win_crypto_ng/random.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! Cryptographically secure random number generation
//!
//! # Usage
//!
//! To generate cryptographically secure random numbers, start by opening a
//! [`RandomNumberGenerator`]. This can be done either via the [`open`] method
//! where you specify the random algorithm to use or with the [`system_preferred`]
//! method, where the system default is used. Then, to fill a buffer with random
//! numbers, call the [`gen_random`] method.
//!
//! ```
//! use win_crypto_ng::random::{RandomAlgorithmId, RandomNumberGenerator};
//!
//! let mut buffer = [0u8; 32];
//! let rng = RandomNumberGenerator::open(RandomAlgorithmId::Rng).unwrap();
//! rng.gen_random(&mut buffer).unwrap();
//!
//! assert_ne!(&buffer, &[0u8; 32]);
//! ```
//!
//! [`RandomNumberGenerator`]: struct.RandomNumberGenerator.html
//! [`open`]: struct.RandomNumberGenerator.html#method.open
//! [`system_preferred`]: struct.RandomNumberGenerator.html#method.system_preferred
//! [`gen_random`]: struct.RandomNumberGenerator.html#method.gen_random
use crate::helpers::{AlgoHandle, Handle};
use crate::Error;
use core::convert::TryFrom;
use core::fmt;
use core::ptr;
use winapi::shared::bcrypt::*;
use winapi::shared::ntdef::ULONG;
/// Random number generation algorithms identifiers
#[derive(Clone, Copy, PartialOrd, PartialEq)]
pub enum RandomAlgorithmId {
/// The random-number generator algorithm.
///
/// Standard: FIPS 186-2, FIPS 140-2, NIST SP 800-90
///
/// Beginning with Windows Vista with SP1 and Windows Server 2008, the
/// random number generator is based on the AES counter mode specified in
/// the NIST SP 800-90 standard.
///
/// **Windows Vista**: The random number generator is based on the hash-based
/// random number generator specified in the FIPS 186-2 standard.
///
/// **Windows 8**: Beginning with Windows 8, the RNG algorithm supports
/// FIPS 186-3. Keys less than or equal to 1024 bits adhere to FIPS 186-2
/// and keys greater than 1024 to FIPS 186-3.
Rng,
/// The dual elliptic curve random-number generator algorithm.
///
/// Standard: SP800-90.
///
/// **Windows 8**: Beginning with Windows 8, the EC RNG algorithm supports
/// FIPS 186-3. Keys less than or equal to 1024 bits adhere to FIPS 186-2
/// and keys greater than 1024 to FIPS 186-3.
///
/// **Windows 10**: Beginning with Windows 10, the dual elliptic curve random
/// number generator algorithm has been removed. Existing uses of this
/// algorithm will continue to work; however, the random number generator is
/// based on the AES counter mode specified in the NIST SP 800-90 standard.
/// New code should use [`Rng`](#variant.Rng), and it is recommended that
/// existing code be changed to use [`Rng`](#variant.Rng).
DualECRng,
/// The random-number generator algorithm suitable for DSA (Digital
/// Signature RandomAlgorithmId).
///
/// Standard: FIPS 186-2.
///
/// **Windows 8**: Support for FIPS 186-3 begins.
Fips186DsaRng,
}
impl<'a> TryFrom<&'a str> for RandomAlgorithmId {
type Error = &'a str;
fn try_from(value: &'a str) -> Result<RandomAlgorithmId, Self::Error> {
match value {
BCRYPT_RNG_ALGORITHM => Ok(RandomAlgorithmId::Rng),
BCRYPT_RNG_DUAL_EC_ALGORITHM => Ok(RandomAlgorithmId::DualECRng),
BCRYPT_RNG_FIPS186_DSA_ALGORITHM => Ok(RandomAlgorithmId::Fips186DsaRng),
_ => Err(value),
}
}
}
impl From<RandomAlgorithmId> for &'static str {
fn from(val: RandomAlgorithmId) -> Self {
match val {
RandomAlgorithmId::Rng => BCRYPT_RNG_ALGORITHM,
RandomAlgorithmId::DualECRng => BCRYPT_RNG_DUAL_EC_ALGORITHM,
RandomAlgorithmId::Fips186DsaRng => BCRYPT_RNG_FIPS186_DSA_ALGORITHM,
}
}
}
impl fmt::Display for RandomAlgorithmId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", Into::<&'static str>::into(*self))
}
}
/// Random number generator
///
/// Main type that is capable of generating random
/// numbers.
pub struct RandomNumberGenerator {
handle: RandomAlgoHandle,
}
impl RandomNumberGenerator {
/// Open a random number generator using the provided algorithm.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::random::{RandomAlgorithmId, RandomNumberGenerator};
/// let rng = RandomNumberGenerator::open(RandomAlgorithmId::Rng);
///
/// assert!(rng.is_ok());
/// ```
pub fn open(id: RandomAlgorithmId) -> crate::Result<RandomNumberGenerator> {
let handle = RandomAlgoHandle::open(id)?;
Ok(Self { handle })
}
/// Open a random number generator using the system preferred algorithm.
