1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
/*! Allocating resource ids, and tracking the resources they refer to.

The `wgpu_core` API uses identifiers of type [`Id<R>`] to refer to
resources of type `R`. For example, [`id::DeviceId`] is an alias for
`Id<Device<Empty>>`, and [`id::BufferId`] is an alias for
`Id<Buffer<Empty>>`. `Id` implements `Copy`, `Hash`, `Eq`, `Ord`, and
of course `Debug`.

Each `Id` contains not only an index for the resource it denotes but
also a [`Backend`] indicating which `wgpu` backend it belongs to. You
can use the [`gfx_select`] macro to dynamically dispatch on an id's
backend to a function specialized at compile time for a specific
backend. See that macro's documentation for details.

`Id`s also incorporate a generation number, for additional validation.

The resources to which identifiers refer are freed explicitly.
Attempting to use an identifier for a resource that has been freed
elicits an error result.

## Assigning ids to resources

The users of `wgpu_core` generally want resource ids to be assigned
in one of two ways:

- Users like `wgpu` want `wgpu_core` to assign ids to resources itself.
  For example, `wgpu` expects to call `Global::device_create_buffer`
  and have the return value indicate the newly created buffer's id.

- Users like `player` and Firefox want to allocate ids themselves, and
  pass `Global::device_create_buffer` and friends the id to assign the
  new resource.

To accommodate either pattern, `wgpu_core` methods that create
resources all expect an `id_in` argument that the caller can use to
specify the id, and they all return the id used. For example, the
declaration of `Global::device_create_buffer` looks like this:

```ignore
impl<G: GlobalIdentityHandlerFactory> Global<G> {
    /* ... */
    pub fn device_create_buffer<A: HalApi>(
        &self,
        device_id: id::DeviceId,
        desc: &resource::BufferDescriptor,
        id_in: Input<G, id::BufferId>,
    ) -> (id::BufferId, Option<resource::CreateBufferError>) {
        /* ... */
    }
    /* ... */
}
```

Users that want to assign resource ids themselves pass in the id they
want as the `id_in` argument, whereas users that want `wgpu_core`
itself to choose ids always pass `()`. In either case, the id
ultimately assigned is returned as the first element of the tuple.

Producing true identifiers from `id_in` values is the job of an
[`IdentityHandler`] implementation, which has an associated type
[`Input`] saying what type of `id_in` values it accepts, and a
[`process`] method that turns such values into true identifiers of
type `I`. There are two kinds of `IdentityHandler`s:

- Users that want `wgpu_core` to assign ids generally use
  [`IdentityManager`] ([wrapped in a mutex]). Its `Input` type is
  `()`, and it tracks assigned ids and generation numbers as
  necessary. (This is what `wgpu` does.)

- Users that want to assign ids themselves use an `IdentityHandler`
  whose `Input` type is `I` itself, and whose `process` method simply
  passes the `id_in` argument through unchanged. For example, the
  `player` crate uses an `IdentityPassThrough` type whose `process`
  method simply adjusts the id's backend (since recordings can be
  replayed on a different backend than the one they were created on)
  but passes the rest of the id's content through unchanged.

Because an `IdentityHandler<I>` can only create ids for a single
resource type `I`, constructing a [`Global`] entails constructing a
separate `IdentityHandler<I>` for each resource type `I` that the
`Global` will manage: an `IdentityHandler<DeviceId>`, an
`IdentityHandler<TextureId>`, and so on.

The [`Global::new`] function could simply take a large collection of
`IdentityHandler<I>` implementations as arguments, but that would be
ungainly. Instead, `Global::new` expects a `factory` argument that
implements the [`GlobalIdentityHandlerFactory`] trait, which extends
[`IdentityHandlerFactory<I>`] for each resource id type `I`. This
trait, in turn, has a `spawn` method that constructs an
`IdentityHandler<I>` for the `Global` to use.

What this means is that the types of resource creation functions'
`id_in` arguments depend on the `Global`'s `G` type parameter. A
`Global<G>`'s `IdentityHandler<I>` implementation is:

```ignore
<G as IdentityHandlerFactory<I>>::Filter
```

where `Filter` is an associated type of the `IdentityHandlerFactory` trait.
Thus, its `id_in` type is:

```ignore
<<G as IdentityHandlerFactory<I>>::Filter as IdentityHandler<I>>::Input
```

The [`Input<G, I>`] type is an alias for this construction.

## Id allocation and streaming

Perhaps surprisingly, allowing users to assign resource ids themselves
enables major performance improvements in some applications.

The `wgpu_core` API is designed for use by Firefox's [WebGPU]
implementation. For security, web content and GPU use must be kept
segregated in separate processes, with all interaction between them
mediated by an inter-process communication protocol. As web content uses
the WebGPU API, the content process sends messages to the GPU process,
which interacts with the platform's GPU APIs on content's behalf,
occasionally sending results back.

In a classic Rust API, a resource allocation function takes parameters
describing the resource to create, and if creation succeeds, it returns
the resource id in a `Result::Ok` value. However, this design is a poor
fit for the split-process design described above: content must wait for
the reply to its buffer-creation message (say) before it can know which
id it can use in the next message that uses that buffer. On a common
usage pattern, the classic Rust design imposes the latency of a full
cross-process round trip.

We can avoid incurring these round-trip latencies simply by letting the
content process assign resource ids itself. With this approach, content
can choose an id for the new buffer, send a message to create the
buffer, and then immediately send the next message operating on that
buffer, since it already knows its id. Allowing content and GPU process
activity to be pipelined greatly improves throughput.

To help propagate errors correctly in this style of usage, when resource
creation fails, the id supplied for that resource is marked to indicate
as much, allowing subsequent operations using that id to be properly
flagged as errors as well.

[`gfx_select`]: crate::gfx_select
[`Input`]: IdentityHandler::Input
[`process`]: IdentityHandler::process
[`Id<R>`]: crate::id::Id
[wrapped in a mutex]: trait.IdentityHandler.html#impl-IdentityHandler%3CI%3E-for-Mutex%3CIdentityManager%3E
[WebGPU]: https://www.w3.org/TR/webgpu/

*/

use crate::{
    binding_model::{BindGroup, BindGroupLayout, PipelineLayout},
    command::{CommandBuffer, RenderBundle},
    device::Device,
    id,
    instance::{Adapter, HalSurface, Instance, Surface},
    pipeline::{ComputePipeline, RenderPipeline, ShaderModule},
    resource::{Buffer, QuerySet, Sampler, StagingBuffer, Texture, TextureClearMode, TextureView},
    Epoch, Index,
};

use parking_lot::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
use wgt::Backend;

#[cfg(debug_assertions)]
use std::cell::Cell;
use std::{fmt::Debug, marker::PhantomData, mem, ops};

