1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
//! Cryptographic hash algorithms & MAC functions
//!
//! Cryptographic hash algorithms are mathematical algorithms that map data of arbitrary size to a
//! fixed size value. There are one-way functions practically infeasible to invert.
//!
//! Message authentication code (MAC) is a short piece of information attached
//! to a message confirming its authenticity and data integrity.
//!
//! # Usage
//!
//! The first step is to create an instance of the algorithm needed. All the hash algorithms
//! supported are defined in the [`HashAlgorithmId`] enum. For MACs, see the [`MacAlgorithmId`] enum.
//!
//! The creation of an algorithm can be relatively time-intensive. Therefore, it is advised to cache
//! and reuse the created algorithms.
//!
//! Once the algorithm is created, an instance of an hash can be created. It's worth noting that
//! hash and MAC instances share the underlying [`Hash`] type.
//!
//! Using the [`hash`][`Hash::hash`] method,
//! it is possible to hash per block. For example, if the user wants to hash a large file, it can
//! call the [`hash`][`Hash::hash`] multiple times with only a subset of the file, limiting the memory usage.
//! The final result will be exactly the same as if the whole file was loaded and [`hash`][`Hash::hash`] was
//! called once.
//!
//! To get the hash value, the user must call the [`finish`][`Hash::finish`] method. This effectively consumes the
//! hash instance. To start the calculation of a new hash, a new instance must be created from the
//! algorithm.
//!
//! The following example hashes a string with the SHA-256 algorithm:
//! ```
//! use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
//!
//! const DATA: &'static str = "This is a test.";
//!
//! let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
//! let mut hash = algo.new_hash().unwrap();
//! hash.hash(DATA.as_bytes()).unwrap();
//! let result = hash.finish().unwrap();
//!
//! assert_eq!(result.as_slice(), &[
//! 0xA8, 0xA2, 0xF6, 0xEB, 0xE2, 0x86, 0x69, 0x7C,
//! 0x52, 0x7E, 0xB3, 0x5A, 0x58, 0xB5, 0x53, 0x95,
//! 0x32, 0xE9, 0xB3, 0xAE, 0x3B, 0x64, 0xD4, 0xEB,
//! 0x0A, 0x46, 0xFB, 0x65, 0x7B, 0x41, 0x56, 0x2C,
//! ]);
//!```
//! The example below computes a simple MAC value from null input, using the AES-GMAC algorithm:
//! ```
//! use win_crypto_ng::hash::{HashAlgorithm, MacAlgorithmId};
//!
//! const SECRET: &[u8] = &[
//! 0xcf, 0x06, 0x3a, 0x34, 0xd4, 0xa9, 0xa7, 0x6c,
//! 0x2c, 0x86, 0x78, 0x7d, 0x3f, 0x96, 0xdb, 0x71,
//! ];
//! const IV: &[u8] = &[
//! 0x11, 0x3b, 0x97, 0x85, 0x97, 0x18, 0x64, 0xc8,
//! 0x3b, 0x01, 0xc7, 0x87
//! ];
//!
//! let algo = HashAlgorithm::open(MacAlgorithmId::AesGmac).unwrap();
//! let mut mac = algo.new_mac(SECRET, Some(IV)).unwrap();
//! mac.hash(&[]).unwrap();
//! let result = mac.finish().unwrap();
//!
//! assert_eq!(result.as_slice(), &[
//! 0x72, 0xac, 0x84, 0x93, 0xe3, 0xa5, 0x22, 0x8b,
//! 0x5d, 0x13, 0x0a, 0x69, 0xd2, 0x51, 0x0e, 0x42,
//! ]);
//! ```
//!
