1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/*! Allocating resource ids, and tracking the resources they refer to.
The `wgpu_core` API uses identifiers of type [`Id<R>`] to refer to
resources of type `R`. For example, [`id::DeviceId`] is an alias for
`Id<Device<Empty>>`, and [`id::BufferId`] is an alias for
`Id<Buffer<Empty>>`. `Id` implements `Copy`, `Hash`, `Eq`, `Ord`, and
of course `Debug`.
Each `Id` contains not only an index for the resource it denotes but
also a [`Backend`] indicating which `wgpu` backend it belongs to. You
can use the [`gfx_select`] macro to dynamically dispatch on an id's
backend to a function specialized at compile time for a specific
backend. See that macro's documentation for details.
`Id`s also incorporate a generation number, for additional validation.
The resources to which identifiers refer are freed explicitly.
Attempting to use an identifier for a resource that has been freed
elicits an error result.
## Assigning ids to resources
The users of `wgpu_core` generally want resource ids to be assigned
in one of two ways:
- Users like `wgpu` want `wgpu_core` to assign ids to resources itself.
For example, `wgpu` expects to call `Global::device_create_buffer`
and have the return value indicate the newly created buffer's id.
- Users like `player` and Firefox want to allocate ids themselves, and
pass `Global::device_create_buffer` and friends the id to assign the
new resource.
To accommodate either pattern, `wgpu_core` methods that create
resources all expect an `id_in` argument that the caller can use to
specify the id, and they all return the id used. For example, the
declaration of `Global::device_create_buffer` looks like this:
```ignore
impl<G: GlobalIdentityHandlerFactory> Global<G> {
/* ... */
pub fn device_create_buffer<A: HalApi>(
&self,
device_id: id::DeviceId,
desc: &resource::BufferDescriptor,
id_in: Input<G, id::BufferId>,
) -> (id::BufferId, Option<resource::CreateBufferError>) {
/* ... */
}
/* ... */
}
```
Users that want to assign resource ids themselves pass in the id they
want as the `id_in` argument, whereas users that want `wgpu_core`
itself to choose ids always pass `()`. In either case, the id
ultimately assigned is returned as the first element of the tuple.
Producing true identifiers from `id_in` values is the job of an
[`IdentityHandler`] implementation, which has an associated type
[`Input`] saying what type of `id_in` values it accepts, and a
[`process`] method that turns such values into true identifiers of
type `I`. There are two kinds of `IdentityHandler`s:
- Users that want `wgpu_core` to assign ids generally use
[`IdentityManager`] ([wrapped in a mutex]). Its `Input` type is
`()`, and it tracks assigned ids and generation numbers as
necessary. (This is what `wgpu` does.)
- Users that want to assign ids themselves use an `IdentityHandler`
whose `Input` type is `I` itself, and whose `process` method simply
passes the `id_in` argument through unchanged. For example, the
`player` crate uses an `IdentityPassThrough` type whose `process`
method simply adjusts the id's backend (since recordings can be
replayed on a different backend than the one they were created on)
but passes the rest of the id's content through unchanged.
Because an `IdentityHandler<I>` can only create ids for a single
resource type `I`, constructing a [`Global`] entails constructing a
separate `IdentityHandler<I>` for each resource type `I` that the
`Global` will manage: an `IdentityHandler<DeviceId>`, an
`IdentityHandler<TextureId>`, and so on.
The [`Global::new`] function could simply take a large collection of
`IdentityHandler<I>` implementations as arguments, but that would be
ungainly. Instead, `Global::new` expects a `factory` argument that
implements the [`GlobalIdentityHandlerFactory`] trait, which extends
[`IdentityHandlerFactory<I>`] for each resource id type `I`. This
trait, in turn, has a `spawn` method that constructs an
`IdentityHandler<I>` for the `Global` to use.
What this means is that the types of resource creation functions'
`id_in` arguments depend on the `Global`'s `G` type parameter. A
`Global<G>`'s `IdentityHandler<I>` implementation is:
```ignore
<G as IdentityHandlerFactory<I>>::Filter
```
where `Filter` is an associated type of the `IdentityHandlerFactory` trait.
Thus, its `id_in` type is:
```ignore
<<G as IdentityHandlerFactory<I>>::Filter as IdentityHandler<I>>::Input
```
The [`Input<G, I>`] type is an alias for this construction.
## Id allocation and streaming
Perhaps surprisingly, allowing users to assign resource ids themselves
enables major performance improvements in some applications.
The `wgpu_core` API is designed for use by Firefox's [WebGPU]
implementation. For security, web content and GPU use must be kept
segregated in separate processes, with all interaction between them
mediated by an inter-process communication protocol. As web content uses
the WebGPU API, the content process sends messages to the GPU process,
which interacts with the platform's GPU APIs on content's behalf,
occasionally sending results back.
In a classic Rust API, a resource allocation function takes parameters
describing the resource to create, and if creation succeeds, it returns
the resource id in a `Result::Ok` value. However, this design is a poor
fit for the split-process design described above: content must wait for
the reply to its buffer-creation message (say) before it can know which
id it can use in the next message that uses that buffer. On a common
usage pattern, the classic Rust design imposes the latency of a full
cross-process round trip.
We can avoid incurring these round-trip latencies simply by letting the
content process assign resource ids itself. With this approach, content
can choose an id for the new buffer, send a message to create the
buffer, and then immediately send the next message operating on that
buffer, since it already knows its id. Allowing content and GPU process
activity to be pipelined greatly improves throughput.
To help propagate errors correctly in this style of usage, when resource
creation fails, the id supplied for that resource is marked to indicate
as much, allowing subsequent operations using that id to be properly
flagged as errors as well.
[`gfx_select`]: crate::gfx_select
[`Input`]: IdentityHandler::Input
[`process`]: IdentityHandler::process
[`Id<R>`]: crate::id::Id
[wrapped in a mutex]: trait.IdentityHandler.html#impl-IdentityHandler%3CI%3E-for-Mutex%3CIdentityManager%3E
[WebGPU]: https://www.w3.org/TR/webgpu/
*/
use crate::{
binding_model::{BindGroup, BindGroupLayout, PipelineLayout},
command::{CommandBuffer, RenderBundle},
device::Device,
id,
instance::{Adapter, HalSurface, Instance, Surface},
pipeline::{ComputePipeline, RenderPipeline, ShaderModule},
resource::{Buffer, QuerySet, Sampler, StagingBuffer, Texture, TextureClearMode, TextureView},
Epoch, Index,
};
use parking_lot::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
use wgt::Backend;
#[cfg(debug_assertions)]
use std::cell::Cell;
use std::{fmt::Debug, marker::PhantomData, mem, ops};
/// A simple structure to allocate [`Id`] identifiers.