/// A simple structure to allocate [`Id`] identifiers.
///
/// Calling [`alloc`] returns a fresh, never-before-seen id. Calling [`free`]
/// marks an id as dead; it will never be returned again by `alloc`.
///
/// Use `IdentityManager::default` to construct new instances.
///
/// `IdentityManager` returns `Id`s whose index values are suitable for use as
/// indices into a `Storage<T>` that holds those ids' referents:
///
/// - Every live id has a distinct index value. Each live id's index selects a
///   distinct element in the vector.
///
/// - `IdentityManager` prefers low index numbers. If you size your vector to
///   accommodate the indices produced here, the vector's length will reflect
///   the highwater mark of actual occupancy.
///
/// - `IdentityManager` reuses the index values of freed ids before returning
///   ids with new index values. Freed vector entries get reused.
///
/// See the module-level documentation for an overview of how this
/// fits together.
///
/// [`Id`]: crate::id::Id
/// [`Backend`]: wgt::Backend;
/// [`alloc`]: IdentityManager::alloc
/// [`free`]: IdentityManager::free
#[derive(Debug, Default)]
pub struct IdentityManager {
    /// Available index values. If empty, then `epochs.len()` is the next index
    /// to allocate.
    free: Vec<Index>,

    /// The next or currently-live epoch value associated with each `Id` index.
    ///
    /// If there is a live id with index `i`, then `epochs[i]` is its epoch; any
    /// id with the same index but an older epoch is dead.
    ///
    /// If index `i` is currently unused, `epochs[i]` is the epoch to use in its
    /// next `Id`.
    epochs: Vec<Epoch>,
}

impl IdentityManager {
    /// Allocate a fresh, never-before-seen id with the given `backend`.
    ///
    /// The backend is incorporated into the id, so that ids allocated with
    /// different `backend` values are always distinct.
    pub fn alloc<I: id::TypedId>(&mut self, backend: Backend) -> I {
        match self.free.pop() {
            Some(index) => I::zip(index, self.epochs[index as usize], backend),
            None => {
                let epoch = 1;
                let id = I::zip(self.epochs.len() as Index, epoch, backend);
                self.epochs.push(epoch);
                id
            }
        }
    }

    /// Free `id`. It will never be returned from `alloc` again.
    pub fn free<I: id::TypedId + Debug>(&mut self, id: I) {
        let (index, epoch, _backend) = id.unzip();
        let pe = &mut self.epochs[index as usize];
        assert_eq!(*pe, epoch);
        // If the epoch reaches EOL, the index doesn't go
        // into the free list, will never be reused again.
        if epoch < id::EPOCH_MASK {
            *pe = epoch + 1;
            self.free.push(index);
        }
    }
}

/// An entry in a `Storage::map` table.
#[derive(Debug)]
enum Element<T> {
    /// There are no live ids with this index.
    Vacant,

    /// There is one live id with this index, allocated at the given
    /// epoch.
    Occupied(T, Epoch),

    /// Like `Occupied`, but an error occurred when creating the
    /// resource.
    ///
    /// The given `String` is the resource's descriptor label.
    Error(Epoch, String),
}

#[derive(Clone, Debug, Default)]
pub struct StorageReport {
    pub num_occupied: usize,
    pub num_vacant: usize,
    pub num_error: usize,
    pub element_size: usize,
}

impl StorageReport {
    pub fn is_empty(&self) -> bool {
        self.num_occupied + self.num_vacant + self.num_error == 0
    }
}

#[derive(Clone, Debug)]
pub(crate) struct InvalidId;

/// A table of `T` values indexed by the id type `I`.
///
/// The table is represented as a vector indexed by the ids' index
/// values, so you should use an id allocator like `IdentityManager`
/// that keeps the index values dense and close to zero.
#[derive(Debug)]
pub struct Storage<T, I: id::TypedId> {
    map: Vec<Element<T>>,
    kind: &'static str,
    _phantom: PhantomData<I>,
}

impl<T, I: id::TypedId> ops::Index<id::Valid<I>> for Storage<T, I> {
    type Output = T;
    fn index(&self, id: id::Valid<I>) -> &T {
        self.get(id.0).unwrap()
    }
}

impl<T, I: id::TypedId> ops::IndexMut<id::Valid<I>> for Storage<T, I> {
    fn index_mut(&mut self, id: id::Valid<I>) -> &mut T {
        self.get_mut(id.0).unwrap()
    }
}

impl<T, I: id::TypedId> Storage<T, I> {
    pub(crate) fn contains(&self, id: I) -> bool {
        let (index, epoch, _) = id.unzip();
        match self.map.get(index as usize) {
            Some(&Element::Vacant) => false,
            Some(&Element::Occupied(_, storage_epoch) | &Element::Error(storage_epoch, _)) => {
                storage_epoch == epoch
            }
            None => false,
        }
    }

    /// Attempts to get a reference to an item behind a potentially invalid ID.
    ///
    /// Returns [`None`] if there is an epoch mismatch, or the entry is empty.
    ///
    /// This function is primarily intended for the `as_hal` family of functions
    /// where you may need to fallibly get a object backed by an id that could
    /// be in a different hub.
    pub(crate) fn try_get(&self, id: I) -> Result<Option<&T>, InvalidId> {
        let (index, epoch, _) = id.unzip();
        let (result, storage_epoch) = match self.map.get(index as usize) {
            Some(&Element::Occupied(ref v, epoch)) => (Ok(Some(v)), epoch),
            Some(&Element::Vacant) => return Ok(None),
            Some(&Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
            None => return Err(InvalidId),
        };
        assert_eq!(
            epoch, storage_epoch,
            "{}[{}] is no longer alive",
            self.kind, index
        );
        result
    }

    /// Get a reference to an item behind a potentially invalid ID.
    /// Panics if there is an epoch mismatch, or the entry is empty.
    pub(crate) fn get(&self, id: I) -> Result<&T, InvalidId> {
        let (index, epoch, _) = id.unzip();
        let (result, storage_epoch) = match self.map.get(index as usize) {
            Some(&Element::Occupied(ref v, epoch)) => (Ok(v), epoch),
            Some(&Element::Vacant) => panic!("{}[{}] does not exist", self.kind, index),
            Some(&Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
            None => return Err(InvalidId),
        };
        assert_eq!(
            epoch, storage_epoch,
            "{}[{}] is no longer alive",
            self.kind, index
        );
        result
    }

    /// Get a mutable reference to an item behind a potentially invalid ID.
    /// Panics if there is an epoch mismatch, or the entry is empty.
    pub(crate) fn get_mut(&mut self, id: I) -> Result<&mut T, InvalidId> {
        let (index, epoch, _) = id.unzip();
        let (result, storage_epoch) = match self.map.get_mut(index as usize) {
            Some(&mut Element::Occupied(ref mut v, epoch)) => (Ok(v), epoch),
            Some(&mut Element::Vacant) | None => panic!("{}[{}] does not exist", self.kind, index),
            Some(&mut Element::Error(epoch, ..)) => (Err(InvalidId), epoch),
        };
        assert_eq!(
            epoch, storage_epoch,
            "{}[{}] is no longer alive",
            self.kind, index
        );
        result
    }

    pub(crate) unsafe fn get_unchecked(&self, id: u32) -> &T {
        match self.map[id as usize] {
            Element::Occupied(ref v, _) => v,
            Element::Vacant => panic!("{}[{}] does not exist", self.kind, id),
            Element::Error(_, _) => panic!(""),
        }
    }

    pub(crate) fn label_for_invalid_id(&self, id: I) -> &str {
        let (index, _, _) = id.unzip();
        match self.map.get(index as usize) {
            Some(&Element::Error(_, ref label)) => label,
            _ => "",
        }
    }

