `offset`)
let mut table_omitted = false;
let kind = if parser.peek::<kw::declare>()? {
parser.parse::<kw::declare>()?;
ElemKind::Declared
} else if parser.peek::<u32>()?
|| (parser.peek::<LParen>()? && !parser.peek::<RefType>()?)
{
let table = if parser.peek::<u32>()? {
// FIXME: this is only here to accomodate
// proposals/threads/imports.wast at this current moment in
// time, this probably should get removed when the threads
// proposal is rebased on the current spec.
table_omitted = true;
Some(Index::Num(parser.parse()?, span))
} else if parser.peek2::<kw::table>()? {
Some(parser.parens(|p| {
p.parse::<kw::table>()?;
p.parse()
})?)
} else {
table_omitted = true;
None
};
let offset = parse_expr_or_single_instr::<kw::offset>(parser)?;
ElemKind::Active { table, offset }
} else {
ElemKind::Passive
};
// Element segments can have a number of ways to specify their element
// lists:
//
// * `func 0 1 ...` - list of indices
// * `<reftype> (ref.null func) ...` - list of expressions
// * `0 1 ...` - list of indices, only if the table was omitted for the
// legacy way tables were printed.
let indices = if parser.peek::<kw::func>()? {
parser.parse::<kw::func>()?;
true
} else if parser.peek::<RefType>()? {
false
} else if table_omitted {
true
} else {
false // this will fall through to failing to parse a `RefType`
};
let payload = if indices {
ElemPayload::parse_indices(parser, None)?
} else {
let ty = parser.parse()?;
ElemPayload::parse_exprs(parser, ty)?
};
Ok(Elem {
span,
id,
name,
kind,
payload,
})
}
}
impl<'a> ElemPayload<'a> {
fn parse_indices(parser: Parser<'a>, ty: Option<RefType<'a>>) -> Result<Self> {
let mut ret = match ty {
// If there is no requested type, then it's ok to parse a list of
// indices.
None => ElemPayload::Indices(Vec::new()),
// If the requested type is a `funcref` type then a list of indices
// can be parsed. This is because the list-of-indices encoding in
// the binary format can only accomodate the `funcref` type.
Some(ty) if ty == RefType::func() => ElemPayload::Indices(Vec::new()),
// Otherwise silently translate this list-of-indices into a
// list-of-expressions because that's the only way to accomodate a
// non-funcref type.
Some(ty) => ElemPayload::Exprs {
ty,
exprs: Vec::new(),
},
};
while !parser.is_empty() {
let func = parser.parse()?;
match &mut ret {
ElemPayload::Indices(list) => list.push(func),
ElemPayload::Exprs { exprs, .. } => {
let expr = Expression::one(Instruction::RefFunc(func));
exprs.push(expr);
}
}
}
Ok(ret)
}
fn parse_exprs(parser: Parser<'a>, ty: RefType<'a>) -> Result<Self> {
let mut exprs = Vec::new();
while !parser.is_empty() {
let expr = parse_expr_or_single_instr::<kw::item>(parser)?;
exprs.push(expr);
}
Ok(ElemPayload::Exprs { exprs, ty })
}
}
// Parses either `(T expr)` or `(instr)`, returning the resulting expression.
fn parse_expr_or_single_instr<'a, T>(parser: Parser<'a>) -> Result<Expression<'a>>
where
T: Parse<'a> + Peek,
{
if parser.peek2::<T>()? {
parser.parens(|parser| {
parser.parse::<T>()?;
parser.parse()
})
} else {
// Without `T` this is "sugar" for a single instruction (still possibly folded).
Ok(Expression::parse_folded_instruction(parser)?)
}
}