1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
use anyhow::{bail, Result};
use std::cell::UnsafeCell;
use std::fmt;
use std::mem;
use std::slice;
use std::str;
use std::sync::Arc;
pub use wiggle_macro::{async_trait, from_witx};
pub use anyhow;
pub use wiggle_macro::wasmtime_integration;
pub use bitflags;
#[cfg(feature = "wiggle_metadata")]
pub use witx;
pub mod borrow;
mod error;
mod guest_type;
mod region;
pub use tracing;
pub use error::GuestError;
pub use guest_type::{GuestErrorType, GuestType, GuestTypeTransparent};
pub use region::Region;
pub mod async_trait_crate {
pub use async_trait::*;
}
pub mod wasmtime;
#[cfg(feature = "wasmtime")]
pub mod wasmtime_crate {
pub use wasmtime::*;
}
/// A trait which abstracts how to get at the region of host memory that
/// contains guest memory.
///
/// All `GuestPtr` types will contain a handle to this trait, signifying where
/// the pointer is actually pointing into. This type will need to be implemented
/// for the host's memory storage object.
///
/// # Safety
///
/// Safety around this type is tricky, and the trait is `unsafe` since there are
/// a few contracts you need to uphold to implement this type correctly and have
/// everything else in this crate work out safely.
///
/// The most important method of this trait is the `base` method. This returns,
/// in host memory, a pointer and a length. The pointer should point to valid
/// memory for the guest to read/write for the length contiguous bytes
/// afterwards.
///
/// The region returned by `base` must not only be valid, however, but it must
/// be valid for "a period of time before the guest is reentered". This isn't
/// exactly well defined but the general idea is that `GuestMemory` is allowed
/// to change under our feet to accommodate instructions like `memory.grow` or
/// other guest modifications. Memory, however, cannot be changed if the guest
/// is not reentered or if no explicitly action is taken to modify the guest
/// memory.
///
/// This provides the guarantee that host pointers based on the return value of
/// `base` have a dynamic period for which they are valid. This time duration
/// must be "somehow nonzero in length" to allow users of `GuestMemory` and
/// `GuestPtr` to safely read and write interior data.
///
/// This type also provides methods for run-time borrow checking of references
/// into the memory. The safety of this mechanism depends on there being exactly
/// one associated tracking of borrows for a given WebAssembly memory. There
/// must be no other reads or writes of WebAssembly the memory by either Rust or
/// WebAssembly code while there are any outstanding borrows, as given by
/// `GuestMemory::has_outstanding_borrows()`.
///
/// # Using References
///
/// The [`GuestPtr::as_slice`] or [`GuestPtr::as_str`] will return smart
/// pointers [`GuestSlice`] and [`GuestStr`]. These types, which implement
/// [`std::ops::Deref`] and [`std::ops::DerefMut`], provide mutable references
/// into the memory region given by a `GuestMemory`.
///
/// These smart pointers are dynamically borrow-checked by the borrow checker
/// methods on this trait. While a `GuestSlice` or a `GuestStr` are live, the
/// [`GuestMemory::has_outstanding_borrows()`] method will always return `true`.
/// If you need to re-enter the guest or otherwise read or write to the contents
/// of a WebAssembly memory, all `GuestSlice`s and `GuestStr`s for the memory
/// must be dropped, at which point `GuestMemory::has_outstanding_borrows()`
/// will return `false`.
pub unsafe trait GuestMemory: Send + Sync {
/// Returns the base allocation of this guest memory, located in host
/// memory.
///
/// A pointer/length pair are returned to signify where the guest memory
/// lives in the host, and how many contiguous bytes the memory is valid for
/// after the returned pointer.
///
/// Note that there are safety guarantees about this method that
/// implementations must uphold, and for more details see the
/// [`GuestMemory`] documentation.
fn base(&self) -> &[UnsafeCell<u8>];
/// Convenience method for creating a `GuestPtr` at a particular offset.
///
/// Note that `T` can be almost any type, and typically `offset` is a `u32`.
/// The exception is slices and strings, in which case `offset` is a `(u32,
/// u32)` of `(offset, length)`.
fn ptr<'a, T>(&'a self, offset: T::Pointer) -> GuestPtr<'a, T>
where
Self: Sized,
T: ?Sized + Pointee,
{
GuestPtr::new(self, offset)
}
/// Indicates whether any outstanding borrows are known to the
/// `GuestMemory`. This function must be `false` in order for it to be
/// safe to recursively call into a WebAssembly module, or to manipulate
/// the WebAssembly memory by any other means.
fn has_outstanding_borrows(&self) -> bool;
/// Check if a region of linear memory is exclusively borrowed. This is called during any
/// `GuestPtr::read` or `GuestPtr::write` operation to ensure that wiggle is not reading or
/// writing a region of memory which Rust believes it has exclusive access to.
fn is_mut_borrowed(&self, r: Region) -> bool;
/// Check if a region of linear memory has any shared borrows.
fn is_shared_borrowed(&self, r: Region) -> bool;
/// Exclusively borrow a region of linear memory. This is used when constructing a
/// `GuestSliceMut` or `GuestStrMut`. Those types will give Rust `&mut` access
/// to the region of linear memory, therefore, the `GuestMemory` impl must
/// guarantee that at most one `BorrowHandle` is issued to a given region,
/// `GuestMemory::has_outstanding_borrows` is true for the duration of the
/// borrow, and that `GuestMemory::is_mut_borrowed` of any overlapping region
/// is false for the duration of the borrow.
fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError>;
/// Shared borrow a region of linear memory. This is used when constructing a
/// `GuestSlice` or `GuestStr`. Those types will give Rust `&` (shared reference) access
/// to the region of linear memory.
fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError>;
/// Unborrow a previously borrowed mutable region. As long as `GuestSliceMut` and
/// `GuestStrMut` are implemented correctly, a mut `BorrowHandle` should only be
/// unborrowed once.
fn mut_unborrow(&self, h: BorrowHandle);
/// Unborrow a previously borrowed shared region. As long as `GuestSlice` and
/// `GuestStr` are implemented correctly, a shared `BorrowHandle` should only be
/// unborrowed once.
fn shared_unborrow(&self, h: BorrowHandle);
/// Check if the underlying memory is shared across multiple threads; e.g.,
/// with a WebAssembly shared memory.
fn is_shared_memory(&self) -> bool {
false
}
}
/// Validates a guest-relative pointer given various attributes, and returns
/// the corresponding host pointer.
///
/// * `mem` - this is the guest memory being accessed.
/// * `offset` - this is the guest-relative pointer, an offset from the
/// base.
/// * `len` - this is the number of length, in units of `T`, to return
/// in the resulting slice.
///
/// If the parameters are valid then this function will return a slice into
/// `mem` for units of `T`, assuming everything is in-bounds and properly
/// aligned. Additionally the byte-based `Region` is returned, used for borrows
/// later on.
fn validate_size_align<'a, T: GuestTypeTransparent<'a>>(
mem: &'a dyn GuestMemory,
offset: u32,
len: u32,
) -> Result<(&[UnsafeCell<T>], Region), GuestError> {
let base = mem.base();
let byte_len = len
.checked_mul(T::guest_size())
.ok_or(GuestError::PtrOverflow)?;
let region = Region {
start: offset,
len: byte_len,
};
let offset = usize::try_from(offset)?;
let byte_len = usize::try_from(byte_len)?;
// Slice the input region to the byte range that we're interested in.
let bytes = base
.get(offset..)
.and_then(|s| s.get(..byte_len))
.ok_or(GuestError::PtrOutOfBounds(region))?;
// ... and then align it to `T`, failing if either the head or tail slices
// are nonzero in length. This `unsafe` here is from the standard library
// and should be ok since the input slice is `UnsafeCell<u8>` and the output
// slice is `UnsafeCell<T>`, meaning the only guarantee of the output is
// that it's valid addressable memory, still unsafe to actually access.
assert!(mem::align_of::<T>() <= T::guest_align());
let (start, mid, end) = unsafe { bytes.align_to() };
if start.len() > 0 || end.len() > 0 {
return Err(GuestError::PtrNotAligned(region, T::guest_align() as u32));
}
Ok((mid, region))
}
/// A handle to a borrow on linear memory. It is produced by `{mut, shared}_borrow` and
/// consumed by `{mut, shared}_unborrow`. Only the `GuestMemory` impl should ever construct
/// a `BorrowHandle` or inspect its contents.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct BorrowHandle(pub usize);
// Forwarding trait implementations to the original type
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a T {
fn base(&self) -> &[UnsafeCell<u8>] {
T::base(self)
}
fn has_outstanding_borrows(&self) -> bool {
T::has_outstanding_borrows(self)
}
fn is_mut_borrowed(&self, r: Region) -> bool {
T::is_mut_borrowed(self, r)
}
fn is_shared_borrowed(&self, r: Region) -> bool {
T::is_shared_borrowed(self, r)
}
fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::mut_borrow(self, r)
}
fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::shared_borrow(self, r)
}
fn mut_unborrow(&self, h: BorrowHandle) {
T::mut_unborrow(self, h)
}
fn shared_unborrow(&self, h: BorrowHandle) {
T::shared_unborrow(self, h)
}
}
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a mut T {
fn base(&self) -> &[UnsafeCell<u8>] {
T::base(self)
}
fn has_outstanding_borrows(&self) -> bool {
T::has_outstanding_borrows(self)
}
fn is_mut_borrowed(&self, r: Region) -> bool {
T::is_mut_borrowed(self, r)
}
fn is_shared_borrowed(&self, r: Region) -> bool {
T::is_shared_borrowed(self, r)
}
fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::mut_borrow(self, r)
}
fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::shared_borrow(self, r)
}
fn mut_unborrow(&self, h: BorrowHandle) {
T::mut_unborrow(self, h)
}
fn shared_unborrow(&self, h: BorrowHandle) {
T::shared_unborrow(self, h)
}
}
unsafe impl<T: ?Sized + GuestMemory> GuestMemory for Box<T> {
fn base(&self) -> &[UnsafeCell<u8>] {
T::base(self)
}
fn has_outstanding_borrows(&self) -> bool {
T::has_outstanding_borrows(self)
}
fn is_mut_borrowed(&self, r: Region) -> bool {
T::is_mut_borrowed(self, r)
}
fn is_shared_borrowed(&self, r: Region) -> bool {
T::is_shared_borrowed(self, r)
}
fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::mut_borrow(self, r)
}
fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::shared_borrow(self, r)
}
fn mut_unborrow(&self, h: BorrowHandle) {
T::mut_unborrow(self, h)
}
fn shared_unborrow(&self, h: BorrowHandle) {
T::shared_unborrow(self, h)
}
}
unsafe impl<T: ?Sized + GuestMemory> GuestMemory for Arc<T> {
fn base(&self) -> &[UnsafeCell<u8>] {
T::base(self)
}
fn has_outstanding_borrows(&self) -> bool {
T::has_outstanding_borrows(self)
}
fn is_mut_borrowed(&self, r: Region) -> bool {
T::is_mut_borrowed(self, r)
}
fn is_shared_borrowed(&self, r: Region) -> bool {
T::is_shared_borrowed(self, r)
}
fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::mut_borrow(self, r)
}
fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
T::shared_borrow(self, r)
}
fn mut_unborrow(&self, h: BorrowHandle) {
T::mut_unborrow(self, h)
}
fn shared_unborrow(&self, h: BorrowHandle) {
T::shared_unborrow(self, h)
}
}
/// A *guest* pointer into host memory.