///
/// Calling [`alloc`] returns a fresh, never-before-seen id. Calling [`free`]
/// marks an id as dead; it will never be returned again by `alloc`.
///
/// Use `IdentityManager::default` to construct new instances.
///
/// `IdentityManager` returns `Id`s whose index values are suitable for use as
/// indices into a `Storage<T>` that holds those ids' referents:
///
/// - Every live id has a distinct index value. Each live id's index selects a
/// distinct element in the vector.
///
/// - `IdentityManager` prefers low index numbers. If you size your vector to
/// accommodate the indices produced here, the vector's length will reflect
/// the highwater mark of actual occupancy.
///
/// - `IdentityManager` reuses the index values of freed ids before returning
/// ids with new index values. Freed vector entries get reused.
///
/// See the module-level documentation for an overview of how this
/// fits together.
///
/// [`Id`]: crate::id::Id
/// [`Backend`]: wgt::Backend;
/// [`alloc`]: IdentityManager::alloc
/// [`free`]: IdentityManager::free
#[derive(Debug, Default)]
pub struct IdentityManager {
/// Available index values. If empty, then `epochs.len()` is the next index
/// to allocate.
free: Vec<Index>,
/// The next or currently-live epoch value associated with each `Id` index.
///
/// If there is a live id with index `i`, then `epochs[i]` is its epoch; any
/// id with the same index but an older epoch is dead.
///
/// If index `i` is currently unused, `epochs[i]` is the epoch to use in its
/// next `Id`.
epochs: Vec<Epoch>,
}
impl IdentityManager {
/// Allocate a fresh, never-before-seen id with the given `backend`.
///
/// The backend is incorporated into the id, so that ids allocated with
/// different `backend` values are always distinct.
pub fn alloc<I: id::TypedId>(&mut self, backend: Backend) -> I {
match self.free.pop() {
Some(index) => I::zip(index, self.epochs[index as usize], backend),
None => {
let epoch = 1;
let id = I::zip(self.epochs.len() as Index, epoch, backend);
self.epochs.push(epoch);
id
}
}
}
/// Free `id`. It will never be returned from `alloc` again.
pub fn free<I: id::TypedId + Debug>(&mut self, id: I) {
let (index, epoch, _backend) = id.unzip();
let pe = &mut self.epochs[index as usize];
assert_eq!(*pe, epoch);
// If the epoch reaches EOL, the index doesn't go
// into the free list, will never be reused again.
if epoch < id::EPOCH_MASK {
*pe = epoch + 1;
self.free.push(index);
}
}
}
/// An entry in a `Storage::map` table.
#[derive(Debug)]
enum Element<T> {
/// There are no live ids with this index.
Vacant,
/// There is one live id with this index, allocated at the given
/// epoch.
Occupied(T, Epoch),
/// Like `Occupied`, but an error occurred when creating the
/// resource.
///
/// The given `String` is the resource's descriptor label.
Error(Epoch, String),
}
#[derive(Clone, Debug, Default)]
pub struct StorageReport {
pub num_occupied: usize,
pub num_vacant: usize,
pub num_error: usize,
pub element_size: usize,
}
impl StorageReport {
pub fn is_empty(&self) -> bool {
self.num_occupied + self.num_vacant + self.num_error == 0
}
}
#[derive(Clone, Debug)]
pub(crate) struct InvalidId;
/// A table of `T` values indexed by the id type `I`.
///
/// The table is represented as a vector indexed by the ids' index
/// values, so you should use an id allocator like `IdentityManager`
/// that keeps the index values dense and close to zero.
#[derive(Debug)]
pub struct Storage<T, I: id::TypedId> {
map: Vec<Element<T>>,
kind: &'static str,
_phantom: PhantomData<I>,
}
impl<T, I: id::TypedId> ops::Index<id::Valid<I>> for Storage<T, I> {
type Output = T;
fn index(&self, id: id::Valid<I>) -> &T {
self.get(id.0).unwrap()
}
}
impl<T, I: id::TypedId> ops::IndexMut<id::Valid<I>> for Storage<T, I> {
fn index_mut(&mut self, id: id::Valid<I>) -> &mut T {
self.get_mut(id.0).unwrap()
}
}
impl<T, I: id::TypedId> Storage<T, I> {
pub(crate) fn contains(&self, id: I) -> bool {
let (index, epoch, _) = id.unzip();
match self.map.get(index as usize) {
Some(&Element::Vacant) => false,
Some(&Element::Occupied(_, storage_epoch) | &Element::Error(storage_epoch, _)) => {
storage_epoch == epoch
}
None => false,
}
}
/// Attempts to get a reference to an item behind a potentially invalid ID.
///
/// Returns [`None`] if there is an epoch mismatch, or the entry is empty.
///
/// This function is primarily intended for the `as_hal` family of functions
/// where you may need to fallibly get a object backed by an id that could
/// be in a different hub.
pub(crate) fn try_get(&self, id: I) -> Result<Option<&T>, InvalidId> {
let (index, epoch, _) = id.unzip();
let (result, storage_epoch) = match self.map.get(index as usize) {
Some(&Element::Occupied(ref v, epoch)) => (Ok(Some(v)), epoch),
Some(&Element::Vacant) => return Ok(None),
Some(&Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
None => return Err(InvalidId),
};
assert_eq!(
epoch, storage_epoch,
"{}[{}] is no longer alive",
self.kind, index
);
result
}
/// Get a reference to an item behind a potentially invalid ID.
/// Panics if there is an epoch mismatch, or the entry is empty.
pub(crate) fn get(&self, id: I) -> Result<&T, InvalidId> {
let (index, epoch, _) = id.unzip();
let (result, storage_epoch) = match self.map.get(index as usize) {
Some(&Element::Occupied(ref v, epoch)) => (Ok(v), epoch),
Some(&Element::Vacant) => panic!("{}[{}] does not exist", self.kind, index),
Some(&Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
None => return Err(InvalidId),
};
assert_eq!(
epoch, storage_epoch,
"{}[{}] is no longer alive",
self.kind, index
);
result
}
/// Get a mutable reference to an item behind a potentially invalid ID.