//! [`HashAlgorithmId`]: enum.HashAlgorithmId.html
//! [`MacAlgorithmId`]: enum.MacAlgorithmId.html
//! [`Hash`]: struct.Hash.html
//! [`Hash::hash]: struct.Hash.html#method.hash
//! [`Hash::finish`]: struct.Hash.html#method.finish
use crate::buffer::Buffer;
use crate::helpers::{AlgoHandle, Handle, WindowsString};
use crate::property::{AlgorithmName, HashLength, InitializationVector, ObjectLength};
use crate::{Error, Result};
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::ptr::null_mut;
use winapi::shared::bcrypt::*;
use winapi::shared::minwindef::{PUCHAR, ULONG};
/// Algorithm kind used with hashing facilities.
///
/// This can be either a regular [`HashAlgorithmId`] (hash function)
/// or [`MacAlgorithmId`] (message authentication code).
///
/// [`HashAlgorithmId`]: ./enum.HashAlgorithmId.html
/// [`MacAlgorithmId`]: ./enum.MacAlgorithmId.html
pub trait AlgorithmKind {
fn to_str(&self) -> &'static str;
}
/// Hashing algorithm identifiers
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum HashAlgorithmId {
/// The 160-bit secure hash algorithm.
///
/// Standard: FIPS 180-2, FIPS 198.
Sha1,
/// The 256-bit secure hash algorithm.
///
/// Standard: FIPS 180-2, FIPS 198.
Sha256,
/// The 384-bit secure hash algorithm.
///
/// Standard: FIPS 180-2, FIPS 198.
Sha384,
/// The 512-bit secure hash algorithm.
///
/// Standard: FIPS 180-2, FIPS 198.
Sha512,
/// The MD2 hash algorithm.
///
/// Standard: RFC 1319.
Md2,
/// The MD4 hash algorithm.
///
/// Standard: RFC 1320.
Md4,
/// The MD5 hash algorithm.
///
/// Standard: RFC 1321.
Md5,
}
impl AlgorithmKind for HashAlgorithmId {
fn to_str(&self) -> &'static str {
HashAlgorithmId::to_str(*self)
}
}
/// MAC (Message authentication code) algorithm identifiers
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum MacAlgorithmId {
/// The advanced encryption standard (AES) cipher based message authentication code (CMAC) symmetric encryption algorithm.
///
/// Standard: SP 800-38B.
///
/// **Windows 8**: Support for this algorithm begins.
AesCmac,
/// The advanced encryption standard (AES) Galois message authentication code (GMAC) symmetric encryption algorithm.
///
/// Standard: SP800-38D.
///
/// **Windows Vista**: This algorithm is supported beginning with Windows Vista with SP1.
AesGmac,
}
impl AlgorithmKind for MacAlgorithmId {
fn to_str(&self) -> &'static str {
MacAlgorithmId::to_str(*self)
}
}
impl HashAlgorithmId {
pub fn to_str(self) -> &'static str {
match self {
Self::Sha1 => BCRYPT_SHA1_ALGORITHM,
Self::Sha256 => BCRYPT_SHA256_ALGORITHM,
Self::Sha384 => BCRYPT_SHA384_ALGORITHM,
Self::Sha512 => BCRYPT_SHA512_ALGORITHM,
Self::Md2 => BCRYPT_MD2_ALGORITHM,
Self::Md4 => BCRYPT_MD4_ALGORITHM,
Self::Md5 => BCRYPT_MD5_ALGORITHM,
}
}
}
impl<'a> TryFrom<&'a str> for HashAlgorithmId {
type Error = &'a str;
fn try_from(val: &'a str) -> Result<HashAlgorithmId, Self::Error> {
match val {
BCRYPT_SHA1_ALGORITHM => Ok(Self::Sha1),
BCRYPT_SHA256_ALGORITHM => Ok(Self::Sha256),