///
/// This type represents a pointer from the guest that points into host memory.
/// Internally a `GuestPtr` contains a handle to its original [`GuestMemory`] as
/// well as the offset into the memory that the pointer is pointing at.
///
/// Presence of a [`GuestPtr`] does not imply any form of validity. Pointers can
/// be out-of-bounds, misaligned, etc. It is safe to construct a `GuestPtr` with
/// any offset at any time. Consider a `GuestPtr<T>` roughly equivalent to `*mut
/// T`, although there are a few more safety guarantees around this type.
///
/// ## Slices and Strings
///
/// Note that the type parameter does not need to implement the `Sized` trait,
/// so you can implement types such as this:
///
/// * `GuestPtr<'_, str>` - a pointer to a guest string. Has the methods
/// [`GuestPtr::as_str_mut`], which gives a dynamically borrow-checked
/// `GuestStrMut<'_>`, which `DerefMut`s to a `&mut str`, and
/// [`GuestPtr::as_str`], which is the shareable version of same.
/// * `GuestPtr<'_, [T]>` - a pointer to a guest array. Has methods
/// [`GuestPtr::as_slice_mut`], which gives a dynamically borrow-checked
/// `GuestSliceMut<'_, T>`, which `DerefMut`s to a `&mut [T]` and
/// [`GuestPtr::as_slice`], which is the shareable version of same.
///
/// Unsized types such as this may have extra methods and won't have methods
/// like [`GuestPtr::read`] or [`GuestPtr::write`].
///
/// ## Type parameter and pointee
///
/// The `T` type parameter is largely intended for more static safety in Rust as
/// well as having a better handle on what we're pointing to. A `GuestPtr<T>`,
/// however, does not necessarily literally imply a guest pointer pointing to
/// type `T`. Instead the [`GuestType`] trait is a layer of abstraction where
/// `GuestPtr<T>` may actually be a pointer to `U` in guest memory, but you can
/// construct a `T` from a `U`.
///
/// For example `GuestPtr<GuestPtr<T>>` is a valid type, but this is actually
/// more equivalent to `GuestPtr<u32>` because guest pointers are always
/// 32-bits. That being said you can create a `GuestPtr<T>` from a `u32`.
///
/// Additionally `GuestPtr<MyEnum>` will actually delegate, typically, to and
/// implementation which loads the underlying data as `GuestPtr<u8>` (or
/// similar) and then the bytes loaded are validated to fit within the
/// definition of `MyEnum` before `MyEnum` is returned.
///
/// For more information see the [`GuestPtr::read`] and [`GuestPtr::write`]
/// methods. In general though be extremely careful about writing `unsafe` code
/// when working with a `GuestPtr` if you're not using one of the
/// already-attached helper methods.
pub struct GuestPtr<'a, T: ?Sized + Pointee> {
mem: &'a (dyn GuestMemory + 'a),
pointer: T::Pointer,
}
impl<'a, T: ?Sized + Pointee> GuestPtr<'a, T> {
/// Creates a new `GuestPtr` from the given `mem` and `pointer` values.
///
/// Note that for sized types like `u32`, `GuestPtr<T>`, etc, the `pointer`
/// value is a `u32` offset into guest memory. For slices and strings,
/// `pointer` is a `(u32, u32)` offset/length pair.
pub fn new(mem: &'a (dyn GuestMemory + 'a), pointer: T::Pointer) -> GuestPtr<'a, T> {
GuestPtr { mem, pointer }
}
/// Returns the offset of this pointer in guest memory.
///
/// Note that for sized types this returns a `u32`, but for slices and
/// strings it returns a `(u32, u32)` pointer/length pair.
pub fn offset(&self) -> T::Pointer {
self.pointer
}
/// Returns the guest memory that this pointer is coming from.
pub fn mem(&self) -> &'a (dyn GuestMemory + 'a) {
self.mem
}
/// Casts this `GuestPtr` type to a different type.
///
/// This is a safe method which is useful for simply reinterpreting the type
/// parameter on this `GuestPtr`. Note that this is a safe method, where
/// again there's no guarantees about alignment, validity, in-bounds-ness,
/// etc of the returned pointer.
pub fn cast<U>(&self) -> GuestPtr<'a, U>
where
U: Pointee<Pointer = T::Pointer> + ?Sized,
{
GuestPtr::new(self.mem, self.pointer)
}
/// Safely read a value from this pointer.
///
/// This is a fun method, and is one of the lynchpins of this
/// implementation. The highlight here is that this is a *safe* operation,
/// not an unsafe one like `*mut T`. This works for a few reasons:
///
/// * The `unsafe` contract of the `GuestMemory` trait means that there's
/// always at least some backing memory for this `GuestPtr<T>`.
///
/// * This does not use Rust-intrinsics to read the type `T`, but rather it
/// delegates to `T`'s implementation of [`GuestType`] to actually read
/// the underlying data. This again is a safe method, so any unsafety, if
/// any, must be internally documented.