/// Panics if there is an epoch mismatch, or the entry is empty.
pub(crate) fn get_mut(&mut self, id: I) -> Result<&mut T, InvalidId> {
let (index, epoch, _) = id.unzip();
let (result, storage_epoch) = match self.map.get_mut(index as usize) {
Some(&mut Element::Occupied(ref mut v, epoch)) => (Ok(v), epoch),
Some(&mut Element::Vacant) | None => panic!("{}[{}] does not exist", self.kind, index),
Some(&mut Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
};
assert_eq!(
epoch, storage_epoch,
"{}[{}] is no longer alive",
self.kind, index
);
result
}
pub(crate) unsafe fn get_unchecked(&self, id: u32) -> &T {
match self.map[id as usize] {
Element::Occupied(ref v, _) => v,
Element::Vacant => panic!("{}[{}] does not exist", self.kind, id),
Element::Error(_, _) => panic!(""),
}
}
pub(crate) fn label_for_invalid_id(&self, id: I) -> &str {
let (index, _, _) = id.unzip();
match self.map.get(index as usize) {
Some(&Element::Error(_, ref label)) => label,
_ => "",
}
}
fn insert_impl(&mut self, index: usize, element: Element<T>) {
if index >= self.map.len() {
self.map.resize_with(index + 1, || Element::Vacant);
}
match std::mem::replace(&mut self.map[index], element) {
Element::Vacant => {}
_ => panic!("Index {index:?} is already occupied"),
}
}
pub(crate) fn insert(&mut self, id: I, value: T) {
let (index, epoch, _) = id.unzip();
self.insert_impl(index as usize, Element::Occupied(value, epoch))
}
pub(crate) fn insert_error(&mut self, id: I, label: &str) {
let (index, epoch, _) = id.unzip();
self.insert_impl(index as usize, Element::Error(epoch, label.to_string()))
}
pub(crate) fn force_replace(&mut self, id: I, value: T) {
let (index, epoch, _) = id.unzip();
self.map[index as usize] = Element::Occupied(value, epoch);
}
pub(crate) fn remove(&mut self, id: I) -> Option<T> {
let (index, epoch, _) = id.unzip();
match std::mem::replace(&mut self.map[index as usize], Element::Vacant) {
Element::Occupied(value, storage_epoch) => {
assert_eq!(epoch, storage_epoch);
Some(value)
}
Element::Error(..) => None,
Element::Vacant => panic!("Cannot remove a vacant resource"),
}
}
// Prevents panic on out of range access, allows Vacant elements.
pub(crate) fn _try_remove(&mut self, id: I) -> Option<T> {
let (index, epoch, _) = id.unzip();
if index as usize >= self.map.len() {
None
} else if let Element::Occupied(value, storage_epoch) =
std::mem::replace(&mut self.map[index as usize], Element::Vacant)
{
assert_eq!(epoch, storage_epoch);
Some(value)
} else {
None
}
}
pub(crate) fn iter(&self, backend: Backend) -> impl Iterator<Item = (I, &T)> {
self.map
.iter()
.enumerate()
.filter_map(move |(index, x)| match *x {
Element::Occupied(ref value, storage_epoch) => {
Some((I::zip(index as Index, storage_epoch, backend), value))
}
_ => None,
})
}
pub(crate) fn len(&self) -> usize {
self.map.len()
}
fn generate_report(&self) -> StorageReport {
let mut report = StorageReport {
element_size: mem::size_of::<T>(),
..Default::default()
};
for element in self.map.iter() {
match *element {
Element::Occupied(..) => report.num_occupied += 1,
Element::Vacant => report.num_vacant += 1,
Element::Error(..) => report.num_error += 1,
}
}
report
}
}
/// Type system for enforcing the lock order on [`Hub`] fields.
///
/// If type `A` implements `Access<B>`, that means we are allowed to
/// proceed with locking resource `B` after we lock `A`.
///
/// The implementations of `Access` basically describe the edges in an
/// acyclic directed graph of lock transitions. As long as it doesn't have
/// cycles, any number of threads can acquire locks along paths through
/// the graph without deadlock. That is, if you look at each thread's
/// lock acquisitions as steps along a path in the graph, then because
/// there are no cycles in the graph, there must always be some thread
/// that is able to acquire its next lock, or that is about to release
/// a lock. (Assume that no thread just sits on its locks forever.)
///
/// Locks must be acquired in the following order:
///
/// - [`Adapter`]
/// - [`Device`]
/// - [`CommandBuffer`]
/// - [`RenderBundle`]
/// - [`PipelineLayout`]
/// - [`BindGroupLayout`]
/// - [`BindGroup`]
/// - [`ComputePipeline`]
/// - [`RenderPipeline`]
/// - [`ShaderModule`]
/// - [`Buffer`]
/// - [`StagingBuffer`]
/// - [`Texture`]
/// - [`TextureView`]
/// - [`Sampler`]
/// - [`QuerySet`]
///
/// That is, you may only acquire a new lock on a `Hub` field if it
/// appears in the list after all the other fields you're already
/// holding locks for. When you are holding no locks, you can start
/// anywhere.
///
/// It's fine to add more `Access` implementations as needed, as long
/// as you do not introduce a cycle. In other words, as long as there
/// is some ordering you can put the resource types in that respects
/// the extant `Access` implementations, that's fine.
///
/// See the documentation for [`Hub`] for more details.
pub trait Access<A> {}
pub enum Root {}
// These impls are arranged so that the target types (that is, the `T`
// in `Access<T>`) appear in locking order.
//
// TODO: establish an order instead of declaring all the pairs.
impl Access<Instance> for Root {}
impl Access<Surface> for Root {}
impl Access<Surface> for Instance {}
impl<A: HalApi> Access<Adapter<A>> for Root {}
impl<A: HalApi> Access<Adapter<A>> for Surface {}
impl<A: HalApi> Access<Device<A>> for Root {}
impl<A: HalApi> Access<Device<A>> for Surface {}
impl<A: HalApi> Access<Device<A>> for Adapter<A> {}
impl<A: HalApi> Access<CommandBuffer<A>> for Root {}
impl<A: HalApi> Access<CommandBuffer<A>> for Device<A> {}
impl<A: HalApi> Access<RenderBundle<A>> for Device<A> {}
impl<A: HalApi> Access<RenderBundle<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<PipelineLayout<A>> for Root {}
impl<A: HalApi> Access<PipelineLayout<A>> for Device<A> {}
impl<A: HalApi> Access<PipelineLayout<A>> for RenderBundle<A> {}
impl<A: HalApi> Access<BindGroupLayout<A>> for Root {}
impl<A: HalApi> Access<BindGroupLayout<A>> for Device<A> {}
impl<A: HalApi> Access<BindGroupLayout<A>> for PipelineLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for Root {}
impl<A: HalApi> Access<BindGroup<A>> for Device<A> {}
impl<A: HalApi> Access<BindGroup<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for PipelineLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<ComputePipeline<A>> for Device<A> {}
impl<A: HalApi> Access<ComputePipeline<A>> for BindGroup<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for Device<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for BindGroup<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<ShaderModule<A>> for Device<A> {}
impl<A: HalApi> Access<ShaderModule<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<Buffer<A>> for Root {}
impl<A: HalApi> Access<Buffer<A>> for Device<A> {}
impl<A: HalApi> Access<Buffer<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<Buffer<A>> for BindGroup<A> {}
impl<A: HalApi> Access<Buffer<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<Buffer<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<Buffer<A>> for RenderPipeline<A> {}
impl<A: HalApi> Access<Buffer<A>> for QuerySet<A> {}
impl<A: HalApi> Access<StagingBuffer<A>> for Device<A> {}
impl<A: HalApi> Access<Texture<A>> for Root {}
impl<A: HalApi> Access<Texture<A>> for Device<A> {}
impl<A: HalApi> Access<Texture<A>> for Buffer<A> {}
impl<A: HalApi> Access<TextureView<A>> for Root {}
impl<A: HalApi> Access<TextureView<A>> for Device<A> {}
impl<A: HalApi> Access<TextureView<A>> for Texture<A> {}
impl<A: HalApi> Access<Sampler<A>> for Root {}
impl<A: HalApi> Access<Sampler<A>> for Device<A> {}
impl<A: HalApi> Access<Sampler<A>> for TextureView<A> {}
impl<A: HalApi> Access<QuerySet<A>> for Root {}
impl<A: HalApi> Access<QuerySet<A>> for Device<A> {}
impl<A: HalApi> Access<QuerySet<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<QuerySet<A>> for RenderPipeline<A> {}
impl<A: HalApi> Access<QuerySet<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<QuerySet<A>> for Sampler<A> {}
#[cfg(debug_assertions)]
thread_local! {
/// Per-thread state checking `Token<Root>` creation in debug builds.