BCRYPT_SHA384_ALGORITHM => Ok(Self::Sha384),
BCRYPT_SHA512_ALGORITHM => Ok(Self::Sha512),
BCRYPT_MD2_ALGORITHM => Ok(Self::Md2),
BCRYPT_MD4_ALGORITHM => Ok(Self::Md4),
BCRYPT_MD5_ALGORITHM => Ok(Self::Md5),
val => Err(val),
}
}
}
impl MacAlgorithmId {
fn to_str(self) -> &'static str {
match self {
Self::AesCmac => BCRYPT_AES_CMAC_ALGORITHM,
Self::AesGmac => BCRYPT_AES_GMAC_ALGORITHM,
}
}
}
impl<'a> TryFrom<&'a str> for MacAlgorithmId {
type Error = &'a str;
fn try_from(val: &'a str) -> std::result::Result<MacAlgorithmId, Self::Error> {
match val {
BCRYPT_AES_CMAC_ALGORITHM => Ok(Self::AesCmac),
BCRYPT_AES_GMAC_ALGORITHM => Ok(Self::AesGmac),
val => Err(val),
}
}
}
/// Hashing algorithm
pub struct HashAlgorithm<Kind: AlgorithmKind> {
handle: AlgoHandle,
_kind: PhantomData<Kind>,
}
impl<Kind: AlgorithmKind> HashAlgorithm<Kind> {
/// Open a hash algorithm provider
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
/// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256);
///
/// assert!(algo.is_ok());
/// ```
pub fn open(id: Kind) -> Result<Self> {
let handle = AlgoHandle::open(id.to_str())?;
Ok(Self {
handle,
_kind: PhantomData,
})
}
fn create_hash(&self, secret: Option<&[u8]>, iv: Option<&[u8]>) -> Result<Hash> {
let (sec_ptr, sec_len) = secret
.map(|x| (x.as_ptr(), x.len()))
.unwrap_or((std::ptr::null(), 0));
let object_size = self.handle.get_property::<ObjectLength>()?;
let mut hash_handle = HashHandle::new();
let mut object = Buffer::new(object_size as usize);
unsafe {
Error::check(BCryptCreateHash(
self.handle.as_ptr(),
hash_handle.as_mut_ptr(),
object.as_mut_ptr(),
object.len() as ULONG,
sec_ptr as *mut _,
sec_len as ULONG,
0,
))?;
};
if let Some(iv) = iv {
hash_handle.set_property::<InitializationVector>(iv)?;
}
Ok(Hash {
handle: hash_handle,
object,
})
}
}
impl HashAlgorithm<HashAlgorithmId> {
/// Creates a new hash from the algorithm
pub fn new_hash(&self) -> Result<Hash> {
self.create_hash(None, None)
}
}
impl HashAlgorithm<MacAlgorithmId> {
/// Creates a new Message Authentication Code (MAC), if supported by the
/// backing algorithm (AES-GMAC/AES-CMAC).
///
/// Passing IV is required for GMAC mode, otherwise don't pass it for OMAC.
pub fn new_mac(&self, secret: &[u8], iv: Option<&[u8]>) -> Result<Hash> {
self.create_hash(Some(secret), iv)
}
}
struct HashHandle {
handle: BCRYPT_HASH_HANDLE,
}
unsafe impl Send for HashHandle {}
impl HashHandle {
pub fn new() -> Self {
Self { handle: null_mut() }
}
}
impl Drop for HashHandle {
fn drop(&mut self) {
if !self.handle.is_null() {
unsafe {
BCryptDestroyHash(self.handle);
}
}
}
}
impl Handle for HashHandle {
fn as_ptr(&self) -> BCRYPT_HASH_HANDLE {
self.handle
}
fn as_mut_ptr(&mut self) -> *mut BCRYPT_HASH_HANDLE {
&mut self.handle
}
}
/// Hashing operation
pub struct Hash {
handle: HashHandle,
/// Backing allocation for the hash object
object: Buffer,
}
impl Hash {
/// Perform a one way hash on the data
///
/// This method can be called multiple times. To get the final result, use [`finish`].
