weak_table/
weak_hash_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! A hash set where the elements are held by weak pointers and compared by value.

use crate::compat::*;

use super::traits::*;
use super::weak_key_hash_map as base;

pub use super::WeakHashSet;

impl <T: WeakKey> WeakHashSet<T, RandomState> {
    /// Creates an empty `WeakHashSet`.
    ///
    /// *O*(1) time
    pub fn new() -> Self {
        WeakHashSet(base::WeakKeyHashMap::new())
    }

    /// Creates an empty `WeakHashSet` with the given capacity.
    ///
    /// *O*(*n*) time
    pub fn with_capacity(capacity: usize) -> Self {
        WeakHashSet(base::WeakKeyHashMap::with_capacity(capacity))
    }
}

impl <T: WeakKey, S: BuildHasher> WeakHashSet<T, S> {
    /// Creates an empty `WeakHashSet` with the given capacity and hasher.
    ///
    /// *O*(*n*) time
    pub fn with_hasher(hash_builder: S) -> Self {
        WeakHashSet(base::WeakKeyHashMap::with_hasher(hash_builder))
    }

    /// Creates an empty `WeakHashSet` with the given capacity and hasher.
    ///
    /// *O*(*n*) time
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
        WeakHashSet(base::WeakKeyHashMap::with_capacity_and_hasher(capacity, hash_builder))
    }

    /// Returns a reference to the map's `BuildHasher`.
    ///
    /// *O*(1) time
    pub fn hasher(&self) -> &S {
        self.0.hasher()
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// *O*(1) time
    pub fn capacity(&self) -> usize {
        self.0.capacity()
    }

    /// Removes all mappings whose keys have expired.
    ///
    /// *O*(*n*) time
    pub fn remove_expired(&mut self) {
        self.0.remove_expired()
    }

    /// Reserves room for additional elements.
    ///
    /// *O*(*n*) time
    pub fn reserve(&mut self, additional_capacity: usize) {
        self.0.reserve(additional_capacity)
    }

    /// Shrinks the capacity to the minimum allowed to hold the current number of elements.
    ///
    /// *O*(*n*) time
    pub fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit()
    }

    /// Returns an over-approximation of the number of elements.
    ///
    /// *O*(1) time
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Is the set empty?
    ///
    /// Note that this may return false even if all keys in the set have
    /// expired, if they haven't been collected yet.
    ///
    /// *O*(1) time
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// The proportion of buckets that are used.
    ///
    /// This is an over-approximation because of expired elements.
    ///
    /// *O*(1) time
    pub fn load_factor(&self) -> f32 {
        self.0.load_factor()
    }

    /// Removes all associations from the map.
    ///
    /// *O*(*n*) time
    pub fn clear(&mut self) {
        self.0.clear()
    }

    // Non-ptr WeakHashSet should probably have `get` method.

    /// Returns true if the map contains the specified key.
    ///
    /// expected *O*(1) time; worst-case *O*(*p*) time
    pub fn contains<Q>(&self, key: &Q) -> bool
        where Q: ?Sized + Eq + Hash,
              T::Key: Borrow<Q>
    {
        self.0.contains_key(key)
    }

    /// Gets a strong reference to the given key, if found.
    ///
    /// # Examples
    ///
    /// ```
    /// use weak_table::WeakHashSet;
    /// use std::rc::{Rc, Weak};
    /// use std::ops::Deref;
    ///
    /// let mut set: WeakHashSet<Weak<String>> = WeakHashSet::new();
    ///
    /// let a = Rc::new("a".to_owned());
    /// set.insert(a.clone());
    ///
    /// let also_a = set.get("a").unwrap();
    ///
    /// assert!(Rc::ptr_eq( &a, &also_a ));
    /// ```
    ///
    /// expected *O*(1) time; worst-case *O*(*p*) time
    pub fn get<Q>(&self, key: &Q) -> Option<T::Strong>
        where Q: ?Sized + Eq + Hash,
              T::Key: Borrow<Q>
    {
        self.0.get_key(key)
    }

    /// Unconditionally inserts the value, returning the old value if already present. Does not
    /// replace the key.
    ///
    /// expected *O*(1) time; worst-case *O*(*p*) time
    pub fn insert(&mut self, key: T::Strong) -> bool {
        self.0.insert(key, ()).is_some()
    }