    fn insert_impl(&mut self, index: usize, element: Element<T>) {
        if index >= self.map.len() {
            self.map.resize_with(index + 1, || Element::Vacant);
        }
        match std::mem::replace(&mut self.map[index], element) {
            Element::Vacant => {}
            _ => panic!("Index {index:?} is already occupied"),
        }
    }

    pub(crate) fn insert(&mut self, id: I, value: T) {
        let (index, epoch, _) = id.unzip();
        self.insert_impl(index as usize, Element::Occupied(value, epoch))
    }

    pub(crate) fn insert_error(&mut self, id: I, label: &str) {
        let (index, epoch, _) = id.unzip();
        self.insert_impl(index as usize, Element::Error(epoch, label.to_string()))
    }

    pub(crate) fn force_replace(&mut self, id: I, value: T) {
        let (index, epoch, _) = id.unzip();
        self.map[index as usize] = Element::Occupied(value, epoch);
    }

    pub(crate) fn remove(&mut self, id: I) -> Option<T> {
        let (index, epoch, _) = id.unzip();
        match std::mem::replace(&mut self.map[index as usize], Element::Vacant) {
            Element::Occupied(value, storage_epoch) => {
                assert_eq!(epoch, storage_epoch);
                Some(value)
            }
            Element::Error(..) => None,
            Element::Vacant => panic!("Cannot remove a vacant resource"),
        }
    }

    // Prevents panic on out of range access, allows Vacant elements.
    pub(crate) fn _try_remove(&mut self, id: I) -> Option<T> {
        let (index, epoch, _) = id.unzip();
        if index as usize >= self.map.len() {
            None
        } else if let Element::Occupied(value, storage_epoch) =
            std::mem::replace(&mut self.map[index as usize], Element::Vacant)
        {
            assert_eq!(epoch, storage_epoch);
            Some(value)
        } else {
            None
        }
    }

    pub(crate) fn iter(&self, backend: Backend) -> impl Iterator<Item = (I, &T)> {
        self.map
            .iter()
            .enumerate()
            .filter_map(move |(index, x)| match *x {
                Element::Occupied(ref value, storage_epoch) => {
                    Some((I::zip(index as Index, storage_epoch, backend), value))
                }
                _ => None,
            })
    }

    pub(crate) fn len(&self) -> usize {
        self.map.len()
    }

    fn generate_report(&self) -> StorageReport {
        let mut report = StorageReport {
            element_size: mem::size_of::<T>(),
            ..Default::default()
        };
        for element in self.map.iter() {
            match *element {
                Element::Occupied(..) => report.num_occupied += 1,
                Element::Vacant => report.num_vacant += 1,
                Element::Error(..) => report.num_error += 1,
            }
        }
        report
    }
}

/// Type system for enforcing the lock order on [`Hub`] fields.
///
/// If type `A` implements `Access<B>`, that means we are allowed to
/// proceed with locking resource `B` after we lock `A`.
///
/// The implementations of `Access` basically describe the edges in an
/// acyclic directed graph of lock transitions. As long as it doesn't have
/// cycles, any number of threads can acquire locks along paths through
/// the graph without deadlock. That is, if you look at each thread's
/// lock acquisitions as steps along a path in the graph, then because
/// there are no cycles in the graph, there must always be some thread
/// that is able to acquire its next lock, or that is about to release
/// a lock. (Assume that no thread just sits on its locks forever.)
///
/// Locks must be acquired in the following order:
///
/// - [`Adapter`]
/// - [`Device`]
/// - [`CommandBuffer`]
/// - [`RenderBundle`]
/// - [`PipelineLayout`]
/// - [`BindGroupLayout`]
/// - [`BindGroup`]
/// - [`ComputePipeline`]
/// - [`RenderPipeline`]
/// - [`ShaderModule`]
/// - [`Buffer`]
/// - [`StagingBuffer`]
/// - [`Texture`]
/// - [`TextureView`]
/// - [`Sampler`]
/// - [`QuerySet`]
///
/// That is, you may only acquire a new lock on a `Hub` field if it
/// appears in the list after all the other fields you're already
/// holding locks for. When you are holding no locks, you can start
/// anywhere.
///
/// It's fine to add more `Access` implementations as needed, as long
/// as you do not introduce a cycle. In other words, as long as there
/// is some ordering you can put the resource types in that respects
/// the extant `Access` implementations, that's fine.
///
/// See the documentation for [`Hub`] for more details.
pub trait Access<A> {}

pub enum Root {}

// These impls are arranged so that the target types (that is, the `T`
// in `Access<T>`) appear in locking order.
//
// TODO: establish an order instead of declaring all the pairs.
impl Access<Instance> for Root {}
impl Access<Surface> for Root {}
impl Access<Surface> for Instance {}
impl<A: HalApi> Access<Adapter<A>> for Root {}
impl<A: HalApi> Access<Adapter<A>> for Surface {}
impl<A: HalApi> Access<Device<A>> for Root {}
impl<A: HalApi> Access<Device<A>> for Surface {}
impl<A: HalApi> Access<Device<A>> for Adapter<A> {}
impl<A: HalApi> Access<CommandBuffer<A>> for Root {}
impl<A: HalApi> Access<CommandBuffer<A>> for Device<A> {}
impl<A: HalApi> Access<RenderBundle<A>> for Device<A> {}
impl<A: HalApi> Access<RenderBundle<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<PipelineLayout<A>> for Root {}
impl<A: HalApi> Access<PipelineLayout<A>> for Device<A> {}
impl<A: HalApi> Access<PipelineLayout<A>> for RenderBundle<A> {}
impl<A: HalApi> Access<BindGroupLayout<A>> for Root {}
impl<A: HalApi> Access<BindGroupLayout<A>> for Device<A> {}
impl<A: HalApi> Access<BindGroupLayout<A>> for PipelineLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for Root {}
impl<A: HalApi> Access<BindGroup<A>> for Device<A> {}
impl<A: HalApi> Access<BindGroup<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for PipelineLayout<A> {}
impl<A: HalApi> Access<BindGroup<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<ComputePipeline<A>> for Device<A> {}
impl<A: HalApi> Access<ComputePipeline<A>> for BindGroup<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for Device<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for BindGroup<A> {}
impl<A: HalApi> Access<RenderPipeline<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<ShaderModule<A>> for Device<A> {}
impl<A: HalApi> Access<ShaderModule<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<Buffer<A>> for Root {}
impl<A: HalApi> Access<Buffer<A>> for Device<A> {}
impl<A: HalApi> Access<Buffer<A>> for BindGroupLayout<A> {}
impl<A: HalApi> Access<Buffer<A>> for BindGroup<A> {}
impl<A: HalApi> Access<Buffer<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<Buffer<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<Buffer<A>> for RenderPipeline<A> {}
impl<A: HalApi> Access<Buffer<A>> for QuerySet<A> {}
impl<A: HalApi> Access<StagingBuffer<A>> for Device<A> {}
impl<A: HalApi> Access<Texture<A>> for Root {}
impl<A: HalApi> Access<Texture<A>> for Device<A> {}
impl<A: HalApi> Access<Texture<A>> for Buffer<A> {}
impl<A: HalApi> Access<TextureView<A>> for Root {}
impl<A: HalApi> Access<TextureView<A>> for Device<A> {}
impl<A: HalApi> Access<TextureView<A>> for Texture<A> {}
impl<A: HalApi> Access<Sampler<A>> for Root {}
impl<A: HalApi> Access<Sampler<A>> for Device<A> {}
impl<A: HalApi> Access<Sampler<A>> for TextureView<A> {}
impl<A: HalApi> Access<QuerySet<A>> for Root {}
impl<A: HalApi> Access<QuerySet<A>> for Device<A> {}
impl<A: HalApi> Access<QuerySet<A>> for CommandBuffer<A> {}
impl<A: HalApi> Access<QuerySet<A>> for RenderPipeline<A> {}
impl<A: HalApi> Access<QuerySet<A>> for ComputePipeline<A> {}
impl<A: HalApi> Access<QuerySet<A>> for Sampler<A> {}

