1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#[cfg(test)]
mod nat_test;

use crate::error::*;
use crate::vnet::chunk::Chunk;
use crate::vnet::net::UDP_STR;

use std::collections::{HashMap, HashSet};
use std::net::IpAddr;
use std::ops::Add;
use std::sync::atomic::{AtomicU16, Ordering};
use std::sync::Arc;
use std::time::SystemTime;
use tokio::sync::Mutex;
use tokio::time::Duration;

const DEFAULT_NAT_MAPPING_LIFE_TIME: Duration = Duration::from_secs(30);

// EndpointDependencyType defines a type of behavioral dependendency on the
// remote endpoint's IP address or port number. This is used for the two
// kinds of behaviors:
//  - Port Mapping behavior
//  - Filtering behavior
// See: https://tools.ietf.org/html/rfc4787
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum EndpointDependencyType {
    // EndpointIndependent means the behavior is independent of the endpoint's address or port
    EndpointIndependent,
    // EndpointAddrDependent means the behavior is dependent on the endpoint's address
    EndpointAddrDependent,
    // EndpointAddrPortDependent means the behavior is dependent on the endpoint's address and port
    EndpointAddrPortDependent,
}

impl Default for EndpointDependencyType {
    fn default() -> Self {
        EndpointDependencyType::EndpointIndependent
    }
}

// NATMode defines basic behavior of the NAT
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum NatMode {
    // NATModeNormal means the NAT behaves as a standard NAPT (RFC 2663).
    Normal,
    // NATModeNAT1To1 exhibits 1:1 DNAT where the external IP address is statically mapped to
    // a specific local IP address with port number is preserved always between them.
    // When this mode is selected, mapping_behavior, filtering_behavior, port_preservation and
    // mapping_life_time of NATType are ignored.
    Nat1To1,
}

impl Default for NatMode {
    fn default() -> Self {
        NatMode::Normal
    }
}

// NATType has a set of parameters that define the behavior of NAT.
#[derive(Default, Debug, Copy, Clone)]
pub struct NatType {
    pub mode: NatMode,
    pub mapping_behavior: EndpointDependencyType,
    pub filtering_behavior: EndpointDependencyType,
    pub hair_pining: bool,       // Not implemented yet
    pub port_preservation: bool, // Not implemented yet
    pub mapping_life_time: Duration,
}

#[derive(Default, Debug, Clone)]
pub(crate) struct NatConfig {
    pub(crate) name: String,
    pub(crate) nat_type: NatType,
    pub(crate) mapped_ips: Vec<IpAddr>, // mapped IPv4
    pub(crate) local_ips: Vec<IpAddr>,  // local IPv4, required only when the mode is NATModeNAT1To1
}

#[derive(Debug, Clone)]
pub(crate) struct Mapping {
    proto: String,                        // "udp" or "tcp"
    local: String,                        // "<local-ip>:<local-port>"
    mapped: String,                       // "<mapped-ip>:<mapped-port>"
    bound: String,                        // key: "[<remote-ip>[:<remote-port>]]"
    filters: Arc<Mutex<HashSet<String>>>, // key: "[<remote-ip>[:<remote-port>]]"
    expires: Arc<Mutex<SystemTime>>,      // time to expire
}

impl Default for Mapping {
    fn default() -> Self {
        Mapping {
            proto: String::new(),                             // "udp" or "tcp"
            local: String::new(),                             // "<local-ip>:<local-port>"
            mapped: String::new(),                            // "<mapped-ip>:<mapped-port>"
            bound: String::new(), // key: "[<remote-ip>[:<remote-port>]]"
            filters: Arc::new(Mutex::new(HashSet::new())), // key: "[<remote-ip>[:<remote-port>]]"
            expires: Arc::new(Mutex::new(SystemTime::now())), // time to expire
        }
    }
}