///
/// This is the number of `Token` values alive on the current
/// thread. Since `Token` creation respects the [`Access`] graph,
/// there can never be more tokens alive than there are fields of
/// [`Hub`], so a `u8` is plenty.
static ACTIVE_TOKEN: Cell<u8> = Cell::new(0);
}
/// A zero-size permission token to lock some fields of [`Hub`].
///
/// Access to a `Token<T>` grants permission to lock any field of
/// [`Hub`] following the one of type [`Registry<T, ...>`], where
/// "following" is as defined by the [`Access`] implementations.
///
/// Calling [`Token::root()`] returns a `Token<Root>`, which grants
/// permission to lock any field. Dynamic checks ensure that each
/// thread has at most one `Token<Root>` live at a time, in debug
/// builds.
///
/// The locking methods on `Registry<T, ...>` take a `&'t mut
/// Token<A>`, and return a fresh `Token<'t, T>` and a lock guard with
/// lifetime `'t`, so the caller cannot access their `Token<A>` again
/// until they have dropped both the `Token<T>` and the lock guard.
///
/// Tokens are `!Send`, so one thread can't send its permissions to
/// another.
pub(crate) struct Token<'a, T: 'a> {
// The `*const` makes us `!Send` and `!Sync`.
level: PhantomData<&'a *const T>,
}
impl<'a, T> Token<'a, T> {
/// Return a new token for a locked field.
///
/// This should only be used by `Registry` locking methods.
fn new() -> Self {
#[cfg(debug_assertions)]
ACTIVE_TOKEN.with(|active| {
let old = active.get();
assert_ne!(old, 0, "Root token was dropped");
active.set(old + 1);
});
Self { level: PhantomData }
}
}
impl Token<'static, Root> {
/// Return a `Token<Root>`, granting permission to lock any [`Hub`] field.
///
/// Debug builds check dynamically that each thread has at most
/// one root token at a time.
pub fn root() -> Self {
#[cfg(debug_assertions)]
ACTIVE_TOKEN.with(|active| {
assert_eq!(0, active.replace(1), "Root token is already active");
});
Self { level: PhantomData }
}
}
impl<'a, T> Drop for Token<'a, T> {
fn drop(&mut self) {
#[cfg(debug_assertions)]
ACTIVE_TOKEN.with(|active| {
let old = active.get();
active.set(old - 1);
});
}
}
/// A type that can build true ids from proto-ids, and free true ids.
///
/// For some implementations, the true id is based on the proto-id.
/// The caller is responsible for providing well-allocated proto-ids.
///
/// For other implementations, the proto-id carries no information
/// (it's `()`, say), and this `IdentityHandler` type takes care of
/// allocating a fresh true id.
///
/// See the module-level documentation for details.
pub trait IdentityHandler<I>: Debug {
/// The type of proto-id consumed by this filter, to produce a true id.
type Input: Clone + Debug;
/// Given a proto-id value `id`, return a true id for `backend`.
fn process(&self, id: Self::Input, backend: Backend) -> I;
/// Free the true id `id`.
fn free(&self, id: I);
}
impl<I: id::TypedId + Debug> IdentityHandler<I> for Mutex<IdentityManager> {
type Input = ();
fn process(&self, _id: Self::Input, backend: Backend) -> I {
self.lock().alloc(backend)
}
fn free(&self, id: I) {
self.lock().free(id)
}
}
/// A type that can produce [`IdentityHandler`] filters for ids of type `I`.
///
/// See the module-level documentation for details.
pub trait IdentityHandlerFactory<I> {
/// The type of filter this factory constructs.
///
/// "Filter" and "handler" seem to both mean the same thing here:
/// something that can produce true ids from proto-ids.
type Filter: IdentityHandler<I>;
/// Create an [`IdentityHandler<I>`] implementation that can
/// transform proto-ids into ids of type `I`.
///
/// [`IdentityHandler<I>`]: IdentityHandler
fn spawn(&self) -> Self::Filter;
}
/// A global identity handler factory based on [`IdentityManager`].
///
/// Each of this type's `IdentityHandlerFactory<I>::spawn` methods
/// returns a `Mutex<IdentityManager<I>>`, which allocates fresh `I`
/// ids itself, and takes `()` as its proto-id type.
#[derive(Debug)]
pub struct IdentityManagerFactory;
impl<I: id::TypedId + Debug> IdentityHandlerFactory<I> for IdentityManagerFactory {
type Filter = Mutex<IdentityManager>;
fn spawn(&self) -> Self::Filter {
Mutex::new(IdentityManager::default())
}
}
/// A factory that can build [`IdentityHandler`]s for all resource
/// types.
