1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
//! Provide traits and structs to abstract RFC 1982 serial number arithmetic.  This is use, for
//! example, to compare transmission sequence numbers (TSNs).

use std::cmp::Ordering;
use std::fmt::{self, Debug, Display, Formatter, LowerHex, UpperHex};
use std::hash::{Hash, Hasher};
use std::ops::{Add, AddAssign, Sub, SubAssign};

pub trait SerialNumber:
    Copy
    + Debug
    + Display
    + Hash
    + LowerHex
    + UpperHex
    + Ord
    + PartialOrd
    + Add<Output = Self>
    + Sub<Output = Self>
    + AddAssign
    + SubAssign
{
    const THRESHOLD: Self;
    fn wrapping_add(self, rhs: Self) -> Self;
    fn wrapping_sub(self, rhs: Self) -> Self;
    fn next(self) -> Self;
    fn previous(self) -> Self;
}

impl SerialNumber for u32 {
    const THRESHOLD: u32 = 0x8000_0000;
    fn wrapping_add(self, rhs: Self) -> Self {
        u32::wrapping_add(self, rhs)
    }
    fn wrapping_sub(self, rhs: Self) -> Self {
        u32::wrapping_sub(self, rhs)
    }
    fn next(self) -> Self {
        u32::wrapping_add(self, 1u32)
    }
    fn previous(self) -> Self {
        u32::wrapping_sub(self, 1u32)
    }
}

impl SerialNumber for u16 {
    const THRESHOLD: u16 = 0x8000;
    fn wrapping_add(self, rhs: Self) -> Self {
        u16::wrapping_add(self, rhs)
    }
    fn wrapping_sub(self, rhs: Self) -> Self {
        u16::wrapping_sub(self, rhs)
    }
    fn next(self) -> Self {
        u16::wrapping_add(self, 1u16)
    }
    fn previous(self) -> Self {
        u16::wrapping_sub(self, 1u16)
    }
}

/// Implement RFC 1982 "Serial Number Arithmetic"
#[derive(Clone, Copy)]
pub struct Serial<T: SerialNumber>(pub T);

impl<T: SerialNumber> Serial<T> {
    pub fn new(n: T) -> Self {
        Serial(n)
    }
    pub fn incr(&mut self) {
        *self = Serial(self.0.next());
    }
    pub fn decr(&mut self) {
        *self = Serial(self.0.previous());
    }
    pub fn next(&self) -> Serial<T> {
        Serial(self.0.next())
    }
    pub fn previous(&self) -> Serial<T> {
        Serial(self.0.previous())
    }
}

impl From<u32> for Serial<u32> {
    fn from(n: u32) -> Serial<u32> {
        Serial(n)
    }
}

impl From<Serial<u32>> for u32 {
    fn from(s: Serial<u32>) -> u32 {
        s.0
    }
}

impl From<u16> for Serial<u16> {
    fn from(n: u16) -> Serial<u16> {
        Serial(n)
    }
}

impl From<Serial<u16>> for u16 {
    fn from(s: Serial<u16>) -> u16 {
        s.0
    }
}

impl<T: SerialNumber> Ord for Serial<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        if self.0 == other.0 {
            Ordering::Equal
        } else if self.0 < other.0 {
            if other.0 - self.0 <= T::THRESHOLD {
                Ordering::Less
            } else {
                Ordering::Greater
            }
        } else {
            if self.0 - other.0 > T::THRESHOLD {
                Ordering::Less
            } else {
                Ordering::Greater
            }
        }
    }
}

impl<T: SerialNumber> PartialOrd for Serial<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T: SerialNumber> PartialEq for Serial<T> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<T: SerialNumber> Eq for Serial<T> {}

impl<T: SerialNumber> Hash for Serial<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl<T: SerialNumber> Add for Serial<T> {
    type Output = Serial<T>;

    fn add(self, other: Serial<T>) -> Serial<T> {
        Serial(self.0.wrapping_add(other.0))
    }
}

impl<T: SerialNumber> Add<T> for Serial<T> {
    type Output = Serial<T>;

    fn add(self, other: T) -> Serial<T> {
        Serial(self.0.wrapping_add(other))
    }
}

impl<T: SerialNumber> Sub for Serial<T> {
    type Output = Serial<T>;

    fn sub(self, other: Serial<T>) -> Serial<T> {
        Serial(self.0.wrapping_sub(other.0))
    }
}

impl<T: SerialNumber> Sub<T> for Serial<T> {
    type Output = Serial<T>;

    fn sub(self, other: T) -> Serial<T> {
        Serial(self.0.wrapping_sub(other))
    }
}

impl<T: SerialNumber> AddAssign<T> for Serial<T> {
    fn add_assign(&mut self, other: T) {
        *self = Serial(self.0.wrapping_add(other))
    }
}

impl<T: SerialNumber> SubAssign<T> for Serial<T> {
    fn sub_assign(&mut self, other: T) {
        *self = Serial(self.0.wrapping_sub(other))
    }
}