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
/// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
/// let mut hash = algo.new_hash().unwrap();
/// hash.hash("Some data".as_bytes()).unwrap();
/// hash.hash("Some more data".as_bytes()).unwrap();
/// ```
///
/// [`finish`]: #method.finish
pub fn hash(&mut self, data: &[u8]) -> Result<()> {
unsafe {
Error::check(BCryptHashData(
self.handle.as_ptr(),
data.as_ptr() as PUCHAR,
data.len() as ULONG,
0,
))
}
}
/// Get the hash value
///
/// This method consumes the hash operation. To create a new hash, a new instance must be created.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
/// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
/// let mut hash = algo.new_hash().unwrap();
/// hash.hash("Some data".as_bytes()).unwrap();
/// let result = hash.finish().unwrap();
///
/// assert_eq!(result.as_slice(), [
/// 0x1F, 0xE6, 0x38, 0xB4, 0x78, 0xF8, 0xF0, 0xB2,
/// 0xC2, 0xAA, 0xB3, 0xDB, 0xFD, 0x3F, 0x05, 0xD6,
/// 0xDf, 0xE2, 0x19, 0x1C, 0xD7, 0xB4, 0x48, 0x22,
/// 0x41, 0xFE, 0x58, 0x56, 0x7E, 0x37, 0xAE, 0xF6,
/// ]);
/// ```
pub fn finish(self) -> Result<Buffer> {
let hash_size = self.hash_size()?;
let mut result = Buffer::new(hash_size);
unsafe {
Error::check(BCryptFinishHash(
self.handle.as_ptr(),
result.as_mut_ptr(),
result.len() as ULONG,
0,
))
.map(|_| result)
}
}
/// Get the final hash length, in bytes.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
/// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
/// let hash = algo.new_hash().unwrap();
/// let hash_size = hash.hash_size().unwrap();
///
/// assert_eq!(hash_size, 32);
/// ```
pub fn hash_size(&self) -> Result<usize> {
self.handle
.get_property::<HashLength>()
.map(|hash_size| hash_size as usize)
}
/// Get the hash algorithm used for this hash object.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
/// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
/// let hash = algo.new_hash().unwrap();
///
/// assert_eq!(hash.hash_algorithm().unwrap(), HashAlgorithmId::Sha256);
/// ```
pub fn hash_algorithm(&self) -> Result<HashAlgorithmId> {
self.handle
.get_property_unsized::<AlgorithmName>()
.map(|name| {
WindowsString::from_bytes_with_nul(name.as_ref().into())
.expect("API to return 0-terminated wide string")
})
.map(|name| {
HashAlgorithmId::try_from(name.to_string().as_str())
.expect("Windows CNG API to return a correct algorithm name")
})
}
}
impl Clone for Hash {
fn clone(&self) -> Self {
// Rely on the fact that the existing buffer was already created with
// size of `BCRYPT_OBJECT_LENGTH` as required by `BCryptDuplicateHash`.