pub trait GlobalIdentityHandlerFactory:
IdentityHandlerFactory<id::AdapterId>
+ IdentityHandlerFactory<id::DeviceId>
+ IdentityHandlerFactory<id::PipelineLayoutId>
+ IdentityHandlerFactory<id::ShaderModuleId>
+ IdentityHandlerFactory<id::BindGroupLayoutId>
+ IdentityHandlerFactory<id::BindGroupId>
+ IdentityHandlerFactory<id::CommandBufferId>
+ IdentityHandlerFactory<id::RenderBundleId>
+ IdentityHandlerFactory<id::RenderPipelineId>
+ IdentityHandlerFactory<id::ComputePipelineId>
+ IdentityHandlerFactory<id::QuerySetId>
+ IdentityHandlerFactory<id::BufferId>
+ IdentityHandlerFactory<id::StagingBufferId>
+ IdentityHandlerFactory<id::TextureId>
+ IdentityHandlerFactory<id::TextureViewId>
+ IdentityHandlerFactory<id::SamplerId>
+ IdentityHandlerFactory<id::SurfaceId>
{
}
impl GlobalIdentityHandlerFactory for IdentityManagerFactory {}
pub type Input<G, I> = <<G as IdentityHandlerFactory<I>>::Filter as IdentityHandler<I>>::Input;
pub trait Resource {
const TYPE: &'static str;
fn life_guard(&self) -> &crate::LifeGuard;
fn label(&self) -> &str {
#[cfg(debug_assertions)]
return &self.life_guard().label;
#[cfg(not(debug_assertions))]
return "";
}
}
#[derive(Debug)]
pub struct Registry<T: Resource, I: id::TypedId, F: IdentityHandlerFactory<I>> {
identity: F::Filter,
data: RwLock<Storage<T, I>>,
backend: Backend,
}
impl<T: Resource, I: id::TypedId, F: IdentityHandlerFactory<I>> Registry<T, I, F> {
fn new(backend: Backend, factory: &F) -> Self {
Self {
identity: factory.spawn(),
data: RwLock::new(Storage {
map: Vec::new(),
kind: T::TYPE,
_phantom: PhantomData,
}),
backend,
}
}
fn without_backend(factory: &F, kind: &'static str) -> Self {
Self {
identity: factory.spawn(),
data: RwLock::new(Storage {
map: Vec::new(),
kind,
_phantom: PhantomData,
}),
backend: Backend::Empty,
}
}
}
#[must_use]
pub(crate) struct FutureId<'a, I: id::TypedId, T> {
id: I,
data: &'a RwLock<Storage<T, I>>,
}
impl<I: id::TypedId + Copy, T> FutureId<'_, I, T> {
#[cfg(feature = "trace")]
pub fn id(&self) -> I {
self.id
}
pub fn into_id(self) -> I {
self.id
}
pub fn assign<'a, A: Access<T>>(self, value: T, _: &'a mut Token<A>) -> id::Valid<I> {
self.data.write().insert(self.id, value);
id::Valid(self.id)
}
pub fn assign_error<'a, A: Access<T>>(self, label: &str, _: &'a mut Token<A>) -> I {
self.data.write().insert_error(self.id, label);
self.id
}
}
impl<T: Resource, I: id::TypedId + Copy, F: IdentityHandlerFactory<I>> Registry<T, I, F> {
pub(crate) fn prepare(
&self,
id_in: <F::Filter as IdentityHandler<I>>::Input,
) -> FutureId<I, T> {
FutureId {
id: self.identity.process(id_in, self.backend),
data: &self.data,
}
}
/// Acquire read access to this `Registry`'s contents.
///
/// The caller must present a mutable reference to a `Token<A>`,
/// for some type `A` that comes before this `Registry`'s resource
/// type `T` in the lock ordering. A `Token<Root>` grants
/// permission to lock any field; see [`Token::root`].
///
/// Once the read lock is acquired, return a new `Token<T>`, along
/// with a read guard for this `Registry`'s [`Storage`], which can
/// be indexed by id to get at the actual resources.
///
/// The borrow checker ensures that the caller cannot again access
/// its `Token<A>` until it has dropped both the guard and the
/// `Token<T>`.
///
/// See the [`Hub`] type for more details on locking.
pub(crate) fn read<'a, A: Access<T>>(
&'a self,
_token: &'a mut Token<A>,
) -> (RwLockReadGuard<'a, Storage<T, I>>, Token<'a, T>) {
(self.data.read(), Token::new())
}
/// Acquire write access to this `Registry`'s contents.
///
/// The caller must present a mutable reference to a `Token<A>`,
/// for some type `A` that comes before this `Registry`'s resource
/// type `T` in the lock ordering. A `Token<Root>` grants
/// permission to lock any field; see [`Token::root`].
///
/// Once the lock is acquired, return a new `Token<T>`, along with
/// a write guard for this `Registry`'s [`Storage`], which can be
/// indexed by id to get at the actual resources.
///
/// The borrow checker ensures that the caller cannot again access
/// its `Token<A>` until it has dropped both the guard and the
/// `Token<T>`.
///
/// See the [`Hub`] type for more details on locking.
pub(crate) fn write<'a, A: Access<T>>(
&'a self,
_token: &'a mut Token<A>,
) -> (RwLockWriteGuard<'a, Storage<T, I>>, Token<'a, T>) {
(self.data.write(), Token::new())
}
/// Unregister the resource at `id`.
///
/// The caller must prove that it already holds a write lock for
/// this `Registry` by passing a mutable reference to this
/// `Registry`'s storage, obtained from the write guard returned
/// by a previous call to [`write`], as the `guard` parameter.
pub fn unregister_locked(&self, id: I, guard: &mut Storage<T, I>) -> Option<T> {
let value = guard.remove(id);
//Note: careful about the order here!
self.identity.free(id);
//Returning None is legal if it's an error ID
value
}
/// Unregister the resource at `id` and return its value, if any.
///
/// The caller must present a mutable reference to a `Token<A>`,
/// for some type `A` that comes before this `Registry`'s resource
/// type `T` in the lock ordering.
///
/// This returns a `Token<T>`, but it's almost useless, because it
/// doesn't return a lock guard to go with it: its only effect is
/// to make the token you passed to this function inaccessible.
/// However, the `Token<T>` can be used to satisfy some functions'
/// bureacratic expectations that you will have one available.
///
/// The borrow checker ensures that the caller cannot again access
/// its `Token<A>` until it has dropped both the guard and the
/// `Token<T>`.
///
/// See the [`Hub`] type for more details on locking.
pub(crate) fn unregister<'a, A: Access<T>>(
&self,
id: I,
_token: &'a mut Token<A>,
) -> (Option<T>, Token<'a, T>) {
let value = self.data.write().remove(id);
//Note: careful about the order here!
self.identity.free(id);
//Returning None is legal if it's an error ID
(value, Token::new())
}
pub fn label_for_resource(&self, id: I) -> String {
let guard = self.data.read();
let type_name = guard.kind;
match guard.get(id) {
Ok(res) => {
let label = res.label();
if label.is_empty() {
format!("<{}-{:?}>", type_name, id.unzip())
} else {
label.to_string()
}
}
Err(_) => format!(
"<Invalid-{} label={}>",
type_name,
guard.label_for_invalid_id(id)
),
}
}
}
#[derive(Debug)]
pub struct HubReport {
pub adapters: StorageReport,
pub devices: StorageReport,
pub pipeline_layouts: StorageReport,
pub shader_modules: StorageReport,
pub bind_group_layouts: StorageReport,
pub bind_groups: StorageReport,
pub command_buffers: StorageReport,
pub render_bundles: StorageReport,
pub render_pipelines: StorageReport,
pub compute_pipelines: StorageReport,
pub query_sets: StorageReport,
pub buffers: StorageReport,
pub textures: StorageReport,
pub texture_views: StorageReport,
pub samplers: StorageReport,
}
impl HubReport {
pub fn is_empty(&self) -> bool {
self.adapters.is_empty()
}
}
#[allow(rustdoc::private_intra_doc_links)]
/// All the resources for a particular backend in a [`Global`].
