#[non_exhaustive]
pub enum Request {
Show 14 variants Destroy, SetParent { parent: Option<XdgSurface>, }, SetTitle { title: String, }, SetAppId { app_id: String, }, ShowWindowMenu { seat: WlSeat, serial: u32, x: i32, y: i32, }, Move { seat: WlSeat, serial: u32, }, Resize { seat: WlSeat, serial: u32, edges: u32, }, AckConfigure { serial: u32, }, SetWindowGeometry { x: i32, y: i32, width: i32, height: i32, }, SetMaximized, UnsetMaximized, SetFullscreen { output: Option<WlOutput>, }, UnsetFullscreen, SetMinimized,
}

Variants (Non-exhaustive)

This enum is marked as non-exhaustive
Non-exhaustive enums could have additional variants added in future. Therefore, when matching against variants of non-exhaustive enums, an extra wildcard arm must be added to account for any future variants.

Destroy

Destroy the xdg_surface

Unmap and destroy the window. The window will be effectively hidden from the user’s point of view, and all state like maximization, fullscreen, and so on, will be lost.

This is a destructor, once sent this object cannot be used any longer.

SetParent

Fields

parent: Option<XdgSurface>

set the parent of this surface

Set the “parent” of this surface. This window should be stacked above a parent. The parent surface must be mapped as long as this surface is mapped.

Parent windows should be set on dialogs, toolboxes, or other “auxiliary” surfaces, so that the parent is raised when the dialog is raised.

SetTitle

Fields

title: String

set surface title

Set a short title for the surface.

This string may be used to identify the surface in a task bar, window list, or other user interface elements provided by the compositor.

The string must be encoded in UTF-8.

SetAppId

Fields

app_id: String

set application ID

Set an application identifier for the surface.

The app ID identifies the general class of applications to which the surface belongs. The compositor can use this to group multiple surfaces together, or to determine how to launch a new application.

For D-Bus activatable applications, the app ID is used as the D-Bus service name.

The compositor shell will try to group application surfaces together by their app ID. As a best practice, it is suggested to select app ID’s that match the basename of the application’s .desktop file. For example, “org.freedesktop.FooViewer” where the .desktop file is “org.freedesktop.FooViewer.desktop”.

See the desktop-entry specification [0] for more details on application identifiers and how they relate to well-known D-Bus names and .desktop files.

[0] http://standards.freedesktop.org/desktop-entry-spec/

ShowWindowMenu

Fields

seat: WlSeat
serial: u32
x: i32
y: i32

show the window menu

Clients implementing client-side decorations might want to show a context menu when right-clicking on the decorations, giving the user a menu that they can use to maximize or minimize the window.

This request asks the compositor to pop up such a window menu at the given position, relative to the local surface coordinates of the parent surface. There are no guarantees as to what menu items the window menu contains.

This request must be used in response to some sort of user action like a button press, key press, or touch down event.

Move

Fields

seat: WlSeat
serial: u32

start an interactive move

Start an interactive, user-driven move of the surface.

This request must be used in response to some sort of user action like a button press, key press, or touch down event. The passed serial is used to determine the type of interactive move (touch, pointer, etc).

The server may ignore move requests depending on the state of the surface (e.g. fullscreen or maximized), or if the passed serial is no longer valid.

If triggered, the surface will lose the focus of the device (wl_pointer, wl_touch, etc) used for the move. It is up to the compositor to visually indicate that the move is taking place, such as updating a pointer cursor, during the move. There is no guarantee that the device focus will return when the move is completed.

Resize

Fields

seat: WlSeat
serial: u32
edges: u32

start an interactive resize

Start a user-driven, interactive resize of the surface.

This request must be used in response to some sort of user action like a button press, key press, or touch down event. The passed serial is used to determine the type of interactive resize (touch, pointer, etc).

The server may ignore resize requests depending on the state of the surface (e.g. fullscreen or maximized).

If triggered, the client will receive configure events with the “resize” state enum value and the expected sizes. See the “resize” enum value for more details about what is required. The client must also acknowledge configure events using “ack_configure”. After the resize is completed, the client will receive another “configure” event without the resize state.