#[cfg(debug_assertions)]
thread_local! {
    /// Per-thread state checking `Token<Root>` creation in debug builds.
    ///
    /// This is the number of `Token` values alive on the current
    /// thread. Since `Token` creation respects the [`Access`] graph,
    /// there can never be more tokens alive than there are fields of
    /// [`Hub`], so a `u8` is plenty.
    static ACTIVE_TOKEN: Cell<u8> = Cell::new(0);
}

/// A zero-size permission token to lock some fields of [`Hub`].
///
/// Access to a `Token<T>` grants permission to lock any field of
/// [`Hub`] following the one of type [`Registry<T, ...>`], where
/// "following" is as defined by the [`Access`] implementations.
///
/// Calling [`Token::root()`] returns a `Token<Root>`, which grants
/// permission to lock any field. Dynamic checks ensure that each
/// thread has at most one `Token<Root>` live at a time, in debug
/// builds.
///
/// The locking methods on `Registry<T, ...>` take a `&'t mut
/// Token<A>`, and return a fresh `Token<'t, T>` and a lock guard with
/// lifetime `'t`, so the caller cannot access their `Token<A>` again
/// until they have dropped both the `Token<T>` and the lock guard.
///
/// Tokens are `!Send`, so one thread can't send its permissions to
/// another.
pub(crate) struct Token<'a, T: 'a> {
    // The `*const` makes us `!Send` and `!Sync`.
    level: PhantomData<&'a *const T>,
}

impl<'a, T> Token<'a, T> {
    /// Return a new token for a locked field.
    ///
    /// This should only be used by `Registry` locking methods.
    fn new() -> Self {
        #[cfg(debug_assertions)]
        ACTIVE_TOKEN.with(|active| {
            let old = active.get();
            assert_ne!(old, 0, "Root token was dropped");
            active.set(old + 1);
        });
        Self { level: PhantomData }
    }
}

impl Token<'static, Root> {
    /// Return a `Token<Root>`, granting permission to lock any [`Hub`] field.
    ///
    /// Debug builds check dynamically that each thread has at most
    /// one root token at a time.
    pub fn root() -> Self {
        #[cfg(debug_assertions)]
        ACTIVE_TOKEN.with(|active| {
            assert_eq!(0, active.replace(1), "Root token is already active");
        });

        Self { level: PhantomData }
    }
}

impl<'a, T> Drop for Token<'a, T> {
    fn drop(&mut self) {
        #[cfg(debug_assertions)]
        ACTIVE_TOKEN.with(|active| {
            let old = active.get();
            active.set(old - 1);
        });
    }
}

/// A type that can build true ids from proto-ids, and free true ids.
///
/// For some implementations, the true id is based on the proto-id.
/// The caller is responsible for providing well-allocated proto-ids.
///
/// For other implementations, the proto-id carries no information
/// (it's `()`, say), and this `IdentityHandler` type takes care of
/// allocating a fresh true id.
///
/// See the module-level documentation for details.
pub trait IdentityHandler<I>: Debug {
    /// The type of proto-id consumed by this filter, to produce a true id.
    type Input: Clone + Debug;

    /// Given a proto-id value `id`, return a true id for `backend`.
    fn process(&self, id: Self::Input, backend: Backend) -> I;

    /// Free the true id `id`.
    fn free(&self, id: I);
}

impl<I: id::TypedId + Debug> IdentityHandler<I> for Mutex<IdentityManager> {
    type Input = ();
    fn process(&self, _id: Self::Input, backend: Backend) -> I {
        self.lock().alloc(backend)
    }
    fn free(&self, id: I) {
        self.lock().free(id)
    }
}

/// A type that can produce [`IdentityHandler`] filters for ids of type `I`.
///
/// See the module-level documentation for details.
pub trait IdentityHandlerFactory<I> {
    /// The type of filter this factory constructs.
    ///
    /// "Filter" and "handler" seem to both mean the same thing here:
    /// something that can produce true ids from proto-ids.
    type Filter: IdentityHandler<I>;

    /// Create an [`IdentityHandler<I>`] implementation that can
    /// transform proto-ids into ids of type `I`.
    ///
    /// [`IdentityHandler<I>`]: IdentityHandler
    fn spawn(&self) -> Self::Filter;
}

/// A global identity handler factory based on [`IdentityManager`].
///
/// Each of this type's `IdentityHandlerFactory<I>::spawn` methods
/// returns a `Mutex<IdentityManager<I>>`, which allocates fresh `I`
/// ids itself, and takes `()` as its proto-id type.
#[derive(Debug)]
pub struct IdentityManagerFactory;

impl<I: id::TypedId + Debug> IdentityHandlerFactory<I> for IdentityManagerFactory {
    type Filter = Mutex<IdentityManager>;
    fn spawn(&self) -> Self::Filter {
        Mutex::new(IdentityManager::default())
    }
}

/// A factory that can build [`IdentityHandler`]s for all resource
/// types.
pub trait GlobalIdentityHandlerFactory:
    IdentityHandlerFactory<id::AdapterId>
    + IdentityHandlerFactory<id::DeviceId>
    + IdentityHandlerFactory<id::PipelineLayoutId>
    + IdentityHandlerFactory<id::ShaderModuleId>
    + IdentityHandlerFactory<id::BindGroupLayoutId>
    + IdentityHandlerFactory<id::BindGroupId>
    + IdentityHandlerFactory<id::CommandBufferId>
    + IdentityHandlerFactory<id::RenderBundleId>
    + IdentityHandlerFactory<id::RenderPipelineId>
    + IdentityHandlerFactory<id::ComputePipelineId>
    + IdentityHandlerFactory<id::QuerySetId>
    + IdentityHandlerFactory<id::BufferId>
    + IdentityHandlerFactory<id::StagingBufferId>
    + IdentityHandlerFactory<id::TextureId>
    + IdentityHandlerFactory<id::TextureViewId>
    + IdentityHandlerFactory<id::SamplerId>
    + IdentityHandlerFactory<id::SurfaceId>
{
}

impl GlobalIdentityHandlerFactory for IdentityManagerFactory {}

pub type Input<G, I> = <<G as IdentityHandlerFactory<I>>::Filter as IdentityHandler<I>>::Input;

pub trait Resource {
    const TYPE: &'static str;
    fn life_guard(&self) -> &crate::LifeGuard;
    fn label(&self) -> &str {
        #[cfg(debug_assertions)]
        return &self.life_guard().label;
        #[cfg(not(debug_assertions))]
        return "";
    }
}