///
/// * Eventually what typically happens it that this bottoms out in the read
/// implementations for primitives types (like `i32`) which can safely be
/// read at any time, and then it's up to the runtime to determine what to
/// do with the bytes it read in a safe manner.
///
/// Naturally lots of things can still go wrong, such as out-of-bounds
/// checks, alignment checks, validity checks (e.g. for enums), etc. All of
/// these check failures, however, are returned as a [`GuestError`] in the
/// `Result` here, and `Ok` is only returned if all the checks passed.
pub fn read(&self) -> Result<T, GuestError>
where
T: GuestType<'a>,
{
T::read(self)
}
/// Safely write a value to this pointer.
///
/// This method, like [`GuestPtr::read`], is pretty crucial for the safe
/// operation of this crate. All the same reasons apply though for why this
/// method is safe, even eventually bottoming out in primitives like writing
/// an `i32` which is safe to write bit patterns into memory at any time due
/// to the guarantees of [`GuestMemory`].
///
/// Like `read`, `write` can fail due to any manner of pointer checks, but
/// any failure is returned as a [`GuestError`].
pub fn write(&self, val: T) -> Result<(), GuestError>
where
T: GuestType<'a>,
{
T::write(self, val)
}
/// Performs pointer arithmetic on this pointer, moving the pointer forward
/// `amt` slots.
///
/// This will either return the resulting pointer or `Err` if the pointer
/// arithmetic calculation would overflow around the end of the address
/// space.
pub fn add(&self, amt: u32) -> Result<GuestPtr<'a, T>, GuestError>
where
T: GuestType<'a> + Pointee<Pointer = u32>,
{
let offset = amt
.checked_mul(T::guest_size())
.and_then(|o| self.pointer.checked_add(o));
let offset = match offset {
Some(o) => o,
None => return Err(GuestError::PtrOverflow),
};
Ok(GuestPtr::new(self.mem, offset))
}
/// Returns a `GuestPtr` for an array of `T`s using this pointer as the
/// base.
pub fn as_array(&self, elems: u32) -> GuestPtr<'a, [T]>
where
T: GuestType<'a> + Pointee<Pointer = u32>,
{
GuestPtr::new(self.mem, (self.pointer, elems))
}
/// Check if this pointer references WebAssembly shared memory.
pub fn is_shared_memory(&self) -> bool {
self.mem.is_shared_memory()
}
}
impl<'a, T> GuestPtr<'a, [T]> {
/// For slices, specifically returns the relative pointer to the base of the
/// array.
///
/// This is similar to `<[T]>::as_ptr()`
pub fn offset_base(&self) -> u32 {
self.pointer.0
}
/// For slices, returns the length of the slice, in elements.
pub fn len(&self) -> u32 {
self.pointer.1
}
/// Returns an iterator over interior pointers.
///
/// Each item is a `Result` indicating whether it overflowed past the end of
/// the address space or not.
pub fn iter<'b>(
&'b self,
) -> impl ExactSizeIterator<Item = Result<GuestPtr<'a, T>, GuestError>> + 'b
where
T: GuestType<'a>,
{
let base = self.as_ptr();
(0..self.len()).map(move |i| base.add(i))
}
/// Attempts to create a [`GuestCow<'_, T>`] from this pointer, performing
/// bounds checks and type validation. Whereas [`GuestPtr::as_slice`] will
/// fail with `None` if attempting to access Wasm shared memory, this call
/// will succeed: if used on shared memory, this function will copy the
/// slice into [`GuestCow::Copied`]. If the memory is non-shared, this
/// returns a [`GuestCow::Borrowed`] (a thin wrapper over [`GuestSlice<'_,
/// T>]`).
pub fn as_cow(&self) -> Result<GuestCow<'a, T>, GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
match self.as_unsafe_slice_mut()?.shared_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(GuestCow::Borrowed(slice)),
UnsafeBorrowResult::Shared(_) => Ok(GuestCow::Copied(self.to_vec()?)),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Attempts to create a [`GuestSlice<'_, T>`] from this pointer, performing
/// bounds checks and type validation. The `GuestSlice` is a smart pointer
/// that can be used as a `&[T]` via the `Deref` trait. The region of memory
/// backing the slice will be marked as shareably borrowed by the
/// [`GuestMemory`] until the `GuestSlice` is dropped. Multiple shareable
/// borrows of the same memory are permitted, but only one mutable borrow.
///
/// This function will return a `GuestSlice` into host memory if all checks
/// succeed (valid utf-8, valid pointers, memory is not borrowed, etc.). If
/// any checks fail then `GuestError` will be returned.
///
/// Additionally, because it is `unsafe` to have a `GuestSlice` of shared
/// memory, this function will return `None` in this case (see
/// [`GuestPtr::as_cow`]).
pub fn as_slice(&self) -> Result<Option<GuestSlice<'a, T>>, GuestError>
where
T: GuestTypeTransparent<'a>,
{
match self.as_unsafe_slice_mut()?.shared_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(Some(slice)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Attempts to create a [`GuestSliceMut<'_, T>`] from this pointer,
/// performing bounds checks and type validation. The `GuestSliceMut` is a
/// smart pointer that can be used as a `&[T]` or a `&mut [T]` via the
/// `Deref` and `DerefMut` traits. The region of memory backing the slice
/// will be marked as borrowed by the [`GuestMemory`] until the `GuestSlice`
/// is dropped.
