wgpu_core/hub.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/*! Allocating resource ids, and tracking the resources they refer to.
The `wgpu_core` API uses identifiers of type [`Id<R>`] to refer to
resources of type `R`. For example, [`id::DeviceId`] is an alias for
`Id<markers::Device>`, and [`id::BufferId`] is an alias for
`Id<markers::Buffer>`. `Id` implements `Copy`, `Hash`, `Eq`, `Ord`, and
of course `Debug`.
[`id::DeviceId`]: crate::id::DeviceId
[`id::BufferId`]: crate::id::BufferId
Each `Id` contains not only an index for the resource it denotes but
also a Backend indicating which `wgpu` backend it belongs to.
`Id`s also incorporate a generation number, for additional validation.
The resources to which identifiers refer are freed explicitly.
Attempting to use an identifier for a resource that has been freed
elicits an error result.
## Assigning ids to resources
The users of `wgpu_core` generally want resource ids to be assigned
in one of two ways:
- Users like `wgpu` want `wgpu_core` to assign ids to resources itself.
For example, `wgpu` expects to call `Global::device_create_buffer`
and have the return value indicate the newly created buffer's id.
- Users like `player` and Firefox want to allocate ids themselves, and
pass `Global::device_create_buffer` and friends the id to assign the
new resource.
To accommodate either pattern, `wgpu_core` methods that create
resources all expect an `id_in` argument that the caller can use to
specify the id, and they all return the id used. For example, the
declaration of `Global::device_create_buffer` looks like this:
```ignore
impl Global {
/* ... */
pub fn device_create_buffer<A: HalApi>(
&self,
device_id: id::DeviceId,
desc: &resource::BufferDescriptor,
id_in: Input<G>,
) -> (id::BufferId, Option<resource::CreateBufferError>) {
/* ... */
}
/* ... */
}
```
Users that want to assign resource ids themselves pass in the id they
want as the `id_in` argument, whereas users that want `wgpu_core`
itself to choose ids always pass `()`. In either case, the id
ultimately assigned is returned as the first element of the tuple.
Producing true identifiers from `id_in` values is the job of an
[`crate::identity::IdentityManager`] or ids will be received from outside through `Option<Id>` arguments.
## Id allocation and streaming
Perhaps surprisingly, allowing users to assign resource ids themselves
enables major performance improvements in some applications.
The `wgpu_core` API is designed for use by Firefox's [WebGPU]
implementation. For security, web content and GPU use must be kept
segregated in separate processes, with all interaction between them
mediated by an inter-process communication protocol. As web content uses
the WebGPU API, the content process sends messages to the GPU process,
which interacts with the platform's GPU APIs on content's behalf,
occasionally sending results back.
In a classic Rust API, a resource allocation function takes parameters
describing the resource to create, and if creation succeeds, it returns
the resource id in a `Result::Ok` value. However, this design is a poor
fit for the split-process design described above: content must wait for
the reply to its buffer-creation message (say) before it can know which
id it can use in the next message that uses that buffer. On a common
usage pattern, the classic Rust design imposes the latency of a full
cross-process round trip.
We can avoid incurring these round-trip latencies simply by letting the
content process assign resource ids itself. With this approach, content
can choose an id for the new buffer, send a message to create the
buffer, and then immediately send the next message operating on that
buffer, since it already knows its id. Allowing content and GPU process
activity to be pipelined greatly improves throughput.
To help propagate errors correctly in this style of usage, when resource
creation fails, the id supplied for that resource is marked to indicate
as much, allowing subsequent operations using that id to be properly
flagged as errors as well.
[`process`]: crate::identity::IdentityManager::process
[`Id<R>`]: crate::id::Id
[wrapped in a mutex]: trait.IdentityHandler.html#impl-IdentityHandler%3CI%3E-for-Mutex%3CIdentityManager%3E
[WebGPU]: https://www.w3.org/TR/webgpu/
*/
use crate::{
binding_model::{BindGroup, BindGroupLayout, PipelineLayout},
command::{CommandBuffer, RenderBundle},
device::{queue::Queue, Device},
instance::Adapter,
pipeline::{ComputePipeline, PipelineCache, RenderPipeline, ShaderModule},
registry::{Registry, RegistryReport},
resource::{Buffer, Fallible, QuerySet, Sampler, StagingBuffer, Texture, TextureView},
};
use std::{fmt::Debug, sync::Arc};
#[derive(Debug, PartialEq, Eq)]
pub struct HubReport {
pub adapters: RegistryReport,
pub devices: RegistryReport,
pub queues: RegistryReport,
pub pipeline_layouts: RegistryReport,
pub shader_modules: RegistryReport,
pub bind_group_layouts: RegistryReport,
pub bind_groups: RegistryReport,
pub command_buffers: RegistryReport,
pub render_bundles: RegistryReport,
pub render_pipelines: RegistryReport,
pub compute_pipelines: RegistryReport,
pub pipeline_caches: RegistryReport,
pub query_sets: RegistryReport,
pub buffers: RegistryReport,
pub textures: RegistryReport,
pub texture_views: RegistryReport,
pub samplers: RegistryReport,
}
impl HubReport {
pub fn is_empty(&self) -> bool {
self.adapters.is_empty()
}
}
#[allow(rustdoc::private_intra_doc_links)]
/// All the resources tracked by a [`crate::global::Global`].