    /// Removes the entry with the given key, if it exists, and returns the value.
    ///
    /// expected *O*(1) time; worst-case *O*(*p*) time
    pub fn remove<Q>(&mut self, key: &Q) -> bool
        where Q: ?Sized + Eq + Hash,
              T::Key: Borrow<Q>
    {
        self.0.remove(key).is_some()
    }

    /// Removes all mappings not satisfying the given predicate.
    ///
    /// Also removes any expired mappings.
    ///
    /// *O*(*n*) time
    pub fn retain<F>(&mut self, mut f: F)
        where F: FnMut(T::Strong) -> bool
    {
        self.0.retain(|k, _| f(k))
    }

    /// Is self a subset of other?
    ///
    /// expected *O*(*n*) time; worst-case *O*(*nq*) time (where *n* is
    /// `self.capacity()` and *q* is the length of the probe sequences
    /// in `other`)
    pub fn is_subset<S1>(&self, other: &WeakHashSet<T, S1>) -> bool
        where S1: BuildHasher
    {
        self.0.domain_is_subset(&other.0)
    }
}

/// An iterator over the elements of a set.
pub struct Iter<'a, T: 'a>(base::Keys<'a, T, ()>);

impl<'a, T: WeakElement> Iterator for Iter<'a, T> {
    type Item = T::Strong;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

/// An iterator over the elements of a set.
pub struct IntoIter<T>(base::IntoIter<T, ()>);

impl<T: WeakElement> Iterator for IntoIter<T> {
    type Item = T::Strong;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|pair| pair.0)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

/// A draining iterator over the elements of a set.
pub struct Drain<'a, T: 'a>(base::Drain<'a, T, ()>);

impl<'a, T: WeakElement> Iterator for Drain<'a, T> {
    type Item = T::Strong;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|pair| pair.0)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

impl<T: WeakKey, S> WeakHashSet<T, S> {
    /// Gets an iterator over the keys and values.
    ///
    /// *O*(1) time
    pub fn iter(&self) -> Iter<T> {
        Iter(self.0.keys())
    }

    /// Gets a draining iterator, which removes all the values but retains the storage.
    ///
    /// *O*(1) time (and *O*(*n*) time to dispose of the result)
    pub fn drain(&mut self) -> Drain<T> {
        Drain(self.0.drain())
    }
}

impl<T, S, S1> PartialEq<WeakHashSet<T, S1>> for WeakHashSet<T, S>
    where T: WeakKey,
          S: BuildHasher,
          S1: BuildHasher
{
    fn eq(&self, other: &WeakHashSet<T, S1>) -> bool {
        self.0 == other.0
    }
}

impl<T: WeakKey, S: BuildHasher> Eq for WeakHashSet<T, S>
    where T::Key: Eq
{ }

impl<T: WeakKey, S: BuildHasher + Default> Default for WeakHashSet<T, S> {
    fn default() -> Self {
        WeakHashSet(base::WeakKeyHashMap::<T, (), S>::default())
    }
}

impl<T, S> FromIterator<T::Strong> for WeakHashSet<T, S>
    where T: WeakKey,
          S: BuildHasher + Default
{
    fn from_iter<I: IntoIterator<Item=T::Strong>>(iter: I) -> Self {
        WeakHashSet(base::WeakKeyHashMap::<T, (), S>::from_iter(
            iter.into_iter().map(|k| (k, ()))))
    }
}

impl<T: WeakKey, S: BuildHasher> Extend<T::Strong> for WeakHashSet<T, S> {
    fn extend<I: IntoIterator<Item=T::Strong>>(&mut self, iter: I) {
        self.0.extend(iter.into_iter().map(|k| (k, ())))
    }
}

impl<T: WeakKey, S> Debug for WeakHashSet<T, S>
    where T::Strong: Debug
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<T: WeakKey, S> IntoIterator for WeakHashSet<T, S> {
    type Item = T::Strong;
    type IntoIter = IntoIter<T>;

    /// Creates an owning iterator from `self`.
    ///
    /// *O*(1) time (and *O*(*n*) time to dispose of the result)
    fn into_iter(self) -> Self::IntoIter {
        IntoIter(self.0.into_iter())
    }
}

impl<'a, T: WeakKey, S> IntoIterator for &'a WeakHashSet<T, S> {
    type Item = T::Strong;
    type IntoIter = Iter<'a, T>;

    /// Creates a borrowing iterator from `self`.
    ///
    /// *O*(1) time
    fn into_iter(self) -> Self::IntoIter {
        Iter(self.0.keys())
    }
}