///
/// This function will return a `GuestSliceMut` into host memory if all
/// checks succeed (valid utf-8, valid pointers, memory is not borrowed,
/// etc). If any checks fail then `GuestError` will be returned.
///
/// Additionally, because it is `unsafe` to have a `GuestSliceMut` of shared
/// memory, this function will return `None` in this case.
pub fn as_slice_mut(&self) -> Result<Option<GuestSliceMut<'a, T>>, GuestError>
where
T: GuestTypeTransparent<'a>,
{
self.as_unsafe_slice_mut()?.as_slice_mut()
}
/// Similar to `as_slice_mut`, this function will attempt to create a smart
/// pointer to the WebAssembly linear memory. All validation and Wiggle
/// borrow checking is the same, but unlike `as_slice_mut`, the returned
/// `&mut` slice can point to WebAssembly shared memory. Though the Wiggle
/// borrow checker can guarantee no other Wiggle calls will access this
/// slice, it cannot guarantee that another thread is not modifying the
/// `&mut` slice in some other way. Thus, access to that slice is marked
/// `unsafe`.
pub fn as_unsafe_slice_mut(&self) -> Result<UnsafeGuestSlice<'a, T>, GuestError>
where
T: GuestTypeTransparent<'a>,
{
let (ptr, region) = validate_size_align(self.mem, self.pointer.0, self.pointer.1)?;
Ok(UnsafeGuestSlice {
ptr,
region,
mem: self.mem,
})
}
/// Copies the data in the guest region into a [`Vec`].
///
/// This is useful when one cannot use [`GuestPtr::as_slice`], e.g., when
/// pointing to a region of WebAssembly shared memory.
pub fn to_vec(&self) -> Result<Vec<T>, GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
let guest_slice = self.as_unsafe_slice_mut()?;
let len = guest_slice.ptr.len();
let mut vec = Vec::with_capacity(len);
// SAFETY: The `guest_slice` variable is already a valid pointer into
// the guest's memory, and it may or may not be a pointer into shared
// memory. We can't naively use `.to_vec(..)` which could introduce data
// races but all that needs to happen is to copy data into our local
// `vec` as all the data is `Copy` and transparent anyway. For this
// purpose the `ptr::copy` function should be sufficient for copying
// over all the data.
//
// TODO: audit that this use of `std::ptr::copy` is safe with shared
// memory (https://github.com/bytecodealliance/wasmtime/issues/4203)
unsafe {
std::ptr::copy(guest_slice.ptr.as_ptr().cast::<T>(), vec.as_mut_ptr(), len);
vec.set_len(len);
}
Ok(vec)
}
/// Copies the data pointed to by `slice` into this guest region.
///
/// This method is a *safe* method to copy data from the host to the guest.
/// This requires that `self` and `slice` have the same length. The pointee
/// type `T` requires the [`GuestTypeTransparent`] trait which is an
/// assertion that the representation on the host and on the guest is the
/// same.
///
/// # Errors
///
/// Returns an error if this guest pointer is out of bounds or if the length
/// of this guest pointer is not equal to the length of the slice provided.
pub fn copy_from_slice(&self, slice: &[T]) -> Result<(), GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
self.as_unsafe_slice_mut()?.copy_from_slice(slice)
}
/// Returns a `GuestPtr` pointing to the base of the array for the interior
/// type `T`.
pub fn as_ptr(&self) -> GuestPtr<'a, T> {
GuestPtr::new(self.mem, self.offset_base())
}
pub fn get(&self, index: u32) -> Option<GuestPtr<'a, T>>
where
T: GuestType<'a>,
{
if index < self.len() {
Some(
self.as_ptr()
.add(index)
.expect("just performed bounds check"),
)
} else {
None
}
}
pub fn get_range(&self, r: std::ops::Range<u32>) -> Option<GuestPtr<'a, [T]>>
where
T: GuestType<'a>,
{
if r.end < r.start {
return None;
}
let range_length = r.end - r.start;
if r.start <= self.len() && r.end <= self.len() {
Some(
self.as_ptr()
.add(r.start)
.expect("just performed bounds check")
.as_array(range_length),
)
} else {
None
}
}
}
impl<'a> GuestPtr<'a, str> {
/// For strings, returns the relative pointer to the base of the string
/// allocation.
pub fn offset_base(&self) -> u32 {
self.pointer.0
}
/// Returns the length, in bytes, of the string.
pub fn len(&self) -> u32 {
self.pointer.1
}
/// Returns a raw pointer for the underlying slice of bytes that this
/// pointer points to.
pub fn as_bytes(&self) -> GuestPtr<'a, [u8]> {
GuestPtr::new(self.mem, self.pointer)
}
/// Attempts to create a [`GuestStr<'_>`] from this pointer, performing
/// bounds checks and utf-8 checks. The resulting `GuestStr` can be used as
/// a `&str` via the `Deref` trait. The region of memory backing the `str`
/// will be marked as shareably borrowed by the [`GuestMemory`] until the
/// `GuestStr` is dropped.
///
/// This function will return `GuestStr` into host memory if all checks
/// succeed (valid utf-8, valid pointers, etc). If any checks fail then
/// `GuestError` will be returned.