If triggered, the surface also will lose the focus of the device (wl_pointer, wl_touch, etc) used for the resize. It is up to the compositor to visually indicate that the resize is taking place, such as updating a pointer cursor, during the resize. There is no guarantee that the device focus will return when the resize is completed.

The edges parameter specifies how the surface should be resized, and is one of the values of the resize_edge enum. The compositor may use this information to update the surface position for example when dragging the top left corner. The compositor may also use this information to adapt its behavior, e.g. choose an appropriate cursor image.

AckConfigure

Fields

serial: u32

ack a configure event

When a configure event is received, if a client commits the surface in response to the configure event, then the client must make an ack_configure request sometime before the commit request, passing along the serial of the configure event.

For instance, the compositor might use this information to move a surface to the top left only when the client has drawn itself for the maximized or fullscreen state.

If the client receives multiple configure events before it can respond to one, it only has to ack the last configure event.

A client is not required to commit immediately after sending an ack_configure request - it may even ack_configure several times before its next surface commit.

The compositor expects that the most recently received ack_configure request at the time of a commit indicates which configure event the client is responding to.

SetWindowGeometry

Fields

x: i32
y: i32
width: i32
height: i32

set the new window geometry

The window geometry of a window is its “visible bounds” from the user’s perspective. Client-side decorations often have invisible portions like drop-shadows which should be ignored for the purposes of aligning, placing and constraining windows.

The window geometry is double buffered, and will be applied at the time wl_surface.commit of the corresponding wl_surface is called.

Once the window geometry of the surface is set once, it is not possible to unset it, and it will remain the same until set_window_geometry is called again, even if a new subsurface or buffer is attached.

If never set, the value is the full bounds of the surface, including any subsurfaces. This updates dynamically on every commit. This unset mode is meant for extremely simple clients.

If responding to a configure event, the window geometry in here must respect the sizing negotiations specified by the states in the configure event.

The arguments are given in the surface local coordinate space of the wl_surface associated with this xdg_surface.

The width and height must be greater than zero.

SetMaximized

maximize the window

Maximize the surface.

After requesting that the surface should be maximized, the compositor will respond by emitting a configure event with the “maximized” state and the required window geometry. The client should then update its content, drawing it in a maximized state, i.e. without shadow or other decoration outside of the window geometry. The client must also acknowledge the configure when committing the new content (see ack_configure).

It is up to the compositor to decide how and where to maximize the surface, for example which output and what region of the screen should be used.

If the surface was already maximized, the compositor will still emit a configure event with the “maximized” state.

UnsetMaximized

unmaximize the window

Unmaximize the surface.

After requesting that the surface should be unmaximized, the compositor will respond by emitting a configure event without the “maximized” state. If available, the compositor will include the window geometry dimensions the window had prior to being maximized in the configure request. The client must then update its content, drawing it in a regular state, i.e. potentially with shadow, etc. The client must also acknowledge the configure when committing the new content (see ack_configure).

It is up to the compositor to position the surface after it was unmaximized; usually the position the surface had before maximizing, if applicable.

If the surface was already not maximized, the compositor will still emit a configure event without the “maximized” state.

SetFullscreen

Fields

output: Option<WlOutput>

set the window as fullscreen on a monitor

Make the surface fullscreen.

You can specify an output that you would prefer to be fullscreen. If this value is NULL, it’s up to the compositor to choose which display will be used to map this surface.

If the surface doesn’t cover the whole output, the compositor will position the surface in the center of the output and compensate with black borders filling the rest of the output.

UnsetFullscreen

SetMinimized

set the window as minimized

Request that the compositor minimize your surface. There is no way to know if the surface is currently minimized, nor is there any way to unset minimization on this surface.

If you are looking to throttle redrawing when minimized, please instead use the wl_surface.frame event for this, as this will also work with live previews on windows in Alt-Tab, Expose or similar compositor features.

Trait Implementations

Formats the value using the given formatter. Read more

Wire representation of this MessageGroup

The wrapper type for ObjectMap allowing the mapping of Object and NewId arguments to the object map during parsing. Read more

Whether this message is a destructor Read more

The opcode of this message

The minimal object version for which this message exists

Retrieve the child Object associated with this message if any

Construct a message from its raw representation

Turn this message into its raw representation

Construct a message of this group from its C representation Read more

Build a C representation of this message Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s. Read more

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s. Read more

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.