///
/// To obtain `global`'s `Hub` for some [`HalApi`] backend type `A`,
/// call [`A::hub(global)`].
///
/// ## Locking
///
/// Each field in `Hub` is a [`Registry`] holding all the values of a
/// particular type of resource, all protected by a single [`RwLock`].
/// So for example, to access any [`Buffer`], you must acquire a read
/// lock on the `Hub`s entire [`buffers`] registry. The lock guard
/// gives you access to the `Registry`'s [`Storage`], which you can
/// then index with the buffer's id. (Yes, this design causes
/// contention; see [#2272].)
///
/// But most `wgpu` operations require access to several different
/// kinds of resource, so you often need to hold locks on several
/// different fields of your [`Hub`] simultaneously. To avoid
/// deadlock, there is an ordering imposed on the fields, and you may
/// only acquire new locks on fields that come *after* all those you
/// are already holding locks on, in this ordering. (The ordering is
/// described in the documentation for the [`Access`] trait.)
///
/// We use Rust's type system to statically check that `wgpu_core` can
/// only ever acquire locks in the correct order:
///
/// - A value of type [`Token<T>`] represents proof that the owner
/// only holds locks on the `Hub` fields holding resources of type
/// `T` or earlier in the lock ordering. A special value of type
/// `Token<Root>`, obtained by calling [`Token::root`], represents
/// proof that no `Hub` field locks are held.
///
/// - To lock the `Hub` field holding resources of type `T`, you must
/// call its [`read`] or [`write`] methods. These require you to
/// pass in a `&mut Token<A>`, for some `A` that implements
/// [`Access<T>`]. This implementation exists only if `T` follows `A`
/// in the field ordering, which statically ensures that you are
/// indeed allowed to lock this new `Hub` field.
///
/// - The locking methods return both an [`RwLock`] guard that you can
/// use to access the field's resources, and a new `Token<T>` value.
/// These both borrow from the lifetime of your `Token<A>`, so since
/// you passed that by mutable reference, you cannot access it again
/// until you drop the new token and lock guard.
///
/// Because a thread only ever has access to the `Token<T>` for the
/// last resource type `T` it holds a lock for, and the `Access` trait
/// implementations only permit acquiring locks for types `U` that
/// follow `T` in the lock ordering, it is statically impossible for a
/// program to violate the locking order.
///
/// This does assume that threads cannot call `Token<Root>` when they
/// already hold locks (dynamically enforced in debug builds) and that
/// threads cannot send their `Token`s to other threads (enforced by
/// making `Token` neither `Send` nor `Sync`).
///
/// [`A::hub(global)`]: HalApi::hub
/// [`RwLock`]: parking_lot::RwLock
/// [`buffers`]: Hub::buffers
/// [`read`]: Registry::read
/// [`write`]: Registry::write
/// [`Token<T>`]: Token
/// [`Access<T>`]: Access
/// [#2272]: https://github.com/gfx-rs/wgpu/pull/2272
pub struct Hub<A: HalApi, F: GlobalIdentityHandlerFactory> {
pub adapters: Registry<Adapter<A>, id::AdapterId, F>,
pub devices: Registry<Device<A>, id::DeviceId, F>,
pub pipeline_layouts: Registry<PipelineLayout<A>, id::PipelineLayoutId, F>,
pub shader_modules: Registry<ShaderModule<A>, id::ShaderModuleId, F>,
pub bind_group_layouts: Registry<BindGroupLayout<A>, id::BindGroupLayoutId, F>,
pub bind_groups: Registry<BindGroup<A>, id::BindGroupId, F>,
pub command_buffers: Registry<CommandBuffer<A>, id::CommandBufferId, F>,
pub render_bundles: Registry<RenderBundle<A>, id::RenderBundleId, F>,
pub render_pipelines: Registry<RenderPipeline<A>, id::RenderPipelineId, F>,
pub compute_pipelines: Registry<ComputePipeline<A>, id::ComputePipelineId, F>,
pub query_sets: Registry<QuerySet<A>, id::QuerySetId, F>,
pub buffers: Registry<Buffer<A>, id::BufferId, F>,
pub staging_buffers: Registry<StagingBuffer<A>, id::StagingBufferId, F>,
pub textures: Registry<Texture<A>, id::TextureId, F>,
pub texture_views: Registry<TextureView<A>, id::TextureViewId, F>,
pub samplers: Registry<Sampler<A>, id::SamplerId, F>,
}
impl<A: HalApi, F: GlobalIdentityHandlerFactory> Hub<A, F> {
fn new(factory: &F) -> Self {
Self {
adapters: Registry::new(A::VARIANT, factory),
devices: Registry::new(A::VARIANT, factory),
pipeline_layouts: Registry::new(A::VARIANT, factory),
shader_modules: Registry::new(A::VARIANT, factory),
bind_group_layouts: Registry::new(A::VARIANT, factory),
bind_groups: Registry::new(A::VARIANT, factory),
command_buffers: Registry::new(A::VARIANT, factory),
render_bundles: Registry::new(A::VARIANT, factory),
render_pipelines: Registry::new(A::VARIANT, factory),
compute_pipelines: Registry::new(A::VARIANT, factory),
query_sets: Registry::new(A::VARIANT, factory),
buffers: Registry::new(A::VARIANT, factory),
staging_buffers: Registry::new(A::VARIANT, factory),
textures: Registry::new(A::VARIANT, factory),
texture_views: Registry::new(A::VARIANT, factory),
samplers: Registry::new(A::VARIANT, factory),
}
}
//TODO: instead of having a hacky `with_adapters` parameter,
// we should have `clear_device(device_id)` that specifically destroys
// everything related to a logical device.