#[derive(Default, Debug, Clone)]
pub(crate) struct NetworkAddressTranslator {
    pub(crate) name: String,
    pub(crate) nat_type: NatType,
    pub(crate) mapped_ips: Vec<IpAddr>, // mapped IPv4
    pub(crate) local_ips: Vec<IpAddr>,  // local IPv4, required only when the mode is NATModeNAT1To1
    pub(crate) outbound_map: Arc<Mutex<HashMap<String, Arc<Mapping>>>>, // key: "<proto>:<local-ip>:<local-port>[:remote-ip[:remote-port]]
    pub(crate) inbound_map: Arc<Mutex<HashMap<String, Arc<Mapping>>>>, // key: "<proto>:<mapped-ip>:<mapped-port>"
    pub(crate) udp_port_counter: Arc<AtomicU16>,
}

impl NetworkAddressTranslator {
    pub(crate) fn new(config: NatConfig) -> Result<Self> {
        let mut nat_type = config.nat_type;

        if nat_type.mode == NatMode::Nat1To1 {
            // 1:1 NAT behavior
            nat_type.mapping_behavior = EndpointDependencyType::EndpointIndependent;
            nat_type.filtering_behavior = EndpointDependencyType::EndpointIndependent;
            nat_type.port_preservation = true;
            nat_type.mapping_life_time = Duration::from_secs(0);

            if config.mapped_ips.is_empty() {
                return Err(Error::ErrNatRequriesMapping);
            }
            if config.mapped_ips.len() != config.local_ips.len() {
                return Err(Error::ErrMismatchLengthIp);
            }
        } else {
            // Normal (NAPT) behavior
            nat_type.mode = NatMode::Normal;
            if nat_type.mapping_life_time == Duration::from_secs(0) {
                nat_type.mapping_life_time = DEFAULT_NAT_MAPPING_LIFE_TIME;
            }
        }

        Ok(NetworkAddressTranslator {
            name: config.name,
            nat_type,
            mapped_ips: config.mapped_ips,
            local_ips: config.local_ips,
            outbound_map: Arc::new(Mutex::new(HashMap::new())),
            inbound_map: Arc::new(Mutex::new(HashMap::new())),
            udp_port_counter: Arc::new(AtomicU16::new(0)),
        })
    }

    pub(crate) fn get_paired_mapped_ip(&self, loc_ip: &IpAddr) -> Option<&IpAddr> {
        for (i, ip) in self.local_ips.iter().enumerate() {
            if ip == loc_ip {
                return self.mapped_ips.get(i);
            }
        }
        None
    }

    pub(crate) fn get_paired_local_ip(&self, mapped_ip: &IpAddr) -> Option<&IpAddr> {
        for (i, ip) in self.mapped_ips.iter().enumerate() {
            if ip == mapped_ip {
                return self.local_ips.get(i);
            }
        }
        None
    }

    pub(crate) async fn translate_outbound(
        &self,
        from: &(dyn Chunk + Send + Sync),
    ) -> Result<Option<Box<dyn Chunk + Send + Sync>>> {
        let mut to = from.clone_to();

        if from.network() == UDP_STR {
            if self.nat_type.mode == NatMode::Nat1To1 {
                // 1:1 NAT behavior
                let src_addr = from.source_addr();
                if let Some(src_ip) = self.get_paired_mapped_ip(&src_addr.ip()) {
                    to.set_source_addr(&format!("{}:{}", src_ip, src_addr.port()))?;
                } else {
                    log::debug!(
                        "[{}] drop outbound chunk {} with not route",
                        self.name,
                        from
                    );
                    return Ok(None); // silently discard
                }
            } else {
                // Normal (NAPT) behavior
                let bound = match self.nat_type.mapping_behavior {
                    EndpointDependencyType::EndpointIndependent => "".to_owned(),
                    EndpointDependencyType::EndpointAddrDependent => {
                        from.get_destination_ip().to_string()
                    }
                    EndpointDependencyType::EndpointAddrPortDependent => {
                        from.destination_addr().to_string()
                    }
                };

                let filter_key = match self.nat_type.filtering_behavior {
                    EndpointDependencyType::EndpointIndependent => "".to_owned(),
                    EndpointDependencyType::EndpointAddrDependent => {
                        from.get_destination_ip().to_string()
                    }
                    EndpointDependencyType::EndpointAddrPortDependent => {
                        from.destination_addr().to_string()
                    }
                };

