1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
pub mod candidate_base;
pub mod candidate_host;
pub mod candidate_peer_reflexive;
pub mod candidate_relay;
pub mod candidate_server_reflexive;

use crate::candidate::candidate_base::*;
use crate::network_type::*;
use crate::tcp_type::*;

use util::Error;

use async_trait::async_trait;
use std::fmt;
use std::net::{IpAddr, SocketAddr};
use std::sync::Arc;
use std::time::SystemTime;
use tokio::sync::broadcast;

pub(crate) const RECEIVE_MTU: usize = 8192;
pub(crate) const DEFAULT_LOCAL_PREFERENCE: u16 = 65535;

// COMPONENT_RTP indicates that the candidate is used for RTP
pub(crate) const COMPONENT_RTP: u16 = 1;
// COMPONENT_RTCP indicates that the candidate is used for RTCP
pub(crate) const COMPONENT_RTCP: u16 = 0;

// Candidate represents an ICE candidate
#[async_trait]
pub trait Candidate: fmt::Display {
    // An arbitrary string used in the freezing algorithm to
    // group similar candidates.  It is the same for two candidates that
    // have the same type, base IP address, protocol (UDP, TCP, etc.),
    // and STUN or TURN server.
    fn foundation(&self) -> String;

    // ID is a unique identifier for just this candidate
    // Unlike the foundation this is different for each candidate
    fn id(&self) -> String;

    // A component is a piece of a data stream.
    // An example is one for RTP, and one for RTCP
    fn component(&self) -> u16;
    fn set_component(&self, c: u16);

    // The last time this candidate received traffic
    fn last_received(&self) -> SystemTime;

    // The last time this candidate sent traffic
    fn last_sent(&self) -> SystemTime;

    fn network_type(&self) -> NetworkType;
    fn address(&self) -> String;
    fn port(&self) -> u16;

    fn priority(&self) -> u32;

    // A transport address related to a
    //  candidate, which is useful for diagnostics and other purposes
    fn related_address(&self) -> Option<CandidateRelatedAddress>;

    fn candidate_type(&self) -> CandidateType;
    fn tcp_type(&self) -> TCPType;

    fn marshal(&self) -> String;

    fn addr(&self) -> SocketAddr;

    async fn close(&self) -> Result<(), Error>;
    fn seen(&self, outbound: bool);

    async fn write_to(
        &self,
        raw: &[u8],
        dst: &(dyn Candidate + Send + Sync),
    ) -> Result<usize, Error>;
    fn equal(&self, other: &dyn Candidate) -> bool;
    fn clone(&self) -> Arc<dyn Candidate + Send + Sync>;
    fn clone_with_ip(&self, ip: &IpAddr) -> Arc<dyn Candidate + Send + Sync>;

    async fn start(&self, initialized_ch: Option<broadcast::Receiver<()>>);
}

// CandidateType represents the type of candidate
// CandidateType enum
#[derive(PartialEq, Debug, Copy, Clone)]
pub enum CandidateType {
    Unspecified,
    Host,
    ServerReflexive,
    PeerReflexive,
    Relay,
}

// String makes CandidateType printable
impl fmt::Display for CandidateType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match *self {
            CandidateType::Host => "host",
            CandidateType::ServerReflexive => "srflx",
            CandidateType::PeerReflexive => "prflx",
            CandidateType::Relay => "relay",
            CandidateType::Unspecified => "Unknown candidate type",
        };
        write!(f, "{}", s)
    }
}

impl Default for CandidateType {
    fn default() -> Self {
        CandidateType::Unspecified
    }
}

impl CandidateType {
    // preference returns the preference weight of a CandidateType
    //
    // 4.1.2.2.  Guidelines for Choosing Type and Local Preferences
    // The RECOMMENDED values are 126 for host candidates, 100
    // for server reflexive candidates, 110 for peer reflexive candidates,
    // and 0 for relayed candidates.
    pub fn preference(&self) -> u16 {
        match *self {
            CandidateType::Host => 126,
            CandidateType::PeerReflexive => 110,
            CandidateType::ServerReflexive => 100,
            CandidateType::Relay | CandidateType::Unspecified => 0,
        }
    }
}

pub(crate) fn contains_candidate_type(
    candidate_type: CandidateType,
    candidate_type_list: &[CandidateType],
) -> bool {
    if candidate_type_list.is_empty() {
        return false;
    }
    for ct in candidate_type_list {
        if *ct == candidate_type {
            return true;
        }
    }
    false
}