///
/// Additionally, because it is `unsafe` to have a `GuestStr` of shared
/// memory, this function will return `None` in this case (see
/// [`GuestPtr<'_, str>::as_cow`]).
pub fn as_str(&self) -> Result<Option<GuestStr<'a>>, GuestError> {
match self.as_bytes().as_unsafe_slice_mut()?.shared_borrow() {
UnsafeBorrowResult::Ok(s) => Ok(Some(s.try_into()?)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Attempts to create a [`GuestStrMut<'_>`] from this pointer, performing
/// bounds checks and utf-8 checks. The resulting `GuestStrMut` can be used
/// as a `&str` or `&mut str` via the `Deref` and `DerefMut` traits. The
/// region of memory backing the `str` will be marked as borrowed by the
/// [`GuestMemory`] until the `GuestStrMut` is dropped.
///
/// This function will return `GuestStrMut` into host memory if all checks
/// succeed (valid utf-8, valid pointers, etc). If any checks fail then
/// `GuestError` will be returned.
///
/// Additionally, because it is `unsafe` to have a `GuestStrMut` of shared
/// memory, this function will return `None` in this case.
pub fn as_str_mut(&self) -> Result<Option<GuestStrMut<'a>>, GuestError> {
match self.as_bytes().as_unsafe_slice_mut()?.mut_borrow() {
UnsafeBorrowResult::Ok(s) => Ok(Some(s.try_into()?)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Attempts to create a [`GuestStrCow<'_>`] from this pointer, performing
/// bounds checks and utf-8 checks. Whereas [`GuestPtr::as_str`] will fail
/// with `None` if attempting to access Wasm shared memory, this call will
/// succeed: if used on shared memory, this function will copy the string
/// into [`GuestStrCow::Copied`]. If the memory is non-shared, this returns
/// a [`GuestStrCow::Borrowed`] (a thin wrapper over [`GuestStr<'_, T>]`).
pub fn as_cow(&self) -> Result<GuestStrCow<'a>, GuestError> {
match self.as_bytes().as_unsafe_slice_mut()?.shared_borrow() {
UnsafeBorrowResult::Ok(s) => Ok(GuestStrCow::Borrowed(s.try_into()?)),
UnsafeBorrowResult::Shared(_) => {
let copied = self.as_bytes().to_vec()?;
let utf8_string = String::from_utf8(copied).map_err(|e| e.utf8_error())?;
Ok(GuestStrCow::Copied(utf8_string))
}
UnsafeBorrowResult::Err(e) => Err(e),
}
}
}
impl<'a> GuestPtr<'a, [u8]> {
/// Returns a pointer to the string represented by a `[u8]` without
/// validating whether each u8 is a utf-8 codepoint.
pub fn as_str_ptr(&self) -> GuestPtr<'a, str> {
GuestPtr::new(self.mem, self.pointer)
}
}
impl<T: ?Sized + Pointee> Clone for GuestPtr<'_, T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: ?Sized + Pointee> Copy for GuestPtr<'_, T> {}
impl<T: ?Sized + Pointee> fmt::Debug for GuestPtr<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
T::debug(self.pointer, f)
}
}
/// A smart pointer to an shareable slice in guest memory.
///
/// Usable as a `&'a [T]` via [`std::ops::Deref`].
pub struct GuestSlice<'a, T> {
ptr: &'a [UnsafeCell<T>],
mem: &'a dyn GuestMemory,
borrow: BorrowHandle,
}
// This is a wrapper around `&[T]` and must mirror send/sync impls due to the
// interior usage of `&[UnsafeCell<T>]`.
unsafe impl<T: Send> Send for GuestSlice<'_, T> {}
unsafe impl<T: Sync> Sync for GuestSlice<'_, T> {}
impl<'a, T> std::ops::Deref for GuestSlice<'a, T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
// SAFETY: The presence of `GuestSlice` indicates that this is an
// unshared memory meaning concurrent accesses will not happen.
// Furthermore the validity of the slice has already been established
// and a runtime borrow has been recorded to prevent conflicting views.
// This all adds up to the ability to return a safe slice from this
// method whose lifetime is connected to `self`.
unsafe { slice::from_raw_parts(self.ptr.as_ptr().cast(), self.ptr.len()) }
}
}
impl<'a, T> Drop for GuestSlice<'a, T> {
fn drop(&mut self) {
self.mem.shared_unborrow(self.borrow)
}
}
/// A smart pointer to a mutable slice in guest memory.
///
/// Usable as a `&'a [T]` via [`std::ops::Deref`] and as a `&'a mut [T]` via
/// [`std::ops::DerefMut`].
pub struct GuestSliceMut<'a, T> {
ptr: &'a [UnsafeCell<T>],
mem: &'a dyn GuestMemory,
borrow: BorrowHandle,
}
// See docs in these impls for `GuestSlice` above.
unsafe impl<T: Send> Send for GuestSliceMut<'_, T> {}
unsafe impl<T: Sync> Sync for GuestSliceMut<'_, T> {}
impl<'a, T> std::ops::Deref for GuestSliceMut<'a, T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
// SAFETY: See docs in `Deref for GuestSlice`
unsafe { slice::from_raw_parts(self.ptr.as_ptr().cast(), self.ptr.len()) }
}
}
impl<'a, T> std::ops::DerefMut for GuestSliceMut<'a, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: See docs in `Deref for GuestSlice`
unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr() as *mut T, self.ptr.len()) }
}
}
impl<'a, T> Drop for GuestSliceMut<'a, T> {
fn drop(&mut self) {
self.mem.mut_unborrow(self.borrow)
}
}
/// A smart pointer for distinguishing between different kinds of Wasm memory:
/// shared and non-shared.
///
/// As with `GuestSlice`, this is usable as a `&'a [T]` via [`std::ops::Deref`].
