1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
use std::{
env, fmt,
io::ErrorKind,
os::unix::net::UnixStream,
os::unix::prelude::{AsRawFd, FromRawFd},
path::PathBuf,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use wayland_backend::{
client::{Backend, InvalidId, ObjectData, ObjectId, ReadEventsGuard, WaylandError},
io_lifetimes::OwnedFd,
protocol::{ObjectInfo, ProtocolError},
};
use nix::{fcntl, Error};
use crate::{protocol::wl_display::WlDisplay, EventQueue, Proxy};
/// The Wayland connection
///
/// This is the main type representing your connection to the Wayland server, though most of the interaction
/// with the protocol are actually done using other types. The two main uses a simple app has for the
/// [`Connection`] are:
///
/// - Obtaining the initial [`WlDisplay`] through the [`display()`](Connection::display) method.
/// - Creating new [`EventQueue`]s with the [`new_event_queue()`](Connection::new_event_queue) method.
///
/// It can be created through the [`connect_to_env()`](Connection::connect_to_env) method to follow the
/// configuration from the environment (which is what you'll do most of the time), or using the
/// [`from_socket()`](Connection::from_socket) method if you retrieved your connected Wayland socket through
/// other means.
///
/// In case you need to plug yourself into an external Wayland connection that you don't control, you'll
/// likely get access to it as a [`Backend`], in which case you can create a [`Connection`] from it using
/// the [`from_backend`](Connection::from_backend) method.
#[derive(Debug, Clone)]
pub struct Connection {
pub(crate) backend: Backend,
}
impl Connection {
/// Try to connect to the Wayland server following the environment
///
/// This is the standard way to initialize a Wayland connection.
pub fn connect_to_env() -> Result<Self, ConnectError> {
let stream = if let Ok(txt) = env::var("WAYLAND_SOCKET") {
// We should connect to the provided WAYLAND_SOCKET
let fd = txt.parse::<i32>().map_err(|_| ConnectError::InvalidFd)?;
// remove the variable so any child processes don't see it
env::remove_var("WAYLAND_SOCKET");
// set the CLOEXEC flag on this FD
let flags = fcntl::fcntl(fd, fcntl::FcntlArg::F_GETFD);
let result = flags
.map(|f| fcntl::FdFlag::from_bits(f).unwrap() | fcntl::FdFlag::FD_CLOEXEC)
.and_then(|f| fcntl::fcntl(fd, fcntl::FcntlArg::F_SETFD(f)));
match result {
Ok(_) => {
// setting the O_CLOEXEC worked
unsafe { FromRawFd::from_raw_fd(fd) }
}
Err(_) => {
// something went wrong in F_GETFD or F_SETFD
let _ = ::nix::unistd::close(fd);
return Err(ConnectError::InvalidFd);
}
}
} else {
let socket_name = env::var_os("WAYLAND_DISPLAY")
.map(Into::<PathBuf>::into)
.ok_or(ConnectError::NoCompositor)?;
let socket_path = if socket_name.is_absolute() {
socket_name
} else {
let mut socket_path = env::var_os("XDG_RUNTIME_DIR")
.map(Into::<PathBuf>::into)
.ok_or(ConnectError::NoCompositor)?;
if !socket_path.is_absolute() {
return Err(ConnectError::NoCompositor);
}
socket_path.push(socket_name);
socket_path
};
UnixStream::connect(socket_path).map_err(|_| ConnectError::NoCompositor)?
};
let backend = Backend::connect(stream).map_err(|_| ConnectError::NoWaylandLib)?;
Ok(Self { backend })
}
/// Initialize a Wayland connection from an already existing Unix stream
pub fn from_socket(stream: UnixStream) -> Result<Self, ConnectError> {
let backend = Backend::connect(stream).map_err(|_| ConnectError::NoWaylandLib)?;
Ok(Self { backend })
}
/// Get the `WlDisplay` associated with this connection
pub fn display(&self) -> WlDisplay {
let display_id = self.backend.display_id();
Proxy::from_id(self, display_id).unwrap()
}
/// Create a new event queue
pub fn new_event_queue<State>(&self) -> EventQueue<State> {
EventQueue::new(self.clone())
}
/// Wrap an existing [`Backend`] into a [`Connection`]
pub fn from_backend(backend: Backend) -> Self {
Self { backend }
}
/// Get the [`Backend`] underlying this [`Connection`]
pub fn backend(&self) -> Backend {
self.backend.clone()
}
/// Flush pending outgoing events to the server
///
/// This needs to be done regularly to ensure the server receives all your requests, though several
/// dispatching methods do it implicitly (this is stated in their documentation when they do).
pub fn flush(&self) -> Result<(), WaylandError> {
self.backend.flush()
}
/// Start a synchronized read from the socket
///
/// This is needed if you plan to wait on readiness of the Wayland socket using an event loop. See
/// [`ReadEventsGuard`] for details. Once the events are received, you'll then need to dispatch them from
/// their event queues using [`EventQueue::dispatch_pending()`](EventQueue::dispatch_pending).