fn clear(&self, surface_guard: &mut Storage<Surface, id::SurfaceId>, with_adapters: bool) {
use crate::resource::TextureInner;
use hal::{Device as _, Surface as _};
let mut devices = self.devices.data.write();
for element in devices.map.iter_mut() {
if let Element::Occupied(ref mut device, _) = *element {
device.prepare_to_die();
}
}
// destroy command buffers first, since otherwise DX12 isn't happy
for element in self.command_buffers.data.write().map.drain(..) {
if let Element::Occupied(command_buffer, _) = element {
let device = &devices[command_buffer.device_id.value];
device.destroy_command_buffer(command_buffer);
}
}
for element in self.samplers.data.write().map.drain(..) {
if let Element::Occupied(sampler, _) = element {
unsafe {
devices[sampler.device_id.value]
.raw
.destroy_sampler(sampler.raw);
}
}
}
for element in self.texture_views.data.write().map.drain(..) {
if let Element::Occupied(texture_view, _) = element {
let device = &devices[texture_view.device_id.value];
unsafe {
device.raw.destroy_texture_view(texture_view.raw);
}
}
}
for element in self.textures.data.write().map.drain(..) {
if let Element::Occupied(texture, _) = element {
let device = &devices[texture.device_id.value];
if let TextureInner::Native { raw: Some(raw) } = texture.inner {
unsafe {
device.raw.destroy_texture(raw);
}
}
if let TextureClearMode::RenderPass { clear_views, .. } = texture.clear_mode {
for view in clear_views {
unsafe {
device.raw.destroy_texture_view(view);
}
}
}
}
}
for element in self.buffers.data.write().map.drain(..) {
if let Element::Occupied(buffer, _) = element {
//TODO: unmap if needed
devices[buffer.device_id.value].destroy_buffer(buffer);
}
}
for element in self.bind_groups.data.write().map.drain(..) {
if let Element::Occupied(bind_group, _) = element {
let device = &devices[bind_group.device_id.value];
unsafe {
device.raw.destroy_bind_group(bind_group.raw);
}
}
}
for element in self.shader_modules.data.write().map.drain(..) {
if let Element::Occupied(module, _) = element {
let device = &devices[module.device_id.value];
unsafe {
device.raw.destroy_shader_module(module.raw);
}
}
}
for element in self.bind_group_layouts.data.write().map.drain(..) {
if let Element::Occupied(bgl, _) = element {
let device = &devices[bgl.device_id.value];
unsafe {
device.raw.destroy_bind_group_layout(bgl.raw);
}
}
}
for element in self.pipeline_layouts.data.write().map.drain(..) {
if let Element::Occupied(pipeline_layout, _) = element {
let device = &devices[pipeline_layout.device_id.value];
unsafe {
device.raw.destroy_pipeline_layout(pipeline_layout.raw);
}
}
}
for element in self.compute_pipelines.data.write().map.drain(..) {
if let Element::Occupied(pipeline, _) = element {
let device = &devices[pipeline.device_id.value];
unsafe {
device.raw.destroy_compute_pipeline(pipeline.raw);
}
}
}
for element in self.render_pipelines.data.write().map.drain(..) {
if let Element::Occupied(pipeline, _) = element {
let device = &devices[pipeline.device_id.value];
unsafe {
device.raw.destroy_render_pipeline(pipeline.raw);
}
}
}
for element in surface_guard.map.iter_mut() {
if let Element::Occupied(ref mut surface, _epoch) = *element {
if surface
.presentation
.as_ref()
.map_or(wgt::Backend::Empty, |p| p.backend())
!= A::VARIANT
{
continue;
}
if let Some(present) = surface.presentation.take() {
let device = &devices[present.device_id.value];
let suf = A::get_surface_mut(surface);
unsafe {
suf.unwrap().raw.unconfigure(&device.raw);
//TODO: we could destroy the surface here
}
}
}
}
for element in self.query_sets.data.write().map.drain(..) {
if let Element::Occupied(query_set, _) = element {
let device = &devices[query_set.device_id.value];
unsafe {
device.raw.destroy_query_set(query_set.raw);
}
}
}
for element in devices.map.drain(..) {
if let Element::Occupied(device, _) = element {
device.dispose();
}
}
if with_adapters {
drop(devices);
self.adapters.data.write().map.clear();
}
}
pub(crate) fn surface_unconfigure(
&self,
device_id: id::Valid<id::DeviceId>,
surface: &mut HalSurface<A>,
) {
use hal::Surface as _;
let devices = self.devices.data.read();
let device = &devices[device_id];
unsafe {
surface.raw.unconfigure(&device.raw);
}
}
pub fn generate_report(&self) -> HubReport {
HubReport {
adapters: self.adapters.data.read().generate_report(),
devices: self.devices.data.read().generate_report(),
pipeline_layouts: self.pipeline_layouts.data.read().generate_report(),
shader_modules: self.shader_modules.data.read().generate_report(),
bind_group_layouts: self.bind_group_layouts.data.read().generate_report(),
bind_groups: self.bind_groups.data.read().generate_report(),
command_buffers: self.command_buffers.data.read().generate_report(),
render_bundles: self.render_bundles.data.read().generate_report(),
render_pipelines: self.render_pipelines.data.read().generate_report(),
compute_pipelines: self.compute_pipelines.data.read().generate_report(),
query_sets: self.query_sets.data.read().generate_report(),
buffers: self.buffers.data.read().generate_report(),
textures: self.textures.data.read().generate_report(),
texture_views: self.texture_views.data.read().generate_report(),
samplers: self.samplers.data.read().generate_report(),
}
}
}
pub struct Hubs<F: GlobalIdentityHandlerFactory> {
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
vulkan: Hub<hal::api::Vulkan, F>,
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
metal: Hub<hal::api::Metal, F>,
#[cfg(all(feature = "dx12", windows))]
dx12: Hub<hal::api::Dx12, F>,
#[cfg(all(feature = "dx11", windows))]
dx11: Hub<hal::api::Dx11, F>,
#[cfg(feature = "gles")]
gl: Hub<hal::api::Gles, F>,
}
impl<F: GlobalIdentityHandlerFactory> Hubs<F> {
fn new(factory: &F) -> Self {
Self {
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
vulkan: Hub::new(factory),
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
metal: Hub::new(factory),
#[cfg(all(feature = "dx12", windows))]
dx12: Hub::new(factory),
#[cfg(all(feature = "dx11", windows))]
dx11: Hub::new(factory),
#[cfg(feature = "gles")]
gl: Hub::new(factory),
}
}
}
#[derive(Debug)]
pub struct GlobalReport {
pub surfaces: StorageReport,
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
pub vulkan: Option<HubReport>,
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
pub metal: Option<HubReport>,
#[cfg(all(feature = "dx12", windows))]
pub dx12: Option<HubReport>,
#[cfg(all(feature = "dx11", windows))]
pub dx11: Option<HubReport>,
#[cfg(feature = "gles")]
pub gl: Option<HubReport>,
}
pub struct Global<G: GlobalIdentityHandlerFactory> {
pub instance: Instance,
pub surfaces: Registry<Surface, id::SurfaceId, G>,
hubs: Hubs<G>,
}
impl<G: GlobalIdentityHandlerFactory> Global<G> {
pub fn new(name: &str, factory: G, instance_desc: wgt::InstanceDescriptor) -> Self {
profiling::scope!("Global::new");
Self {
instance: Instance::new(name, instance_desc),
surfaces: Registry::without_backend(&factory, "Surface"),
hubs: Hubs::new(&factory),
}
}
/// # Safety
///
/// Refer to the creation of wgpu-hal Instance for every backend.