                let o_key = format!("udp:{}:{}", from.source_addr(), bound);
                let name = self.name.clone();

                let m_mapped = if let Some(m) = self.find_outbound_mapping(&o_key).await {
                    let mut filters = m.filters.lock().await;
                    if !filters.contains(&filter_key) {
                        log::debug!(
                            "[{}] permit access from {} to {}",
                            name,
                            filter_key,
                            m.mapped
                        );
                        filters.insert(filter_key);
                    }
                    m.mapped.clone()
                } else {
                    // Create a new Mapping
                    let udp_port_counter = self.udp_port_counter.load(Ordering::SeqCst);
                    let mapped_port = 0xC000 + udp_port_counter;
                    if udp_port_counter == 0xFFFF - 0xC000 {
                        self.udp_port_counter.store(0, Ordering::SeqCst);
                    } else {
                        self.udp_port_counter.fetch_add(1, Ordering::SeqCst);
                    }

                    let m = if let Some(mapped_ips_first) = self.mapped_ips.first() {
                        Mapping {
                            proto: "udp".to_owned(),
                            local: from.source_addr().to_string(),
                            bound,
                            mapped: format!("{}:{}", mapped_ips_first, mapped_port),
                            filters: Arc::new(Mutex::new(HashSet::new())),
                            expires: Arc::new(Mutex::new(
                                SystemTime::now().add(self.nat_type.mapping_life_time),
                            )),
                        }
                    } else {
                        return Err(Error::ErrNatRequriesMapping);
                    };

                    {
                        let mut outbound_map = self.outbound_map.lock().await;
                        outbound_map.insert(o_key.clone(), Arc::new(m.clone()));
                    }

                    let i_key = format!("udp:{}", m.mapped);

                    log::debug!(
                        "[{}] created a new NAT binding oKey={} i_key={}",
                        self.name,
                        o_key,
                        i_key
                    );
                    log::debug!(
                        "[{}] permit access from {} to {}",
                        self.name,
                        filter_key,
                        m.mapped
                    );

                    {
                        let mut filters = m.filters.lock().await;
                        filters.insert(filter_key);
                    }

                    let m_mapped = m.mapped.clone();
                    {
                        let mut inbound_map = self.inbound_map.lock().await;
                        inbound_map.insert(i_key, Arc::new(m));
                    }
                    m_mapped
                };

                to.set_source_addr(&m_mapped)?;
            }

            log::debug!(
                "[{}] translate outbound chunk from {} to {}",
                self.name,
                from,
                to
            );

            return Ok(Some(to));
        }

        Err(Error::ErrNonUdpTranslationNotSupported)
    }

    pub(crate) async fn translate_inbound(
        &self,
        from: &(dyn Chunk + Send + Sync),
    ) -> Result<Option<Box<dyn Chunk + Send + Sync>>> {
        let mut to = from.clone_to();

        if from.network() == UDP_STR {
            if self.nat_type.mode == NatMode::Nat1To1 {
                // 1:1 NAT behavior
                let dst_addr = from.destination_addr();
                if let Some(dst_ip) = self.get_paired_local_ip(&dst_addr.ip()) {
                    let dst_port = from.destination_addr().port();
                    to.set_destination_addr(&format!("{}:{}", dst_ip, dst_port))?;
                } else {
                    return Err(Error::Other(format!(
                        "drop {} as {:?}",
                        from,
                        Error::ErrNoAssociatedLocalAddress
                    )));
                }
            } else {
                // Normal (NAPT) behavior
                let filter_key = match self.nat_type.filtering_behavior {
                    EndpointDependencyType::EndpointIndependent => "".to_owned(),
                    EndpointDependencyType::EndpointAddrDependent => {
                        from.get_source_ip().to_string()
                    }
                    EndpointDependencyType::EndpointAddrPortDependent => {
                        from.source_addr().to_string()
                    }
                };

                let i_key = format!("udp:{}", from.destination_addr());
                if let Some(m) = self.find_inbound_mapping(&i_key).await {
                    {
                        let filters = m.filters.lock().await;
                        if !filters.contains(&filter_key) {
                            return Err(Error::Other(format!(
                                "drop {} as the remote {} {:?}",
                                from,
                                filter_key,
                                Error::ErrHasNoPermission
                            )));
                        }
                    }