///
/// If you don't need to manage multiple event sources, see
/// [`blocking_dispatch()`](EventQueue::blocking_dispatch) for a simpler mechanism.
pub fn prepare_read(&self) -> Result<ReadEventsGuard, WaylandError> {
self.backend.prepare_read()
}
/// Do a roundtrip to the server
///
/// This method will block until the Wayland server has processed and answered all your
/// preceding requests. This is notably useful during the initial setup of an app, to wait for
/// the initial state from the server.
///
/// See [`EventQueue::roundtrip()`] for a version that includes the dispatching of the event queue.
pub fn roundtrip(&self) -> Result<usize, WaylandError> {
let done = Arc::new(SyncData::default());
let display = self.display();
self.send_request(
&display,
crate::protocol::wl_display::Request::Sync {},
Some(done.clone()),
)
.map_err(|_| WaylandError::Io(Error::EPIPE.into()))?;
let mut dispatched = 0;
loop {
self.backend.flush()?;
// first, prepare the read
let guard = self.backend.prepare_read()?;
// If another thread processed events prior to prepare_read, we might already be done.
if done.done.load(Ordering::Relaxed) {
break;
}
dispatched += blocking_read(guard)?;
// see if the successful read included our callback
if done.done.load(Ordering::Relaxed) {
break;
}
}
Ok(dispatched)
}
/// Retrieve the protocol error that occured on the connection if any
///
/// If this method returns `Some`, it means your Wayland connection is already dead.
pub fn protocol_error(&self) -> Option<ProtocolError> {
match self.backend.last_error()? {
WaylandError::Protocol(err) => Some(err),
WaylandError::Io(_) => None,
}
}
/// Send a request associated with the provided object
///
/// This is a low-level interface used by the code generated by `wayland-scanner`, you will likely
/// instead use the methods of the types representing each interface, or the [`Proxy::send_request`] and
/// [`Proxy::send_constructor`]
pub fn send_request<I: Proxy>(
&self,
proxy: &I,
request: I::Request,
data: Option<Arc<dyn ObjectData>>,
) -> Result<ObjectId, InvalidId> {
let (msg, child_spec) = proxy.write_request(self, request)?;
self.backend.send_request(msg, data, child_spec)
}
/// Get the protocol information related to given object ID
pub fn object_info(&self, id: ObjectId) -> Result<ObjectInfo, InvalidId> {
self.backend.info(id)
}
/// Get the object data for a given object ID
///
/// This is a low-level interface used by the code generated by `wayland-scanner`, a higher-level
/// interface for manipulating the user-data assocated to [`Dispatch`](crate::Dispatch) implementations
/// is given as [`Proxy::data()`]. Also see [`Proxy::object_data()`].
pub fn get_object_data(&self, id: ObjectId) -> Result<Arc<dyn ObjectData>, InvalidId> {
self.backend.get_data(id)
}
}
pub(crate) fn blocking_read(guard: ReadEventsGuard) -> Result<usize, WaylandError> {
let mut fds = [nix::poll::PollFd::new(
guard.connection_fd().as_raw_fd(),
nix::poll::PollFlags::POLLIN | nix::poll::PollFlags::POLLERR,
)];
loop {
match nix::poll::poll(&mut fds, -1) {
Ok(_) => break,
Err(nix::errno::Errno::EINTR) => continue,
Err(e) => return Err(WaylandError::Io(e.into())),
}
}
// at this point the fd is ready
match guard.read() {
Ok(n) => Ok(n),
// if we are still "wouldblock", just return 0; the caller will retry.
Err(WaylandError::Io(e)) if e.kind() == ErrorKind::WouldBlock => Ok(0),
Err(e) => Err(e),
}
}
/// An error when trying to establish a Wayland connection.
#[derive(Debug)]
pub enum ConnectError {
/// The wayland library could not be loaded.
NoWaylandLib,
/// Could not find wayland compositor
NoCompositor,
/// `WAYLAND_SOCKET` was set but contained garbage
InvalidFd,
}
impl std::error::Error for ConnectError {}
impl fmt::Display for ConnectError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ConnectError::NoWaylandLib => {
write!(f, "The wayland library could not be loaded")
}
ConnectError::NoCompositor => {
write!(f, "Could not find wayland compositor")
}
ConnectError::InvalidFd => {
write!(f, "WAYLAND_SOCKET was set but contained garbage")
}
}
}
}
/*
wl_callback object data for wl_display.sync
*/
#[derive(Default)]
pub(crate) struct SyncData {
pub(crate) done: AtomicBool,
}
impl ObjectData for SyncData {
fn event(
self: Arc<Self>,
_handle: &Backend,
_msg: wayland_backend::protocol::Message<ObjectId, OwnedFd>,
) -> Option<Arc<dyn ObjectData>> {
self.done.store(true, Ordering::Relaxed);
None
}
fn destroyed(&self, _: ObjectId) {}
}