impl<T: SerialNumber> Display for Serial<T> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(&self.0, f)
    }
}

impl<T: SerialNumber> Debug for Serial<T> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Debug::fmt(&self.0, f)
    }
}

impl<T: SerialNumber> LowerHex for Serial<T> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        LowerHex::fmt(&self.0, f)
    }
}

impl<T: SerialNumber> UpperHex for Serial<T> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        UpperHex::fmt(&self.0, f)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const COMPARISON_PAIRS: &[(u32, u32, Ordering)] = &[
        // equal
        (0x0000_0000, 0x0000_0000, Ordering::Equal),
        (0x0000_0001, 0x0000_0001, Ordering::Equal),
        (0x7FFF_FFFF, 0x7FFF_FFFF, Ordering::Equal),
        (0x8000_0000, 0x8000_0000, Ordering::Equal),
        (0x8000_0001, 0x8000_0001, Ordering::Equal),
        (0xFFFF_FFFE, 0xFFFF_FFFE, Ordering::Equal),
        (0xFFFF_FFFF, 0xFFFF_FFFF, Ordering::Equal),
        // less than
        (0x0000_0000, 0x0000_0001, Ordering::Less),
        (0x0000_0001, 0x0000_0002, Ordering::Less),
        (0x0000_0002, 0x0000_0003, Ordering::Less),
        (0x0000_0003, 0x0000_0004, Ordering::Less),
        (0xFFFF_FFFB, 0xFFFF_FFFC, Ordering::Less),
        (0xFFFF_FFFC, 0xFFFF_FFFD, Ordering::Less),
        (0xFFFF_FFFD, 0xFFFF_FFFE, Ordering::Less),
        (0xFFFF_FFFE, 0xFFFF_FFFF, Ordering::Less),
        (0x0000_0000, 0x7FFF_FFFF, Ordering::Less),
        (0x0000_0001, 0x8000_0000, Ordering::Less),
        (0x0000_0002, 0x8000_0001, Ordering::Less),
        (0x0000_0003, 0x8000_0002, Ordering::Less),
        // greater than
        (0x0000_0001, 0x0000_0000, Ordering::Greater),
        (0x0000_0002, 0x0000_0001, Ordering::Greater),
        (0x0000_0003, 0x0000_0002, Ordering::Greater),
        (0x0000_0004, 0x0000_0003, Ordering::Greater),
        (0xFFFF_FFFC, 0xFFFF_FFFB, Ordering::Greater),
        (0xFFFF_FFFD, 0xFFFF_FFFC, Ordering::Greater),
        (0xFFFF_FFFE, 0xFFFF_FFFD, Ordering::Greater),
        (0xFFFF_FFFF, 0xFFFF_FFFE, Ordering::Greater),
        (0x7FFF_FFFF, 0x0000_0000, Ordering::Greater),
        (0x8000_0000, 0x0000_0001, Ordering::Greater),
        (0x8000_0001, 0x0000_0002, Ordering::Greater),
        (0x8000_0002, 0x0000_0003, Ordering::Greater),
        // less than (via modulus)
        (0xFFFF_FFFF, 0x0000_0000, Ordering::Less),
        (0xFFFF_FFFE, 0x0000_0001, Ordering::Less),
        (0xFFFF_FFFD, 0x0000_0002, Ordering::Less),
        (0xFFFF_FFFC, 0x0000_0003, Ordering::Less),
        (0x8000_0001, 0x0000_0000, Ordering::Less),
        (0x8000_0002, 0x0000_0001, Ordering::Less),
        (0x8000_0003, 0x0000_0002, Ordering::Less),
        (0x8000_0004, 0x0000_0003, Ordering::Less),
        // greater than (via modulus)
        (0x0000_0000, 0xFFFF_FFFF, Ordering::Greater),
        (0x0000_0001, 0xFFFF_FFFE, Ordering::Greater),
        (0x0000_0002, 0xFFFF_FFFD, Ordering::Greater),
        (0x0000_0003, 0xFFFF_FFFC, Ordering::Greater),
        (0x0000_0000, 0x8000_0001, Ordering::Greater),
        (0x0000_0001, 0x8000_0002, Ordering::Greater),
        (0x0000_0002, 0x8000_0003, Ordering::Greater),
        (0x0000_0003, 0x8000_0004, Ordering::Greater),
        // Undefined comparisons
        // NOTE: For simplicity, we return either Less or Greater for
        // undefined comparisons, to provide the illusion of a total
        // ordering.  This is allowed in RFC 1982:
        //     "Thus the problem case is left undefined, implementations
        //     are free to return either result, or to flag an error,
        //     and users must take care not to depend on any particular
        //     outcome."
        (0xFFFF_FFFE, 0x7FFF_FFFE, Ordering::Greater),
        (0xFFFF_FFFF, 0x7FFF_FFFF, Ordering::Greater),
        (0x0000_0000, 0x8000_0000, Ordering::Less),
        (0x0000_0001, 0x8000_0001, Ordering::Less),
        (0x0000_0002, 0x8000_0002, Ordering::Less),
        (0x7FFF_FFFE, 0xFFFF_FFFE, Ordering::Less),
        (0x7FFF_FFFF, 0xFFFF_FFFF, Ordering::Less),
        (0x8000_0000, 0x0000_0000, Ordering::Greater),
        (0x8000_0001, 0x0000_0001, Ordering::Greater),
        (0x8000_0002, 0x0000_0002, Ordering::Greater),
    ];