let object_size = self.object.len();
let mut handle = HashHandle::new();
let mut object = Buffer::new(object_size);
Error::check(unsafe {
BCryptDuplicateHash(
self.handle.as_ptr(),
handle.as_mut_ptr(),
object.as_mut_ptr(),
object.len() as ULONG,
0,
)
})
.expect("to always be able to duplicate a valid hash object");
Self { handle, object }
}
}
#[cfg(test)]
mod tests {
use super::*;
const DATA: &'static str = "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF";
#[test]
fn sha1() {
check_hash(
HashAlgorithmId::Sha1,
DATA.as_bytes(),
&[
0x2B, 0x44, 0x89, 0x60, 0x6A, 0x23, 0xFB, 0x31, 0xFC, 0xDC, 0x84, 0x9F, 0xA7, 0xE5,
0x77, 0xBA, 0x90, 0xF6, 0xD3, 0x9A,
],
)
}
#[test]
fn sha256() {
check_hash(
HashAlgorithmId::Sha256,
DATA.as_bytes(),
&[
0x0E, 0xA3, 0x7C, 0x24, 0x3F, 0x60, 0x97, 0x4B, 0x0D, 0x54, 0xC6, 0xB2, 0xD7, 0x6C,
0xEC, 0xE3, 0xF4, 0xC7, 0x42, 0x49, 0x2C, 0xCE, 0x48, 0xEA, 0xF8, 0x1F, 0x35, 0x79,
0x31, 0xD6, 0xD6, 0x9E,
],
)
}
#[test]
fn sha384() {
check_hash(
HashAlgorithmId::Sha384,
DATA.as_bytes(),
&[
0x2A, 0x10, 0x60, 0x89, 0x6A, 0xCB, 0xA9, 0xFA, 0x37, 0x11, 0xBF, 0x10, 0x9E, 0x90,
0x24, 0xEA, 0x19, 0xF5, 0xFC, 0x33, 0xAF, 0x0F, 0x47, 0x15, 0xC3, 0xE9, 0xD8, 0x63,
0xB3, 0x24, 0xA5, 0x08, 0x9F, 0xAB, 0x95, 0x36, 0xB2, 0xAC, 0x10, 0xF6, 0xC1, 0xE7,
0x31, 0x03, 0x09, 0x54, 0x18, 0x41,
],
)
}
#[test]
fn sha512() {
check_hash(
HashAlgorithmId::Sha512,
DATA.as_bytes(),
&[
0x39, 0x50, 0xAC, 0xCD, 0xFE, 0xF7, 0x46, 0x20, 0x71, 0x42, 0x78, 0x76, 0x5B, 0xBD,
0xCE, 0x04, 0xD4, 0x57, 0x90, 0x4B, 0x7C, 0xEA, 0x86, 0x31, 0x39, 0x6C, 0xBA, 0x6D,
0x8B, 0xCE, 0xFC, 0xE0, 0x30, 0x8F, 0xC4, 0x7C, 0xFB, 0x88, 0x5B, 0xC8, 0x9E, 0xBD,
0xF4, 0xFF, 0xA6, 0xF9, 0x8F, 0xC8, 0x51, 0x05, 0x54, 0x7C, 0xBD, 0xDF, 0x56, 0x57,
0xB6, 0xAD, 0xBD, 0xDD, 0xA3, 0x8C, 0xB9, 0xB5,
],
)
}
#[test]
fn md2() {
check_hash(
HashAlgorithmId::Md2,
DATA.as_bytes(),
&[
0x08, 0x18, 0x53, 0xA0, 0x5C, 0x1F, 0x58, 0xC6, 0xED, 0x43, 0x46, 0x4C, 0x79, 0x7D,
0x65, 0x26,
],
)
}
#[test]
fn md4() {
check_hash(
HashAlgorithmId::Md4,
DATA.as_bytes(),
&[
0x24, 0x3C, 0xDA, 0xF5, 0x91, 0x4A, 0xE8, 0x70, 0x91, 0xC7, 0x13, 0xB5, 0xFA, 0x9F,
0xA7, 0x98,
],
)
}
#[test]
fn md5() {
check_hash(
HashAlgorithmId::Md5,
DATA.as_bytes(),
&[
0xE8, 0x89, 0xD8, 0x2D, 0xD1, 0x11, 0xD6, 0x31, 0x5D, 0x7B, 0x1E, 0xDC, 0xE2, 0xB1,
0xB3, 0x0F,
],
)
}
fn check_hash(algo_id: HashAlgorithmId, data: &[u8], expected_hash: &[u8]) {
let algo = HashAlgorithm::open(algo_id).unwrap();
let mut hash = algo.new_hash().unwrap();
let hash_size = hash.hash_size().unwrap();
hash.hash(data).unwrap();
let result = hash.finish().unwrap();
assert_eq!(hash_size, expected_hash.len());
assert_eq!(result.as_slice(), expected_hash);
check_clone_impl(algo_id);
}
fn check_clone_impl(algo_id: HashAlgorithmId) {
let algo = HashAlgorithm::open(algo_id).unwrap();
let mut hash1 = algo.new_hash().unwrap();
hash1.hash(DATA.as_bytes()).unwrap();