#[derive(Debug)]
pub struct Registry<T: Resource, I: id::TypedId, F: IdentityHandlerFactory<I>> {
    identity: F::Filter,
    data: RwLock<Storage<T, I>>,
    backend: Backend,
}

impl<T: Resource, I: id::TypedId, F: IdentityHandlerFactory<I>> Registry<T, I, F> {
    fn new(backend: Backend, factory: &F) -> Self {
        Self {
            identity: factory.spawn(),
            data: RwLock::new(Storage {
                map: Vec::new(),
                kind: T::TYPE,
                _phantom: PhantomData,
            }),
            backend,
        }
    }

    fn without_backend(factory: &F, kind: &'static str) -> Self {
        Self {
            identity: factory.spawn(),
            data: RwLock::new(Storage {
                map: Vec::new(),
                kind,
                _phantom: PhantomData,
            }),
            backend: Backend::Empty,
        }
    }
}

#[must_use]
pub(crate) struct FutureId<'a, I: id::TypedId, T> {
    id: I,
    data: &'a RwLock<Storage<T, I>>,
}

impl<I: id::TypedId + Copy, T> FutureId<'_, I, T> {
    #[cfg(feature = "trace")]
    pub fn id(&self) -> I {
        self.id
    }

    pub fn into_id(self) -> I {
        self.id
    }

    pub fn assign<'a, A: Access<T>>(self, value: T, _: &'a mut Token<A>) -> id::Valid<I> {
        self.data.write().insert(self.id, value);
        id::Valid(self.id)
    }

    pub fn assign_error<'a, A: Access<T>>(self, label: &str, _: &'a mut Token<A>) -> I {
        self.data.write().insert_error(self.id, label);
        self.id
    }
}

impl<T: Resource, I: id::TypedId + Copy, F: IdentityHandlerFactory<I>> Registry<T, I, F> {
    pub(crate) fn prepare(
        &self,
        id_in: <F::Filter as IdentityHandler<I>>::Input,
    ) -> FutureId<I, T> {
        FutureId {
            id: self.identity.process(id_in, self.backend),
            data: &self.data,
        }
    }

    /// Acquire read access to this `Registry`'s contents.
    ///
    /// The caller must present a mutable reference to a `Token<A>`,
    /// for some type `A` that comes before this `Registry`'s resource
    /// type `T` in the lock ordering. A `Token<Root>` grants
    /// permission to lock any field; see [`Token::root`].
    ///
    /// Once the read lock is acquired, return a new `Token<T>`, along
    /// with a read guard for this `Registry`'s [`Storage`], which can
    /// be indexed by id to get at the actual resources.
    ///
    /// The borrow checker ensures that the caller cannot again access
    /// its `Token<A>` until it has dropped both the guard and the
    /// `Token<T>`.
    ///
    /// See the [`Hub`] type for more details on locking.
    pub(crate) fn read<'a, A: Access<T>>(
        &'a self,
        _token: &'a mut Token<A>,
    ) -> (RwLockReadGuard<'a, Storage<T, I>>, Token<'a, T>) {
        (self.data.read(), Token::new())
    }

    /// Acquire write access to this `Registry`'s contents.
    ///
    /// The caller must present a mutable reference to a `Token<A>`,
    /// for some type `A` that comes before this `Registry`'s resource
    /// type `T` in the lock ordering. A `Token<Root>` grants
    /// permission to lock any field; see [`Token::root`].
    ///
    /// Once the lock is acquired, return a new `Token<T>`, along with
    /// a write guard for this `Registry`'s [`Storage`], which can be
    /// indexed by id to get at the actual resources.
    ///
    /// The borrow checker ensures that the caller cannot again access
    /// its `Token<A>` until it has dropped both the guard and the
    /// `Token<T>`.
    ///
    /// See the [`Hub`] type for more details on locking.
    pub(crate) fn write<'a, A: Access<T>>(
        &'a self,
        _token: &'a mut Token<A>,
    ) -> (RwLockWriteGuard<'a, Storage<T, I>>, Token<'a, T>) {
        (self.data.write(), Token::new())
    }

    /// Unregister the resource at `id`.
    ///
    /// The caller must prove that it already holds a write lock for
    /// this `Registry` by passing a mutable reference to this
    /// `Registry`'s storage, obtained from the write guard returned
    /// by a previous call to [`write`], as the `guard` parameter.
    pub fn unregister_locked(&self, id: I, guard: &mut Storage<T, I>) -> Option<T> {
        let value = guard.remove(id);
        //Note: careful about the order here!
        self.identity.free(id);
        //Returning None is legal if it's an error ID
        value
    }

    /// Unregister the resource at `id` and return its value, if any.
    ///
    /// The caller must present a mutable reference to a `Token<A>`,
    /// for some type `A` that comes before this `Registry`'s resource
    /// type `T` in the lock ordering.
    ///
    /// This returns a `Token<T>`, but it's almost useless, because it
    /// doesn't return a lock guard to go with it: its only effect is
    /// to make the token you passed to this function inaccessible.
    /// However, the `Token<T>` can be used to satisfy some functions'
    /// bureacratic expectations that you will have one available.
    ///
    /// The borrow checker ensures that the caller cannot again access
    /// its `Token<A>` until it has dropped both the guard and the
    /// `Token<T>`.
    ///
    /// See the [`Hub`] type for more details on locking.
    pub(crate) fn unregister<'a, A: Access<T>>(
        &self,
        id: I,
        _token: &'a mut Token<A>,
    ) -> (Option<T>, Token<'a, T>) {
        let value = self.data.write().remove(id);
        //Note: careful about the order here!
        self.identity.free(id);
        //Returning None is legal if it's an error ID
        (value, Token::new())
    }

    pub fn label_for_resource(&self, id: I) -> String {
        let guard = self.data.read();

        let type_name = guard.kind;
        match guard.get(id) {
            Ok(res) => {
                let label = res.label();
                if label.is_empty() {
                    format!("<{}-{:?}>", type_name, id.unzip())
                } else {
                    label.to_string()
                }
            }
            Err(_) => format!(
                "<Invalid-{} label={}>",
                type_name,
                guard.label_for_invalid_id(id)
            ),
        }
    }
}

#[derive(Debug)]
pub struct HubReport {
    pub adapters: StorageReport,
    pub devices: StorageReport,
    pub pipeline_layouts: StorageReport,
    pub shader_modules: StorageReport,
    pub bind_group_layouts: StorageReport,
    pub bind_groups: StorageReport,
    pub command_buffers: StorageReport,
    pub render_bundles: StorageReport,
    pub render_pipelines: StorageReport,
    pub compute_pipelines: StorageReport,
    pub query_sets: StorageReport,
    pub buffers: StorageReport,
    pub textures: StorageReport,
    pub texture_views: StorageReport,
    pub samplers: StorageReport,
}

impl HubReport {
    pub fn is_empty(&self) -> bool {
        self.adapters.is_empty()
    }
}