pub unsafe fn from_hal_instance<A: HalApi>(
name: &str,
factory: G,
hal_instance: A::Instance,
) -> Self {
profiling::scope!("Global::new");
Self {
instance: A::create_instance_from_hal(name, hal_instance),
surfaces: Registry::without_backend(&factory, "Surface"),
hubs: Hubs::new(&factory),
}
}
/// # Safety
///
/// - The raw instance handle returned must not be manually destroyed.
pub unsafe fn instance_as_hal<A: HalApi>(&self) -> Option<&A::Instance> {
A::instance_as_hal(&self.instance)
}
/// # Safety
///
/// - The raw handles obtained from the Instance must not be manually destroyed
pub unsafe fn from_instance(factory: G, instance: Instance) -> Self {
profiling::scope!("Global::new");
Self {
instance,
surfaces: Registry::without_backend(&factory, "Surface"),
hubs: Hubs::new(&factory),
}
}
pub fn clear_backend<A: HalApi>(&self, _dummy: ()) {
let mut surface_guard = self.surfaces.data.write();
let hub = A::hub(self);
// this is used for tests, which keep the adapter
hub.clear(&mut surface_guard, false);
}
pub fn generate_report(&self) -> GlobalReport {
GlobalReport {
surfaces: self.surfaces.data.read().generate_report(),
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
vulkan: if self.instance.vulkan.is_some() {
Some(self.hubs.vulkan.generate_report())
} else {
None
},
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
metal: if self.instance.metal.is_some() {
Some(self.hubs.metal.generate_report())
} else {
None
},
#[cfg(all(feature = "dx12", windows))]
dx12: if self.instance.dx12.is_some() {
Some(self.hubs.dx12.generate_report())
} else {
None
},
#[cfg(all(feature = "dx11", windows))]
dx11: if self.instance.dx11.is_some() {
Some(self.hubs.dx11.generate_report())
} else {
None
},
#[cfg(feature = "gles")]
gl: if self.instance.gl.is_some() {
Some(self.hubs.gl.generate_report())
} else {
None
},
}
}
}
impl<G: GlobalIdentityHandlerFactory> Drop for Global<G> {
fn drop(&mut self) {
profiling::scope!("Global::drop");
log::info!("Dropping Global");
let mut surface_guard = self.surfaces.data.write();
// destroy hubs before the instance gets dropped
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
{
self.hubs.vulkan.clear(&mut surface_guard, true);
}
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
{
self.hubs.metal.clear(&mut surface_guard, true);
}
#[cfg(all(feature = "dx12", windows))]
{
self.hubs.dx12.clear(&mut surface_guard, true);
}
#[cfg(all(feature = "dx11", windows))]
{
self.hubs.dx11.clear(&mut surface_guard, true);
}
#[cfg(feature = "gles")]
{
self.hubs.gl.clear(&mut surface_guard, true);
}
// destroy surfaces
for element in surface_guard.map.drain(..) {
if let Element::Occupied(surface, _) = element {
self.instance.destroy_surface(surface);
}
}
}
}
pub trait HalApi: hal::Api {
const VARIANT: Backend;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance;
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance>;
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G>;
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>>;
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>>;
}
impl HalApi for hal::api::Empty {
const VARIANT: Backend = Backend::Empty;
fn create_instance_from_hal(_: &str, _: Self::Instance) -> Instance {
unimplemented!("called empty api")
}
fn instance_as_hal(_: &Instance) -> Option<&Self::Instance> {
unimplemented!("called empty api")
}
fn hub<G: GlobalIdentityHandlerFactory>(_: &Global<G>) -> &Hub<Self, G> {
unimplemented!("called empty api")
}
fn get_surface(_: &Surface) -> Option<&HalSurface<Self>> {
unimplemented!("called empty api")
}
fn get_surface_mut(_: &mut Surface) -> Option<&mut HalSurface<Self>> {
unimplemented!("called empty api")
}
}
#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
impl HalApi for hal::api::Vulkan {
const VARIANT: Backend = Backend::Vulkan;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
Instance {
name: name.to_owned(),
vulkan: Some(hal_instance),
..Default::default()
}
}
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
instance.vulkan.as_ref()
}
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
&global.hubs.vulkan
}
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
surface.vulkan.as_ref()
}
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
surface.vulkan.as_mut()
}
}
#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
impl HalApi for hal::api::Metal {
const VARIANT: Backend = Backend::Metal;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
Instance {
name: name.to_owned(),
metal: Some(hal_instance),
..Default::default()
}
}
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
instance.metal.as_ref()
}
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
&global.hubs.metal
}
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
surface.metal.as_ref()
}
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
surface.metal.as_mut()
}
}
#[cfg(all(feature = "dx12", windows))]
impl HalApi for hal::api::Dx12 {
const VARIANT: Backend = Backend::Dx12;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
Instance {
name: name.to_owned(),
dx12: Some(hal_instance),
..Default::default()
}
}
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
instance.dx12.as_ref()
}
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
&global.hubs.dx12
}
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
surface.dx12.as_ref()
}
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
surface.dx12.as_mut()
}
}
#[cfg(all(feature = "dx11", windows))]
impl HalApi for hal::api::Dx11 {
const VARIANT: Backend = Backend::Dx11;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
Instance {
name: name.to_owned(),
dx11: Some(hal_instance),
..Default::default()
}
}
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
instance.dx11.as_ref()
}
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
&global.hubs.dx11
}
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
surface.dx11.as_ref()
}
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
surface.dx11.as_mut()
}
}
#[cfg(feature = "gles")]
impl HalApi for hal::api::Gles {
const VARIANT: Backend = Backend::Gl;
fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
#[allow(clippy::needless_update)]
Instance {
name: name.to_owned(),
gl: Some(hal_instance),
..Default::default()
}
}
fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
instance.gl.as_ref()
}
fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
&global.hubs.gl
}
fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
surface.gl.as_ref()
}
fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
surface.gl.as_mut()
}
}
#[cfg(test)]
fn _test_send_sync(global: &Global<IdentityManagerFactory>) {
fn test_internal<T: Send + Sync>(_: T) {}
test_internal(global)
}
#[test]
fn test_epoch_end_of_life() {
use id::TypedId as _;
let mut man = IdentityManager::default();
man.epochs.push(id::EPOCH_MASK);
man.free.push(0);
let id1 = man.alloc::<id::BufferId>(Backend::Empty);
assert_eq!(id1.unzip().0, 0);
man.free(id1);
let id2 = man.alloc::<id::BufferId>(Backend::Empty);
// confirm that the index 0 is no longer re-used
assert_eq!(id2.unzip().0, 1);
}