let mut hash2 = hash1.clone();
assert_ne!(hash1.handle.as_ptr(), hash2.handle.as_ptr());
const AUX_DATA: &[u8] = &[0xE8, 0x91, 0xD9, 0x12];
hash1.hash(AUX_DATA).unwrap();
hash2.hash(AUX_DATA).unwrap();
let result1 = hash1.finish().unwrap();
let result2 = hash2.finish().unwrap();
assert_eq!(result1, result2);
}
trait HexSlice: std::borrow::Borrow<str> {
fn as_hex(&self) -> Vec<u8> {
let res: Vec<u8> = self
.borrow()
.as_bytes()
.rchunks(2)
.map(|slice| std::str::from_utf8(slice).unwrap())
.map(|chr| u8::from_str_radix(chr, 16).unwrap())
.rev()
.collect();
res
}
}
impl<'a> HexSlice for &'a str {}
#[test]
fn cmac() {
// Test vectors from
// https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/omac/omac-ad.pdf
let test_vectors = vec![
("2b7e151628aed2a6abf7158809cf4f3c", "", "bb1d6929e95937287fa37d129b756746"),
("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "070a16b46b4d4144f79bdd9dd04a287c"),
("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411", "dfa66747de9ae63030ca32611497c827"),
("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "51f0bebf7e3b9d92fc49741779363cfe")
];
for (key, msg, tag) in test_vectors {
let (key, msg, tag) = (&key.as_hex(), &msg.as_hex(), &tag.as_hex());
check_mac(MacAlgorithmId::AesCmac, msg, tag, key);
}
}
#[test]
fn gmac() {
// Test select vectors from (PTlen = 0 are effectively GMAC vectors)
// http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip
let algo = HashAlgorithm::open(MacAlgorithmId::AesGmac).unwrap();
let key = &"ce8d1103100fa290f953fbb439efdee4".as_hex();
let iv = &"4874c6f8082366fc7e49b933".as_hex();
let mut gmac = algo.new_mac(key, Some(iv)).unwrap();
gmac.hash(&"d69d033c32029789263c689e11ff7e9e8eefc48ddbc4e10eeae1c9edbb44f04e7cc6471501eadda3940ab433d0a8c210".as_hex()).unwrap(); // AAD
let digest = gmac.finish().unwrap();
assert_eq!(
digest.as_slice(),
&*"a5964b77af0b8aecd844d6adec8b7b1c".as_hex()
);
let key = &"4fedd84c9495e7ff81db48d367305d80".as_hex();
let iv = &"d82bfb016a35b5efa5e3438a".as_hex();
let mut gmac = algo.new_mac(key, Some(iv)).unwrap();
gmac.hash(&"0c80e282e64aeac2fba241686a9b33a6bdbac1230442e79fc5c0b6926158b0bf9b8562b570d784e749b69d64ed17f45e".as_hex()).unwrap(); // AAD
let digest = gmac.finish().unwrap();
assert_eq!(
digest.as_slice(),
&*"aad8933fdce92b9a24c2a9c2cc367291".as_hex()
);
}
fn check_mac(algo_id: MacAlgorithmId, data: &[u8], expected_hash: &[u8], secret: &[u8]) {
let algo = HashAlgorithm::open(algo_id).unwrap();
let mut hash = algo.new_mac(secret, None).unwrap();
let hash_size = hash.hash_size().unwrap();
hash.hash(data).unwrap();
let result = hash.finish().unwrap();
assert_eq!(hash_size, expected_hash.len());
assert_eq!(result.as_slice(), expected_hash);
}
#[test]
fn send() {
use crate::helpers::assert_send;
assert_send::<HashHandle>();
assert_send::<Hash>();
assert_send::<HashAlgorithm<HashAlgorithmId>>();
}
}