    /// Collapse a u32 into a u16 by removing the middle 16 bits.  This produces
    /// useful u16 test cases from the existing u32 test cases.
    fn collapse(n: u32) -> u16 {
        ((n >> 16 & 0xFF00) | (n & 0xFF)) as u16
    }

    #[test]
    fn test_serial_compare() {
        for &(a, b, expected) in COMPARISON_PAIRS {
            // u32
            let s1 = Serial(a);
            let s2 = Serial(b);
            assert!(s1.cmp(&s2) == expected);

            // u16
            let s1 = Serial(collapse(a));
            let s2 = Serial(collapse(b));
            assert!(s1.cmp(&s2) == expected);
        }
    }

    const ADD_PAIRS: &[(u32, u32, u32)] = &[
        // small adds
        (0xFFFF_FFFE, 0x0000_0000, 0xFFFF_FFFE),
        (0xFFFF_FFFE, 0x0000_0001, 0xFFFF_FFFF),
        (0xFFFF_FFFE, 0x0000_0002, 0x0000_0000),
        (0xFFFF_FFFF, 0x0000_0000, 0xFFFF_FFFF),
        (0xFFFF_FFFF, 0x0000_0001, 0x0000_0000),
        (0xFFFF_FFFF, 0x0000_0002, 0x0000_0001),
        (0x0000_0000, 0x0000_0000, 0x0000_0000),
        (0x0000_0000, 0x0000_0001, 0x0000_0001),
        (0x0000_0000, 0x0000_0002, 0x0000_0002),
        (0x0000_0001, 0x0000_0000, 0x0000_0001),
        (0x0000_0001, 0x0000_0001, 0x0000_0002),
        (0x0000_0001, 0x0000_0002, 0x0000_0003),
        // large adds
        (0xFFFF_FFFF, 0x7FFF_FFFF, 0x7FFF_FFFE),
        (0xFFFF_FFFF, 0x8000_0000, 0x7FFF_FFFF),
        (0xFFFF_FFFF, 0x8000_0001, 0x8000_0000),
        (0x0000_0000, 0x7FFF_FFFF, 0x7FFF_FFFF),
        (0x0000_0000, 0x8000_0000, 0x8000_0000),
        (0x0000_0000, 0x8000_0001, 0x8000_0001),
        (0x0000_0001, 0x7FFF_FFFF, 0x8000_0000),
        (0x0000_0001, 0x8000_0000, 0x8000_0001),
        (0x0000_0001, 0x8000_0001, 0x8000_0002),
    ];

    #[test]
    fn test_serial_add() {
        for &(a, b, expected) in ADD_PAIRS {
            let s1 = Serial(a);
            let s2 = Serial(b);
            assert!(s1.add(s2) == Serial(expected));
            assert!(s2.add(s1) == Serial(expected));
        }
    }

    #[test]
    fn test_ops() {
        assert!(Serial(1u32) + Serial(2) == Serial(3));
        assert!(Serial(3u32) - Serial(2) == Serial(1));
        assert!(Serial(1u32) + 2 == Serial(3));
        assert!(Serial(3u32) - 2 == Serial(1));

        assert!(Serial(0xFFFF_FFFFu32) + Serial(1) == Serial(0));
        assert!(Serial(0xFFFF_FFFFu32) + 1 == Serial(0));
        assert!(Serial(0xFFFF_FFFFu32) + Serial(2) == Serial(1));
        assert!(Serial(0xFFFF_FFFFu32) + 2 == Serial(1));
        assert!(Serial(0x0000_0000u32) - Serial(1) == Serial(0xFFFF_FFFF));
        assert!(Serial(0x0000_0000u32) - 1 == Serial(0xFFFF_FFFF));
        assert!(Serial(0x0000_0001u32) - Serial(2) == Serial(0xFFFF_FFFF));
        assert!(Serial(0x0000_0001u32) - 2 == Serial(0xFFFF_FFFF));

        let mut s = Serial(0xFFFF_FFFFu32);
        assert_eq!(s, Serial(0xFFFF_FFFF));
        s += 1;
        assert_eq!(s, Serial(0x0000_0000));
        s += 1;
        assert_eq!(s, Serial(0x0000_0001));
        s -= 1;
        assert_eq!(s, Serial(0x0000_0000));
        s -= 1;
        assert_eq!(s, Serial(0xFFFF_FFFF));
    }
}