///
/// ## Locking
///
/// Each field in `Hub` is a [`Registry`] holding all the values of a
/// particular type of resource, all protected by a single RwLock.
/// So for example, to access any [`Buffer`], you must acquire a read
/// lock on the `Hub`s entire buffers registry. The lock guard
/// gives you access to the `Registry`'s [`Storage`], which you can
/// then index with the buffer's id. (Yes, this design causes
/// contention; see [#2272].)
///
/// But most `wgpu` operations require access to several different
/// kinds of resource, so you often need to hold locks on several
/// different fields of your [`Hub`] simultaneously.
///
/// Inside the `Registry` there are `Arc<T>` where `T` is a Resource
/// Lock of `Registry` happens only when accessing to get the specific resource
///
/// [`Storage`]: crate::storage::Storage
pub struct Hub {
pub(crate) adapters: Registry<Arc<Adapter>>,
pub(crate) devices: Registry<Arc<Device>>,
pub(crate) queues: Registry<Arc<Queue>>,
pub(crate) pipeline_layouts: Registry<Fallible<PipelineLayout>>,
pub(crate) shader_modules: Registry<Fallible<ShaderModule>>,
pub(crate) bind_group_layouts: Registry<Fallible<BindGroupLayout>>,
pub(crate) bind_groups: Registry<Fallible<BindGroup>>,
pub(crate) command_buffers: Registry<Arc<CommandBuffer>>,
pub(crate) render_bundles: Registry<Fallible<RenderBundle>>,
pub(crate) render_pipelines: Registry<Fallible<RenderPipeline>>,
pub(crate) compute_pipelines: Registry<Fallible<ComputePipeline>>,
pub(crate) pipeline_caches: Registry<Fallible<PipelineCache>>,
pub(crate) query_sets: Registry<Fallible<QuerySet>>,
pub(crate) buffers: Registry<Fallible<Buffer>>,
pub(crate) staging_buffers: Registry<StagingBuffer>,
pub(crate) textures: Registry<Fallible<Texture>>,
pub(crate) texture_views: Registry<Fallible<TextureView>>,
pub(crate) samplers: Registry<Fallible<Sampler>>,
}
impl Hub {
pub(crate) fn new() -> Self {
Self {
adapters: Registry::new(),
devices: Registry::new(),
queues: Registry::new(),
pipeline_layouts: Registry::new(),
shader_modules: Registry::new(),
bind_group_layouts: Registry::new(),
bind_groups: Registry::new(),
command_buffers: Registry::new(),
render_bundles: Registry::new(),
render_pipelines: Registry::new(),
compute_pipelines: Registry::new(),
pipeline_caches: Registry::new(),
query_sets: Registry::new(),
buffers: Registry::new(),
staging_buffers: Registry::new(),
textures: Registry::new(),
texture_views: Registry::new(),
samplers: Registry::new(),
}
}
pub fn generate_report(&self) -> HubReport {
HubReport {
adapters: self.adapters.generate_report(),
devices: self.devices.generate_report(),
queues: self.queues.generate_report(),
pipeline_layouts: self.pipeline_layouts.generate_report(),
shader_modules: self.shader_modules.generate_report(),
bind_group_layouts: self.bind_group_layouts.generate_report(),
bind_groups: self.bind_groups.generate_report(),
command_buffers: self.command_buffers.generate_report(),
render_bundles: self.render_bundles.generate_report(),
render_pipelines: self.render_pipelines.generate_report(),
compute_pipelines: self.compute_pipelines.generate_report(),
pipeline_caches: self.pipeline_caches.generate_report(),
query_sets: self.query_sets.generate_report(),
buffers: self.buffers.generate_report(),
textures: self.textures.generate_report(),
texture_views: self.texture_views.generate_report(),
samplers: self.samplers.generate_report(),
}
}
}