///
/// **Windows Vista**: This is not supported.
pub fn system_preferred() -> RandomNumberGenerator {
let handle = RandomAlgoHandle::SystemPreferred;
Self { handle }
}
/// Fills a buffer with random bytes.
///
/// Use a random number for the entropy.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::random::{RandomAlgorithmId, RandomNumberGenerator};
/// let mut buffer = [0u8; 32];
/// let rng = RandomNumberGenerator::system_preferred();
/// rng.gen_random(&mut buffer).unwrap();
///
/// assert_ne!(&buffer, &[0u8; 32]);
/// ```
pub fn gen_random(&self, buffer: &mut [u8]) -> crate::Result<()> {
self.gen_random_with_opts(buffer, self.handle.flags())
}
/// Fills a buffer with random bytes.
///
/// This function will use the number in the buffer as additional
/// entropy for the random number.
///
/// **Windows 8 and later**: This does the exact same thing as
/// [`gen_random`](#method.gen_random).
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::random::{RandomAlgorithmId, RandomNumberGenerator};
/// let mut buffer = [0u8; 32];
/// let rng = RandomNumberGenerator::system_preferred();
/// rng.gen_random_with_entropy_in_buffer(&mut buffer).unwrap();
///
/// assert_ne!(&buffer, &[0u8; 32]);
/// ```
pub fn gen_random_with_entropy_in_buffer(&self, buffer: &mut [u8]) -> crate::Result<()> {
self.gen_random_with_opts(
buffer,
self.handle.flags() | BCRYPT_RNG_USE_ENTROPY_IN_BUFFER,
)
}
fn gen_random_with_opts(&self, buffer: &mut [u8], opts: ULONG) -> crate::Result<()> {
let handle = self.handle.handle();
Error::check(unsafe {
BCryptGenRandom(handle, buffer.as_mut_ptr(), buffer.len() as ULONG, opts)
})
}
}
#[cfg(feature = "rand")]
impl rand_core::CryptoRng for RandomNumberGenerator {}
#[cfg(feature = "rand")]
impl rand_core::RngCore for RandomNumberGenerator {
fn next_u32(&mut self) -> u32 {
rand_core::impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dst: &mut [u8]) {
// Panics are allowed in `fill_bytes`
self.try_fill_bytes(dst).unwrap()
}
fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), rand_core::Error> {
self.gen_random(dst)
.map_err(|e| From::<core::num::NonZeroU32>::from(e.into()))
}
}
/// Wrapper around `AlgoHandle` that can only specify RNG algorithms.
enum RandomAlgoHandle {
/// System-preferred algorithm provider.
SystemPreferred,
/// An already opened provider for a specified algorithm.
Specified(AlgoHandle),
}
impl RandomAlgoHandle {
fn open(id: RandomAlgorithmId) -> crate::Result<Self> {
Ok(Self::Specified(AlgoHandle::open(id.into())?))
}
fn handle(&self) -> BCRYPT_ALG_HANDLE {
match self {
Self::SystemPreferred => ptr::null_mut(),
Self::Specified(handle) => handle.as_ptr(),
}
}
fn flags(&self) -> ULONG {
match self {
Self::SystemPreferred => BCRYPT_USE_SYSTEM_PREFERRED_RNG,
Self::Specified(_) => 0,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_rng(rng: RandomNumberGenerator) {
let empty = vec![0; 32];
let mut buf = empty.clone();
rng.gen_random(&mut buf).expect("RNG to succeed");
assert_ne!(&buf, &empty);
let mut buf2 = buf.clone();
rng.gen_random_with_entropy_in_buffer(&mut buf2)
.expect("RNG to succeeed");
assert_ne!(&buf2, &empty);
assert_ne!(&buf2, &buf);
}
#[test]
fn system_preferred() {
let rng = RandomNumberGenerator::system_preferred();
test_rng(rng);
}
#[test]
fn rng() {
let rng = RandomNumberGenerator::open(RandomAlgorithmId::Rng).unwrap();
test_rng(rng);
}
#[test]
fn dualecrng() {
let rng = RandomNumberGenerator::open(RandomAlgorithmId::DualECRng).unwrap();
test_rng(rng);
}
#[test]
fn fips186dsarng() {
let rng = RandomNumberGenerator::open(RandomAlgorithmId::Fips186DsaRng).unwrap();
test_rng(rng);
}
}