#[allow(rustdoc::private_intra_doc_links)]
/// All the resources for a particular backend in a [`Global`].
///
/// To obtain `global`'s `Hub` for some [`HalApi`] backend type `A`,
/// call [`A::hub(global)`].
///
/// ## Locking
///
/// Each field in `Hub` is a [`Registry`] holding all the values of a
/// particular type of resource, all protected by a single [`RwLock`].
/// So for example, to access any [`Buffer`], you must acquire a read
/// lock on the `Hub`s entire [`buffers`] registry. The lock guard
/// gives you access to the `Registry`'s [`Storage`], which you can
/// then index with the buffer's id. (Yes, this design causes
/// contention; see [#2272].)
///
/// But most `wgpu` operations require access to several different
/// kinds of resource, so you often need to hold locks on several
/// different fields of your [`Hub`] simultaneously. To avoid
/// deadlock, there is an ordering imposed on the fields, and you may
/// only acquire new locks on fields that come *after* all those you
/// are already holding locks on, in this ordering. (The ordering is
/// described in the documentation for the [`Access`] trait.)
///
/// We use Rust's type system to statically check that `wgpu_core` can
/// only ever acquire locks in the correct order:
///
/// - A value of type [`Token<T>`] represents proof that the owner
///   only holds locks on the `Hub` fields holding resources of type
///   `T` or earlier in the lock ordering. A special value of type
///   `Token<Root>`, obtained by calling [`Token::root`], represents
///   proof that no `Hub` field locks are held.
///
/// - To lock the `Hub` field holding resources of type `T`, you must
///   call its [`read`] or [`write`] methods. These require you to
///   pass in a `&mut Token<A>`, for some `A` that implements
///   [`Access<T>`]. This implementation exists only if `T` follows `A`
///   in the field ordering, which statically ensures that you are
///   indeed allowed to lock this new `Hub` field.
///
/// - The locking methods return both an [`RwLock`] guard that you can
///   use to access the field's resources, and a new `Token<T>` value.
///   These both borrow from the lifetime of your `Token<A>`, so since
///   you passed that by mutable reference, you cannot access it again
///   until you drop the new token and lock guard.
///
/// Because a thread only ever has access to the `Token<T>` for the
/// last resource type `T` it holds a lock for, and the `Access` trait
/// implementations only permit acquiring locks for types `U` that
/// follow `T` in the lock ordering, it is statically impossible for a
/// program to violate the locking order.
///
/// This does assume that threads cannot call `Token<Root>` when they
/// already hold locks (dynamically enforced in debug builds) and that
/// threads cannot send their `Token`s to other threads (enforced by
/// making `Token` neither `Send` nor `Sync`).
///
/// [`A::hub(global)`]: HalApi::hub
/// [`RwLock`]: parking_lot::RwLock
/// [`buffers`]: Hub::buffers
/// [`read`]: Registry::read
/// [`write`]: Registry::write
/// [`Token<T>`]: Token
/// [`Access<T>`]: Access
/// [#2272]: https://github.com/gfx-rs/wgpu/pull/2272
pub struct Hub<A: HalApi, F: GlobalIdentityHandlerFactory> {
    pub adapters: Registry<Adapter<A>, id::AdapterId, F>,
    pub devices: Registry<Device<A>, id::DeviceId, F>,
    pub pipeline_layouts: Registry<PipelineLayout<A>, id::PipelineLayoutId, F>,
    pub shader_modules: Registry<ShaderModule<A>, id::ShaderModuleId, F>,
    pub bind_group_layouts: Registry<BindGroupLayout<A>, id::BindGroupLayoutId, F>,
    pub bind_groups: Registry<BindGroup<A>, id::BindGroupId, F>,
    pub command_buffers: Registry<CommandBuffer<A>, id::CommandBufferId, F>,
    pub render_bundles: Registry<RenderBundle<A>, id::RenderBundleId, F>,
    pub render_pipelines: Registry<RenderPipeline<A>, id::RenderPipelineId, F>,
    pub compute_pipelines: Registry<ComputePipeline<A>, id::ComputePipelineId, F>,
    pub query_sets: Registry<QuerySet<A>, id::QuerySetId, F>,
    pub buffers: Registry<Buffer<A>, id::BufferId, F>,
    pub staging_buffers: Registry<StagingBuffer<A>, id::StagingBufferId, F>,
    pub textures: Registry<Texture<A>, id::TextureId, F>,
    pub texture_views: Registry<TextureView<A>, id::TextureViewId, F>,
    pub samplers: Registry<Sampler<A>, id::SamplerId, F>,
}

impl<A: HalApi, F: GlobalIdentityHandlerFactory> Hub<A, F> {
    fn new(factory: &F) -> Self {
        Self {
            adapters: Registry::new(A::VARIANT, factory),
            devices: Registry::new(A::VARIANT, factory),
            pipeline_layouts: Registry::new(A::VARIANT, factory),
            shader_modules: Registry::new(A::VARIANT, factory),
            bind_group_layouts: Registry::new(A::VARIANT, factory),
            bind_groups: Registry::new(A::VARIANT, factory),
            command_buffers: Registry::new(A::VARIANT, factory),
            render_bundles: Registry::new(A::VARIANT, factory),
            render_pipelines: Registry::new(A::VARIANT, factory),
            compute_pipelines: Registry::new(A::VARIANT, factory),
            query_sets: Registry::new(A::VARIANT, factory),
            buffers: Registry::new(A::VARIANT, factory),
            staging_buffers: Registry::new(A::VARIANT, factory),
            textures: Registry::new(A::VARIANT, factory),
            texture_views: Registry::new(A::VARIANT, factory),
            samplers: Registry::new(A::VARIANT, factory),
        }
    }

    //TODO: instead of having a hacky `with_adapters` parameter,
    // we should have `clear_device(device_id)` that specifically destroys
    // everything related to a logical device.
    fn clear(&self, surface_guard: &mut Storage<Surface, id::SurfaceId>, with_adapters: bool) {
        use crate::resource::TextureInner;
        use hal::{Device as _, Surface as _};

        let mut devices = self.devices.data.write();
        for element in devices.map.iter_mut() {
            if let Element::Occupied(ref mut device, _) = *element {
                device.prepare_to_die();
            }
        }

        // destroy command buffers first, since otherwise DX12 isn't happy
        for element in self.command_buffers.data.write().map.drain(..) {
            if let Element::Occupied(command_buffer, _) = element {
                let device = &devices[command_buffer.device_id.value];
                device.destroy_command_buffer(command_buffer);
            }
        }

        for element in self.samplers.data.write().map.drain(..) {
            if let Element::Occupied(sampler, _) = element {
                unsafe {
                    devices[sampler.device_id.value]
                        .raw
                        .destroy_sampler(sampler.raw);
                }
            }
        }

        for element in self.texture_views.data.write().map.drain(..) {
            if let Element::Occupied(texture_view, _) = element {
                let device = &devices[texture_view.device_id.value];
                unsafe {
                    device.raw.destroy_texture_view(texture_view.raw);
                }
            }
        }