// CandidateRelatedAddress convey transport addresses related to the
// candidate, useful for diagnostics and other purposes.
#[derive(PartialEq, Debug, Clone)]
pub struct CandidateRelatedAddress {
    pub address: String,
    pub port: u16,
}

// String makes CandidateRelatedAddress printable
impl fmt::Display for CandidateRelatedAddress {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, " related {}:{}", self.address, self.port)
    }
}

// CandidatePairState represent the ICE candidate pair state
#[derive(PartialEq, Debug, Copy, Clone)]
pub enum CandidatePairState {
    // CandidatePairStateWaiting means a check has not been performed for
    // this pair
    Waiting,

    // CandidatePairStateInProgress means a check has been sent for this pair,
    // but the transaction is in progress.
    InProgress,

    // CandidatePairStateFailed means a check for this pair was already done
    // and failed, either never producing any response or producing an unrecoverable
    // failure response.
    Failed,

    // CandidatePairStateSucceeded means a check for this pair was already
    // done and produced a successful result.
    Succeeded,
}

impl Default for CandidatePairState {
    fn default() -> Self {
        CandidatePairState::Waiting
    }
}

impl fmt::Display for CandidatePairState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match *self {
            CandidatePairState::Waiting => "waiting",
            CandidatePairState::InProgress => "in-progress",
            CandidatePairState::Failed => "failed",
            CandidatePairState::Succeeded => "succeeded",
        };

        write!(f, "{}", s)
    }
}

// candidatePair represents a combination of a local and remote candidate
pub(crate) struct CandidatePair {
    pub(crate) ice_role_controlling: bool,
    pub(crate) remote: Arc<dyn Candidate + Send + Sync>,
    pub(crate) local: Arc<dyn Candidate + Send + Sync>,
    pub(crate) binding_request_count: u16,
    pub(crate) state: CandidatePairState,
    pub(crate) nominated: bool,
}

impl Clone for CandidatePair {
    fn clone(&self) -> Self {
        CandidatePair {
            ice_role_controlling: self.ice_role_controlling,
            remote: self.remote.clone(),
            local: self.local.clone(),
            state: self.state,
            binding_request_count: self.binding_request_count,
            nominated: self.nominated,
        }
    }
}

impl Default for CandidatePair {
    fn default() -> Self {
        CandidatePair {
            ice_role_controlling: false,
            remote: Arc::new(CandidateBase::default()),
            local: Arc::new(CandidateBase::default()),
            state: CandidatePairState::Waiting,
            binding_request_count: 0,
            nominated: false,
        }
    }
}

impl fmt::Debug for CandidatePair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "prio {} (local, prio {}) {} <-> {} (remote, prio {})",
            self.priority(),
            self.local.priority(),
            self.local,
            self.remote,
            self.remote.priority()
        )
    }
}

impl fmt::Display for CandidatePair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "prio {} (local, prio {}) {} <-> {} (remote, prio {})",
            self.priority(),
            self.local.priority(),
            self.local,
            self.remote,
            self.remote.priority()
        )
    }
}

impl PartialEq for CandidatePair {
    fn eq(&self, other: &CandidatePair) -> bool {
        self.local.equal(&*other.local) && self.remote.equal(&*other.remote)
    }
}

impl CandidatePair {
    pub fn new(
        local: Arc<dyn Candidate + Send + Sync>,
        remote: Arc<dyn Candidate + Send + Sync>,
        controlling: bool,
    ) -> Self {
        CandidatePair {
            ice_role_controlling: controlling,
            remote,
            local,
            state: CandidatePairState::Waiting,
            binding_request_count: 0,
            nominated: false,
        }
    }

    // RFC 5245 - 5.7.2.  Computing Pair Priority and Ordering Pairs
    // Let G be the priority for the candidate provided by the controlling
    // agent.  Let D be the priority for the candidate provided by the
    // controlled agent.
    // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
    pub fn priority(&self) -> u64 {
        let (g, d) = if self.ice_role_controlling {
            (self.local.priority(), self.remote.priority())
        } else {
            (self.remote.priority(), self.local.priority())
        };

        // 1<<32 overflows uint32; and if both g && d are
        // maxUint32, this result would overflow uint64
        ((1 << 32u64) - 1) * std::cmp::min(g, d) as u64
            + 2 * std::cmp::max(g, d) as u64
            + if g > d { 1 } else { 0 }
    }

    pub async fn write(&self, b: &[u8]) -> Result<usize, Error> {
        self.local.write_to(b, &*self.remote).await
    }
}