                    // See RFC 4847 Section 4.3.  Mapping Refresh
                    // a) Inbound refresh may be useful for applications with no outgoing
                    //   UDP traffic.  However, allowing inbound refresh may allow an
                    //   external attacker or misbehaving application to keep a Mapping
                    //   alive indefinitely.  This may be a security risk.  Also, if the
                    //   process is repeated with different ports, over time, it could
                    //   use up all the ports on the NAT.

                    to.set_destination_addr(&m.local)?;
                } else {
                    return Err(Error::Other(format!(
                        "drop {} as {:?}",
                        from,
                        Error::ErrNoNatBindingFound
                    )));
                }
            }

            log::debug!(
                "[{}] translate inbound chunk from {} to {}",
                self.name,
                from,
                to
            );

            return Ok(Some(to));
        }

        Err(Error::ErrNonUdpTranslationNotSupported)
    }

    // caller must hold the mutex
    pub(crate) async fn find_outbound_mapping(&self, o_key: &str) -> Option<Arc<Mapping>> {
        let mapping_life_time = self.nat_type.mapping_life_time;
        let mut expired = false;
        let (in_key, out_key) = {
            let outbound_map = self.outbound_map.lock().await;
            if let Some(m) = outbound_map.get(o_key) {
                let now = SystemTime::now();

                {
                    let mut expires = m.expires.lock().await;
                    // check if this Mapping is expired
                    if now.duration_since(*expires).is_ok() {
                        expired = true;
                    } else {
                        *expires = now.add(mapping_life_time);
                    }
                }
                (
                    NetworkAddressTranslator::get_inbound_map_key(m),
                    NetworkAddressTranslator::get_outbound_map_key(m),
                )
            } else {
                (String::new(), String::new())
            }
        };

        if expired {
            {
                let mut inbound_map = self.inbound_map.lock().await;
                inbound_map.remove(&in_key);
            }
            {
                let mut outbound_map = self.outbound_map.lock().await;
                outbound_map.remove(&out_key);
            }
        }

        let outbound_map = self.outbound_map.lock().await;
        outbound_map.get(o_key).map(Arc::clone)
    }

    // caller must hold the mutex
    pub(crate) async fn find_inbound_mapping(&self, i_key: &str) -> Option<Arc<Mapping>> {
        let mut expired = false;
        let (in_key, out_key) = {
            let inbound_map = self.inbound_map.lock().await;
            if let Some(m) = inbound_map.get(i_key) {
                let now = SystemTime::now();

                {
                    let expires = m.expires.lock().await;
                    // check if this Mapping is expired
                    if now.duration_since(*expires).is_ok() {
                        expired = true;
                    }
                }
                (
                    NetworkAddressTranslator::get_inbound_map_key(m),
                    NetworkAddressTranslator::get_outbound_map_key(m),
                )
            } else {
                (String::new(), String::new())
            }
        };

        if expired {
            {
                let mut inbound_map = self.inbound_map.lock().await;
                inbound_map.remove(&in_key);
            }
            {
                let mut outbound_map = self.outbound_map.lock().await;
                outbound_map.remove(&out_key);
            }
        }

        let inbound_map = self.inbound_map.lock().await;
        inbound_map.get(i_key).map(Arc::clone)
    }

    // caller must hold the mutex
    fn get_outbound_map_key(m: &Mapping) -> String {
        format!("{}:{}:{}", m.proto, m.local, m.bound)
    }

    fn get_inbound_map_key(m: &Mapping) -> String {
        format!("{}:{}", m.proto, m.mapped)
    }

    async fn inbound_map_len(&self) -> usize {
        let inbound_map = self.inbound_map.lock().await;
        inbound_map.len()
    }

    async fn outbound_map_len(&self) -> usize {
        let outbound_map = self.outbound_map.lock().await;
        outbound_map.len()
    }
}