        for element in self.textures.data.write().map.drain(..) {
            if let Element::Occupied(texture, _) = element {
                let device = &devices[texture.device_id.value];
                if let TextureInner::Native { raw: Some(raw) } = texture.inner {
                    unsafe {
                        device.raw.destroy_texture(raw);
                    }
                }
                if let TextureClearMode::RenderPass { clear_views, .. } = texture.clear_mode {
                    for view in clear_views {
                        unsafe {
                            device.raw.destroy_texture_view(view);
                        }
                    }
                }
            }
        }
        for element in self.buffers.data.write().map.drain(..) {
            if let Element::Occupied(buffer, _) = element {
                //TODO: unmap if needed
                devices[buffer.device_id.value].destroy_buffer(buffer);
            }
        }
        for element in self.bind_groups.data.write().map.drain(..) {
            if let Element::Occupied(bind_group, _) = element {
                let device = &devices[bind_group.device_id.value];
                unsafe {
                    device.raw.destroy_bind_group(bind_group.raw);
                }
            }
        }

        for element in self.shader_modules.data.write().map.drain(..) {
            if let Element::Occupied(module, _) = element {
                let device = &devices[module.device_id.value];
                unsafe {
                    device.raw.destroy_shader_module(module.raw);
                }
            }
        }
        for element in self.bind_group_layouts.data.write().map.drain(..) {
            if let Element::Occupied(bgl, _) = element {
                let device = &devices[bgl.device_id.value];
                unsafe {
                    device.raw.destroy_bind_group_layout(bgl.raw);
                }
            }
        }
        for element in self.pipeline_layouts.data.write().map.drain(..) {
            if let Element::Occupied(pipeline_layout, _) = element {
                let device = &devices[pipeline_layout.device_id.value];
                unsafe {
                    device.raw.destroy_pipeline_layout(pipeline_layout.raw);
                }
            }
        }
        for element in self.compute_pipelines.data.write().map.drain(..) {
            if let Element::Occupied(pipeline, _) = element {
                let device = &devices[pipeline.device_id.value];
                unsafe {
                    device.raw.destroy_compute_pipeline(pipeline.raw);
                }
            }
        }
        for element in self.render_pipelines.data.write().map.drain(..) {
            if let Element::Occupied(pipeline, _) = element {
                let device = &devices[pipeline.device_id.value];
                unsafe {
                    device.raw.destroy_render_pipeline(pipeline.raw);
                }
            }
        }

        for element in surface_guard.map.iter_mut() {
            if let Element::Occupied(ref mut surface, _epoch) = *element {
                if surface
                    .presentation
                    .as_ref()
                    .map_or(wgt::Backend::Empty, |p| p.backend())
                    != A::VARIANT
                {
                    continue;
                }
                if let Some(present) = surface.presentation.take() {
                    let device = &devices[present.device_id.value];
                    let suf = A::get_surface_mut(surface);
                    unsafe {
                        suf.unwrap().raw.unconfigure(&device.raw);
                        //TODO: we could destroy the surface here
                    }
                }
            }
        }

        for element in self.query_sets.data.write().map.drain(..) {
            if let Element::Occupied(query_set, _) = element {
                let device = &devices[query_set.device_id.value];
                unsafe {
                    device.raw.destroy_query_set(query_set.raw);
                }
            }
        }

        for element in devices.map.drain(..) {
            if let Element::Occupied(device, _) = element {
                device.dispose();
            }
        }

        if with_adapters {
            drop(devices);
            self.adapters.data.write().map.clear();
        }
    }

    pub(crate) fn surface_unconfigure(
        &self,
        device_id: id::Valid<id::DeviceId>,
        surface: &mut HalSurface<A>,
    ) {
        use hal::Surface as _;

        let devices = self.devices.data.read();
        let device = &devices[device_id];
        unsafe {
            surface.raw.unconfigure(&device.raw);
        }
    }

    pub fn generate_report(&self) -> HubReport {
        HubReport {
            adapters: self.adapters.data.read().generate_report(),
            devices: self.devices.data.read().generate_report(),
            pipeline_layouts: self.pipeline_layouts.data.read().generate_report(),
            shader_modules: self.shader_modules.data.read().generate_report(),
            bind_group_layouts: self.bind_group_layouts.data.read().generate_report(),
            bind_groups: self.bind_groups.data.read().generate_report(),
            command_buffers: self.command_buffers.data.read().generate_report(),
            render_bundles: self.render_bundles.data.read().generate_report(),
            render_pipelines: self.render_pipelines.data.read().generate_report(),
            compute_pipelines: self.compute_pipelines.data.read().generate_report(),
            query_sets: self.query_sets.data.read().generate_report(),
            buffers: self.buffers.data.read().generate_report(),
            textures: self.textures.data.read().generate_report(),
            texture_views: self.texture_views.data.read().generate_report(),
            samplers: self.samplers.data.read().generate_report(),
        }
    }
}

pub struct Hubs<F: GlobalIdentityHandlerFactory> {
    #[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
    vulkan: Hub<hal::api::Vulkan, F>,
    #[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
    metal: Hub<hal::api::Metal, F>,
    #[cfg(all(feature = "dx12", windows))]
    dx12: Hub<hal::api::Dx12, F>,
    #[cfg(all(feature = "dx11", windows))]
    dx11: Hub<hal::api::Dx11, F>,
    #[cfg(feature = "gles")]
    gl: Hub<hal::api::Gles, F>,
}

impl<F: GlobalIdentityHandlerFactory> Hubs<F> {
    fn new(factory: &F) -> Self {
        Self {
            #[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
            vulkan: Hub::new(factory),
            #[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
            metal: Hub::new(factory),
            #[cfg(all(feature = "dx12", windows))]
            dx12: Hub::new(factory),
            #[cfg(all(feature = "dx11", windows))]
            dx11: Hub::new(factory),
            #[cfg(feature = "gles")]
            gl: Hub::new(factory),
        }
    }
}

#[derive(Debug)]
pub struct GlobalReport {
    pub surfaces: StorageReport,
    #[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
    pub vulkan: Option<HubReport>,
    #[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
    pub metal: Option<HubReport>,
    #[cfg(all(feature = "dx12", windows))]
    pub dx12: Option<HubReport>,
    #[cfg(all(feature = "dx11", windows))]
    pub dx11: Option<HubReport>,
    #[cfg(feature = "gles")]
    pub gl: Option<HubReport>,
}

pub struct Global<G: GlobalIdentityHandlerFactory> {
    pub instance: Instance,
    pub surfaces: Registry<Surface, id::SurfaceId, G>,
    hubs: Hubs<G>,
}

impl<G: GlobalIdentityHandlerFactory> Global<G> {
    pub fn new(name: &str, factory: G, instance_desc: wgt::InstanceDescriptor) -> Self {
        profiling::scope!("Global::new");
        Self {
            instance: Instance::new(name, instance_desc),
            surfaces: Registry::without_backend(&factory, "Surface"),
            hubs: Hubs::new(&factory),
        }
    }

    /// # Safety
    ///
    /// Refer to the creation of wgpu-hal Instance for every backend.
    pub unsafe fn from_hal_instance<A: HalApi>(
        name: &str,
        factory: G,
        hal_instance: A::Instance,
    ) -> Self {
        profiling::scope!("Global::new");
        Self {
            instance: A::create_instance_from_hal(name, hal_instance),
            surfaces: Registry::without_backend(&factory, "Surface"),
            hubs: Hubs::new(&factory),
        }
    }

    /// # Safety
    ///
    /// - The raw instance handle returned must not be manually destroyed.
    pub unsafe fn instance_as_hal<A: HalApi>(&self) -> Option<&A::Instance> {
        A::instance_as_hal(&self.instance)
    }