/// The major difference is that, for shared memories, the memory will be copied
/// out of Wasm linear memory to avoid the possibility of concurrent mutation by
/// another thread. This extra copy exists solely to maintain the Rust
/// guarantees regarding `&[T]`.
pub enum GuestCow<'a, T> {
Borrowed(GuestSlice<'a, T>),
Copied(Vec<T>),
}
impl<'a, T> std::ops::Deref for GuestCow<'a, T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
match self {
GuestCow::Borrowed(s) => s,
GuestCow::Copied(s) => s,
}
}
}
/// A smart pointer to an `unsafe` slice in guest memory.
///
/// Accessing guest memory (e.g., WebAssembly linear memory) is inherently
/// `unsafe`. Even though this structure expects that we will have validated the
/// addresses, lengths, and alignment, we must be extra careful to maintain the
/// Rust borrowing guarantees if we hand out slices to the underlying memory.
/// This is done in two ways:
///
/// - with shared memory (i.e., memory that may be accessed concurrently by
/// multiple threads), we have no guarantee that the underlying data will not
/// be changed; thus, we can only hand out slices `unsafe`-ly (TODO:
/// eventually with `UnsafeGuestSlice::as_slice`,
/// `UnsafeGuestSlice::as_slice_mut`)
/// - with non-shared memory, we _can_ maintain the Rust slice guarantees, but
/// only by manually performing borrow-checking of the underlying regions that
/// are accessed; this kind of borrowing is wrapped up in the [`GuestSlice`]
/// and [`GuestSliceMut`] smart pointers (see
/// [`UnsafeGuestSlice::shared_borrow`], [`UnsafeGuestSlice::mut_borrow`]).
pub struct UnsafeGuestSlice<'a, T> {
/// A raw pointer to the bytes in memory.
ptr: &'a [UnsafeCell<T>],
/// The (validated) address bounds of the slice in memory.
region: Region,
/// The original memory.
mem: &'a dyn GuestMemory,
}
// SAFETY: `UnsafeGuestSlice` can be used across an `await` and therefore must
// be `Send` and `Sync`. As with `GuestSlice` and friends, we mirror the
// `Send`/`Sync` impls due to the interior usage of `&[UnsafeCell<T>]`.
unsafe impl<T: Sync> Sync for UnsafeGuestSlice<'_, T> {}
unsafe impl<T: Send> Send for UnsafeGuestSlice<'_, T> {}
impl<'a, T> UnsafeGuestSlice<'a, T> {
/// See `GuestPtr::copy_from_slice`.
pub fn copy_from_slice(self, slice: &[T]) -> Result<(), GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
// Check the length...
if self.ptr.len() != slice.len() {
return Err(GuestError::SliceLengthsDiffer);
}
if slice.len() == 0 {
return Ok(());
}
// ... and copy the bytes.
match self.mut_borrow() {
UnsafeBorrowResult::Ok(mut dst) => dst.copy_from_slice(slice),
UnsafeBorrowResult::Shared(guest_slice) => {
// SAFETY: in the shared memory case, we copy and accept that
// the guest data may be concurrently modified. TODO: audit that
// this use of `std::ptr::copy` is safe with shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203)
//
// Also note that the validity of `guest_slice` has already been
// determined by the `as_unsafe_slice_mut` call above.
unsafe {
std::ptr::copy(
slice.as_ptr(),
guest_slice.ptr[0].get(),
guest_slice.ptr.len(),
)
};
}
UnsafeBorrowResult::Err(e) => return Err(e),
}
Ok(())
}
/// Return the number of items in this slice.
pub fn len(&self) -> usize {
self.ptr.len()
}
/// Check if this slice comes from WebAssembly shared memory.
pub fn is_shared_memory(&self) -> bool {
self.mem.is_shared_memory()
}
/// See `GuestPtr::as_slice_mut`.
pub fn as_slice_mut(self) -> Result<Option<GuestSliceMut<'a, T>>, GuestError>
where
T: GuestTypeTransparent<'a>,
{
match self.mut_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(Some(slice)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Transform an `unsafe` guest slice to a [`GuestSliceMut`].
///
/// # Safety
///
/// This function is safe if and only if:
/// - the memory is not shared (it will return `None` in this case) and
/// - there are no overlapping mutable borrows for this region.
fn shared_borrow(self) -> UnsafeBorrowResult<GuestSlice<'a, T>, Self> {
if self.mem.is_shared_memory() {
UnsafeBorrowResult::Shared(self)
} else {
match self.mem.shared_borrow(self.region) {
Ok(borrow) => UnsafeBorrowResult::Ok(GuestSlice {
ptr: self.ptr,
mem: self.mem,
borrow,
}),
Err(e) => UnsafeBorrowResult::Err(e),
}
}
}
/// Transform an `unsafe` guest slice to a [`GuestSliceMut`].
///
/// # Safety
///
/// This function is safe if and only if:
/// - the memory is not shared (it will return `None` in this case) and
/// - there are no overlapping borrows of any kind (shared or mutable) for
/// this region.
fn mut_borrow(self) -> UnsafeBorrowResult<GuestSliceMut<'a, T>, Self> {
if self.mem.is_shared_memory() {
UnsafeBorrowResult::Shared(self)
} else {
match self.mem.mut_borrow(self.region) {
Ok(borrow) => UnsafeBorrowResult::Ok(GuestSliceMut {
ptr: self.ptr,
mem: self.mem,
borrow,
}),
Err(e) => UnsafeBorrowResult::Err(e),
}
}
}
}
/// A three-way result type for expressing that borrowing from an
/// [`UnsafeGuestSlice`] could fail in multiple ways. Retaining the
/// [`UnsafeGuestSlice`] in the `Shared` case allows us to reuse it.
enum UnsafeBorrowResult<T, S> {
/// The borrow succeeded.