    /// # Safety
    ///
    /// - The raw handles obtained from the Instance must not be manually destroyed
    pub unsafe fn from_instance(factory: G, instance: Instance) -> Self {
        profiling::scope!("Global::new");
        Self {
            instance,
            surfaces: Registry::without_backend(&factory, "Surface"),
            hubs: Hubs::new(&factory),
        }
    }

    pub fn clear_backend<A: HalApi>(&self, _dummy: ()) {
        let mut surface_guard = self.surfaces.data.write();
        let hub = A::hub(self);
        // this is used for tests, which keep the adapter
        hub.clear(&mut surface_guard, false);
    }

    pub fn generate_report(&self) -> GlobalReport {
        GlobalReport {
            surfaces: self.surfaces.data.read().generate_report(),
            #[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
            vulkan: if self.instance.vulkan.is_some() {
                Some(self.hubs.vulkan.generate_report())
            } else {
                None
            },
            #[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
            metal: if self.instance.metal.is_some() {
                Some(self.hubs.metal.generate_report())
            } else {
                None
            },
            #[cfg(all(feature = "dx12", windows))]
            dx12: if self.instance.dx12.is_some() {
                Some(self.hubs.dx12.generate_report())
            } else {
                None
            },
            #[cfg(all(feature = "dx11", windows))]
            dx11: if self.instance.dx11.is_some() {
                Some(self.hubs.dx11.generate_report())
            } else {
                None
            },
            #[cfg(feature = "gles")]
            gl: if self.instance.gl.is_some() {
                Some(self.hubs.gl.generate_report())
            } else {
                None
            },
        }
    }
}

impl<G: GlobalIdentityHandlerFactory> Drop for Global<G> {
    fn drop(&mut self) {
        profiling::scope!("Global::drop");
        log::info!("Dropping Global");
        let mut surface_guard = self.surfaces.data.write();

        // destroy hubs before the instance gets dropped
        #[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
        {
            self.hubs.vulkan.clear(&mut surface_guard, true);
        }
        #[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
        {
            self.hubs.metal.clear(&mut surface_guard, true);
        }
        #[cfg(all(feature = "dx12", windows))]
        {
            self.hubs.dx12.clear(&mut surface_guard, true);
        }
        #[cfg(all(feature = "dx11", windows))]
        {
            self.hubs.dx11.clear(&mut surface_guard, true);
        }
        #[cfg(feature = "gles")]
        {
            self.hubs.gl.clear(&mut surface_guard, true);
        }

        // destroy surfaces
        for element in surface_guard.map.drain(..) {
            if let Element::Occupied(surface, _) = element {
                self.instance.destroy_surface(surface);
            }
        }
    }
}

pub trait HalApi: hal::Api {
    const VARIANT: Backend;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance;
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance>;
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G>;
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>>;
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>>;
}

impl HalApi for hal::api::Empty {
    const VARIANT: Backend = Backend::Empty;
    fn create_instance_from_hal(_: &str, _: Self::Instance) -> Instance {
        unimplemented!("called empty api")
    }
    fn instance_as_hal(_: &Instance) -> Option<&Self::Instance> {
        unimplemented!("called empty api")
    }
    fn hub<G: GlobalIdentityHandlerFactory>(_: &Global<G>) -> &Hub<Self, G> {
        unimplemented!("called empty api")
    }
    fn get_surface(_: &Surface) -> Option<&HalSurface<Self>> {
        unimplemented!("called empty api")
    }
    fn get_surface_mut(_: &mut Surface) -> Option<&mut HalSurface<Self>> {
        unimplemented!("called empty api")
    }
}

#[cfg(all(feature = "vulkan", not(target_arch = "wasm32")))]
impl HalApi for hal::api::Vulkan {
    const VARIANT: Backend = Backend::Vulkan;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
        Instance {
            name: name.to_owned(),
            vulkan: Some(hal_instance),
            ..Default::default()
        }
    }
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
        instance.vulkan.as_ref()
    }
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
        &global.hubs.vulkan
    }
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
        surface.vulkan.as_ref()
    }
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
        surface.vulkan.as_mut()
    }
}

#[cfg(all(feature = "metal", any(target_os = "macos", target_os = "ios")))]
impl HalApi for hal::api::Metal {
    const VARIANT: Backend = Backend::Metal;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
        Instance {
            name: name.to_owned(),
            metal: Some(hal_instance),
            ..Default::default()
        }
    }
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
        instance.metal.as_ref()
    }
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
        &global.hubs.metal
    }
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
        surface.metal.as_ref()
    }
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
        surface.metal.as_mut()
    }
}

#[cfg(all(feature = "dx12", windows))]
impl HalApi for hal::api::Dx12 {
    const VARIANT: Backend = Backend::Dx12;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
        Instance {
            name: name.to_owned(),
            dx12: Some(hal_instance),
            ..Default::default()
        }
    }
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
        instance.dx12.as_ref()
    }
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
        &global.hubs.dx12
    }
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
        surface.dx12.as_ref()
    }
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
        surface.dx12.as_mut()
    }
}

#[cfg(all(feature = "dx11", windows))]
impl HalApi for hal::api::Dx11 {
    const VARIANT: Backend = Backend::Dx11;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
        Instance {
            name: name.to_owned(),
            dx11: Some(hal_instance),
            ..Default::default()
        }
    }
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
        instance.dx11.as_ref()
    }
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
        &global.hubs.dx11
    }
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
        surface.dx11.as_ref()
    }
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
        surface.dx11.as_mut()
    }
}

#[cfg(feature = "gles")]
impl HalApi for hal::api::Gles {
    const VARIANT: Backend = Backend::Gl;
    fn create_instance_from_hal(name: &str, hal_instance: Self::Instance) -> Instance {
        #[allow(clippy::needless_update)]
        Instance {
            name: name.to_owned(),
            gl: Some(hal_instance),
            ..Default::default()
        }
    }
    fn instance_as_hal(instance: &Instance) -> Option<&Self::Instance> {
        instance.gl.as_ref()
    }
    fn hub<G: GlobalIdentityHandlerFactory>(global: &Global<G>) -> &Hub<Self, G> {
        &global.hubs.gl
    }
    fn get_surface(surface: &Surface) -> Option<&HalSurface<Self>> {
        surface.gl.as_ref()
    }
    fn get_surface_mut(surface: &mut Surface) -> Option<&mut HalSurface<Self>> {
        surface.gl.as_mut()
    }
}

#[cfg(test)]
fn _test_send_sync(global: &Global<IdentityManagerFactory>) {
    fn test_internal<T: Send + Sync>(_: T) {}
    test_internal(global)
}

#[test]
fn test_epoch_end_of_life() {
    use id::TypedId as _;
    let mut man = IdentityManager::default();
    man.epochs.push(id::EPOCH_MASK);
    man.free.push(0);
    let id1 = man.alloc::<id::BufferId>(Backend::Empty);
    assert_eq!(id1.unzip().0, 0);
    man.free(id1);
    let id2 = man.alloc::<id::BufferId>(Backend::Empty);
    // confirm that the index 0 is no longer re-used
    assert_eq!(id2.unzip().0, 1);
}