Ok(T),
/// The borrow failed because the underlying memory was shared--we cannot
/// safely borrow in this case and return the original unsafe slice.
Shared(S),
/// The borrow failed for some other reason, e.g., the region was already
/// borrowed.
Err(GuestError),
}
impl<T, S> From<GuestError> for UnsafeBorrowResult<T, S> {
fn from(e: GuestError) -> Self {
UnsafeBorrowResult::Err(e)
}
}
/// A smart pointer to an shareable `str` in guest memory.
/// Usable as a `&'a str` via [`std::ops::Deref`].
pub struct GuestStr<'a>(GuestSlice<'a, u8>);
impl<'a> std::convert::TryFrom<GuestSlice<'a, u8>> for GuestStr<'a> {
type Error = GuestError;
fn try_from(slice: GuestSlice<'a, u8>) -> Result<Self, Self::Error> {
match str::from_utf8(&slice) {
Ok(_) => Ok(Self(slice)),
Err(e) => Err(GuestError::InvalidUtf8(e)),
}
}
}
impl<'a> std::ops::Deref for GuestStr<'a> {
type Target = str;
fn deref(&self) -> &Self::Target {
// SAFETY: every slice in a `GuestStr` has already been checked for
// UTF-8 validity during construction (i.e., `TryFrom`).
unsafe { str::from_utf8_unchecked(&self.0) }
}
}
/// A smart pointer to a mutable `str` in guest memory.
/// Usable as a `&'a str` via [`std::ops::Deref`] and as a `&'a mut str` via
/// [`std::ops::DerefMut`].
pub struct GuestStrMut<'a>(GuestSliceMut<'a, u8>);
impl<'a> std::convert::TryFrom<GuestSliceMut<'a, u8>> for GuestStrMut<'a> {
type Error = GuestError;
fn try_from(slice: GuestSliceMut<'a, u8>) -> Result<Self, Self::Error> {
match str::from_utf8(&slice) {
Ok(_) => Ok(Self(slice)),
Err(e) => Err(GuestError::InvalidUtf8(e)),
}
}
}
impl<'a> std::ops::Deref for GuestStrMut<'a> {
type Target = str;
fn deref(&self) -> &Self::Target {
// SAFETY: every slice in a `GuestStrMut` has already been checked for
// UTF-8 validity during construction (i.e., `TryFrom`).
unsafe { str::from_utf8_unchecked(&self.0) }
}
}
impl<'a> std::ops::DerefMut for GuestStrMut<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: every slice in a `GuestStrMut` has already been checked for
// UTF-8 validity during construction (i.e., `TryFrom`).
unsafe { str::from_utf8_unchecked_mut(&mut self.0) }
}
}
/// A smart pointer to a `str` for distinguishing between different kinds of
/// Wasm memory: shared and non-shared.
///
/// As with `GuestStr`, this is usable as a `&'a str` via [`std::ops::Deref`].
/// The major difference is that, for shared memories, the string will be copied
/// out of Wasm linear memory to avoid the possibility of concurrent mutation by
/// another thread. This extra copy exists solely to maintain the Rust
/// guarantees regarding `&str`.
pub enum GuestStrCow<'a> {
Borrowed(GuestStr<'a>),
Copied(String),
}
impl<'a> std::ops::Deref for GuestStrCow<'a> {
type Target = str;
fn deref(&self) -> &Self::Target {
match self {
GuestStrCow::Borrowed(s) => s,
GuestStrCow::Copied(s) => s,
}
}
}
mod private {
pub trait Sealed {}
impl<T> Sealed for T {}
impl<T> Sealed for [T] {}
impl Sealed for str {}
}
/// Types that can be pointed to by `GuestPtr<T>`.
///
/// In essence everything can, and the only special-case is unsized types like
/// `str` and `[T]` which have special implementations.
pub trait Pointee: private::Sealed {
#[doc(hidden)]
type Pointer: Copy;
#[doc(hidden)]
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result;
}
impl<T> Pointee for T {
type Pointer = u32;
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "*guest {:#x}", pointer)
}
}
impl<T> Pointee for [T] {
type Pointer = (u32, u32);
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "*guest {:#x}/{}", pointer.0, pointer.1)
}
}
impl Pointee for str {
type Pointer = (u32, u32);
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
<[u8]>::debug(pointer, f)
}
}
pub fn run_in_dummy_executor<F: std::future::Future>(future: F) -> Result<F::Output> {
use std::pin::Pin;
use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
let mut f = Pin::from(Box::new(future));
let waker = dummy_waker();
let mut cx = Context::from_waker(&waker);
match f.as_mut().poll(&mut cx) {
Poll::Ready(val) => return Ok(val),
Poll::Pending =>
bail!("Cannot wait on pending future: must enable wiggle \"async\" future and execute on an async Store"),
}
fn dummy_waker() -> Waker {
return unsafe { Waker::from_raw(clone(5 as *const _)) };
unsafe fn clone(ptr: *const ()) -> RawWaker {
assert_eq!(ptr as usize, 5);
const VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake_by_ref, drop);
RawWaker::new(ptr, &VTABLE)
}
unsafe fn wake(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
unsafe fn wake_by_ref(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
unsafe fn drop(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
}
}